Introduction to Data-Stream-
Based Processing on GPUSs

L Robert Strzodka

caesar research center
Bonn, Germany

Overview

@® Graphics Processor Unit (GPU)
® Data-Stream-Based Processing
® Functionality of GPUs
® “Hello World” on GPUs

@® Scientific Computing
® Partial Differential Equations
® Gather and Scatter Operations
® Matrix Vector Product

® Further GPU - PDE Topics
® Quantization
® Discretization Grids
® Discretization Schemes

Data Processing in General

Alowaw

Alowaw

Instruction-Stream-Based Processing

<<

Instructions

. . Robert Strzodka
caesar research center 4

Data-Stream-Based Processing

Alowaw

aulladid

configuration

Alowaw

Instruction- and Data-Streams

Addition of nodal 2d grid vectors: C=A + B

for(y=0; y<HEl GHT; y++)
for(x=0; Xx<WDTH, Xx++) {
: CLylx1= ALy1[x1+BLyl1[Xx];

| nput St reans(A,B);

out put St rean(C) ;

ker nel Program OP_ADD) ;
processStreans();

Data-Stream-Based Architectures

o , e.9. FPGAs

@ very flexible bit level parallelism
@ high transistor and design costs for total reconfigurability

® RC — Reconfigurable Computing, e.g. XPP (PACT)
® flexible word (4-32 bit) level parallelism
® various architectures with different pros and cons

® PIM — Processor-in-Memory, e.g. FlexRAM (lllinois)
@® extreme data parallelism
® restricted inter-chip communication

e , €.9. Imagine (Stanford)

® intensive data reusage in hierarchical stream caches
@ performs best for high computational intensity

Graphics Processor

| ‘Mertex:Data |
v
Higher Order Surface
Tessellation
El
m Fized Function -

CO ntro I I ed Backface Culling
processing units

Viewport Transform

Rendering
° ProceSSing unlts Fixed Function
p ro g ram m ab I e Texturing, Filtering & Blending

with high level Foo e
languages

The graphics
pipeline consists of:

Geometry Processing

! = Robert Strzodka
. caesar research center 8

Fragment Processor Functionality as
seen from a High Level Language

@ Float data types:
® 16-bit & 32-bit (NVIDIA), 24-bit (ATI)
® \ectors, structs and arrays:

o , vec[6], : arr[5][3],
@® Arithmetic and logic operators:
e b)]] ;)]
@® Trignonometric, exponential functions:
e]]]]]
® User defined functions
@
® Conditional statements by predication, unrollable loops:
@ if, for, , dynamic branching in PS3

@® Arbitrary texture positions can be accessed

“Hello World“ GPGPU Example

@ 3 x 3 Image processing convolution
® CPU version

image = loadImage(WIDTH, HEIGHT);
blurlmage = allocZeros(WIDTH, HEIGHT);

for (x=0; x < WIDTH; Xx++)
for (y=0; y < HEIGHT; y++)

. = Robert Strzodka slide courtesy
. caesar research center

of Aaron Lefohn

10

Computing by Drawing

« Drawing a large quad
| | replaces the outer X,y loops

« The loop body is executed
In parallel for the different
X,y Indices (fragments)

« The loop body reads data
from textures (Images)

« The result can be used In
as input in next operation

image courtesy

of John Owens

“Hello World“ GPGPU Example

® Fragment program for the loop body in Cg
® GPU Version

float4 blurKernel(uniform samplerRECT image,
float2 winPos : WPOS,
out float4 blurlmage)

{

blurlmage = float4(0,0,0,0);

. . Robert Strzodka slide courtesy
caesar research center

of Aaron Lefohn 12

Data Streaming in Graphics Hardware

parametw> video

memTer

s 10NS display
o | S = Y

ttttttt

buffer <
read
values

GPU as a Data-Parallel Computer

@ Data specification

- Textures

® Kernel specification -> Fragment program

® General execution

Write Data To
Texture

Load
Fragment
Program

- Draw single large quad

= X

Bind Textures

Configure
OpenGL for
1:1 Rendering

Bind Fragment
Program

2

Draw Large
Quad

2

Write
results to
texture

slide courtesy

of Aaron Lefohn

Overview

@® Graphics Processor Unit (GPU)
® Data-Stream-Based Processing
® Functionality of GPUs
® “Hello World” on GPUs

@® Scientific Computing
® Partial Differential Equations
® Gather and Scatter Operations
® Matrix Vector Product

® Further GPU - PDE Topics
® Quantization
® Discretization Grids
® Discretization Schemes

Denoising by a Linear and a Non-linear
Diffusion

linear
diffusion

non-linear
diffusion

Robert Strzodka
caesar research center 16

Solving PDEs on GPUs

We seek a function u(x,t): (€, R") - R™,Q < R? which satisfies

PDE o.u+F[u,u]=0 in R xQ

initial value u(0)=u, In Q

boundary 0 U=Db, or u=b, on R* xoQ

e.g.: non-linear diffusion: Flu,v]=—div(g(]| V_u ||)VV)

After discretization in time and space and possibly the use of an iterative
linear equation system solver, the main opration required by the algorithm

A-V"

Local Gather Operation

Step n

Step n+1

Global Gather Operation

No Parallel Dynamic Scatter

Step n

—

In the loop body the index of the
changed dynamically. Slow remedy: scattering of points.

Step n+1

cannot be

Overview

@® Graphics Processor Unit (GPU)
® Data-Stream-Based Processing
® Functionality of GPUs
® “Hello World” on GPUs

@® Scientific Computing
® Partial Differential Equations
® Gather and Scatter Operations
® Matrix Vector Product

® Further GPU - PDE Topics
® Quantization
® Discretization Grids
® Discretization Schemes

Quantization

Roundoff examples for the format
additive roundoff a=1+ 0.00000004 =41
multiplicative roundoff b=1.0002 * 0.9998 =;1
cancellation c=a,b (c-1) * 108 =4 0

Cancellation promotes the small error 0.00000004
to the absolute error 4 and an order one relative error.

Order of operations can be crucial:
1+ 0.00000004 —1=40
1-1+ 0.00000004=; 0.00000004
But cancellation cannot be avoided automatically!

Discretization Grids on GPUs

® An equidistant grid

® Easy to implement

® One texture holds all values

® Deformed tensor grid

@ Parallel dynamic updates

@ One texture for values
second for deformation

® Unstructured grid

® Good performance for static,
poor for dynamic grid topology

® Several indirections are needed

Discretization Schemes

® Finite Differences
® Interpolative approach: simple and fast

@® Usually interaction with direct neighbors

® Finite Volumes
@® VVolumetric approach: mass conservation
® Good at discontinuities, less for smooth data

@ Interaction over element boundaries

® Finite Elements
® Approximative approach: error minimization
® Good handling of deformed, unstructured grids

® Interaction of basis functions (all neighbors)

_,.—/

Conclusions

® Many problems expose a lot of

® GPUs perform well as for this
kind of processing.

® Floating point number support and programming with high
level languages facilitates access to this functionality.

® Future GPUs will be even more flexible and powerful but
focus on data-stream-based processing will remain.

Interested in GPU Programming?

® GPGPU = General Purpose Computations on GPUs

® Visit the GPGPU base: papers, code, news, links, people
® www.gpgpu.org

® Site contains extensive material of two full-day tutorials

® SIGGRAPH 2004
@® Visualization 2004

® Code examples
® Commented ‘Hello GPGPU’
® Contributed applications
® Utility libraries

P..

