Integrating GPUs as fast co-processors into the
existing parallel FE package FEAST

Dominik Goéddeke*
Universitidt Dortmund
dominik.goeddeke @math.uni-dortmund.de

Christian Becker* Stefan Turek*
christian.becker @ math.uni-dortmund.de ture @featflow.de
Abstract

We report on our experiences with integrating GPUs as fast, parallel floating-point co-

processors into the parallel FE package FEAST. Since a full re-implementation of such
a package is not feasible, we identify the smoothing of an outer domain-decomposition
multigrid solver as a natural entry-point for a minimally invasive integration of GPUs.
‘We address the issue of limited computational precision with a mixed precision iterative
refinement approach and present preliminary timing results on a commodity cluster
enhanced with GPUs.

1 Introduction

Commodity graphics processors (GPUs) have evolved into a very attractive hardware plat-
form for general purpose computations due to their extremely high floating point processing
performance, huge memory bandwidth and their comparatively low cost [OLG™05]. How-
ever, modern GPUs have several limitations: While the on-chip bandwidth is comparable
to L2 cache bandwidth on CPUs, the off-chip bandwidth over the PCle bus to the main
memory can be a significant bottleneck, delivering sustained rates of one to two GB/s only.
Programming GPUs requires significant background knowledge in computer graphics, and
algorithms have to be adapted and reformulated to the data-stream based programming
model. Finally, GPUs only provide quasi-IEEE 32-bit single floating point precision which
is insufficient for most applications.

Typical FE packages, especially parallel ones, consist of up to several hundred thousand
lines of code, and a complete redesign to incorporate GPUs is out of question. We there-
fore provide a minimally invasive integration of the fine-grained parallelism of GPUs as
co-processors into the coarse-grained parallelism of the existing MPI-based FE package
FEAST [BKTO3].

* Angewandte Mathematik und Numerik, Fachbereich Mathematik, D-44 227 Dortmund, Germany




2 Background

Designed for the solution of large-scale PDE problems, FEAST combines the advantages
of multigrid and domain decomposition methods into a generalised solver scheme called
SCARC (Scalable Recursive Clustering). The computational domain is discretised into a
collection of so-called macros, forming an unstructured coarse grid of quadrilaterals, and
each macro is subsequently refined independently into generalised tensor-product grids.
On the resulting computational grid, a global parallel multigrid solver is executed, imple-
mented using MPI. FEAST provides a wide selection of smoothers, e.g. simple Jacobi
iteration for cartesian sub-grids, and alternating-directions tri-diagonal Gauss-Seidel (ADI-
TRIGS) for more anisotropic ones. For large-scale problems FEAST allows to recursively
smooth the defects of the global multigrid with local multigrid solvers acting on the refined
macros only. The main idea behind this approach is to avoid deterioration of the conver-
gence of the global solver by hiding (encapsulating) anisotropies locally, while exploiting
regular structures to leverage high computational efficiency. We refer to Turek et al. for
more details [BKTO03].

GPUs only provide quasi-IEEE single precision floating point storage and arithmetic. For
the kind of FEM problems we are interested in, this low precision is insufficient. Instead
of emulating double precision on the GPU through a double-single approach, we apply
a mixed precision iterative refinement technique: While all global data is held in double
precision on the CPU, the inner multigrid is restricted to single precision and the result of
the smoothing step is accumulated in double precision to the global result. We refer to our
hardware—oriented study of these techniques in the FEM context [GSTO06], and note that
such an approach does not deteriorate the accuracy of the computed results, especially for
very ill-conditioned problems due to operator or mesh anisotropies.

3 Integration into FEAST

The key observation for our intended integration of GPUs into FEAST is that FEAST main-
tains a clear distinction between local and global problems, and the local (sub-) problems
are all structured and therefore suitable to be offloaded to co-processor hardware. More
generally, this approach can similarly be applied to every FE package that maintains a sim-
ilar distinction (which most FE packages do for performance reasons). Consequently, our
GPU-based multigrid implementation is integrated into FEAST as a new type of smoother
for the outer multigrid, with a narrow interface: FEAST builds up and maintains all global
and local data, and a local problem (including a full multigrid matrix hierarchy) is passed
to the GPU along with the current right hand side and some configuration data. This means
the data is duplicated into GPU memory, and the GPU-based solver then smoothes this
defect by means of multigrid. Finally, the defect correction term is transferred back to the
CPU which accumulates it to the local defect before communicating and continuing with
the global multigrid.

A first prototype of the admittedly straightforward idea to delegate the smoothing of the
outer, global multigrid to a GPU-based inner, local multigrid performed rather poorly com-
pared to what we expected after benchmarking the individual components separately. We



identified three main bottlenecks in the initial design which we address subsequently:
GPUs perform poorly for small problem sizes, mainly because of the overhead their use
implies and due to unsaturated pipelines with too few threads working concurrently. As the
outer multigrid employs F-cycles, most of the calls to its smoother are performed for small
problem sizes. We therefore introduced a dynamic CPU-GPU switch: If a local problem
is too small to be smoothed efficiently on the GPU, we simply reschedule it to the CPU.
Dynamically exchanging the local smoother was however not considered in FEAST before,
so we implemented a single-precision version of the GPU code on the CPU as well to hide
the target decision from FEAST. The actual choice of the threshold depends on the cache
sizes on the CPU and transfer overhead of the GPU.

Our GPU-based multigrid currently only offers Jacobi smoothing, whereas FEAST pro-
vides a wide range of smoothers that robustly handle deformations and anisotropies in the
underlying mesh. Since the data and control flow for e.g. an ADI-TRIGS smoother is non-
trivial to implement on a GPU, this adds an additional level of complexity to the already
hard scheduling problem: The coarse grid macros need to be partitioned into parallel blocks
based on the availability and applicability of smoothers and the (expected) run-time on each
node. We did not address this hard dynamic scheduling problem yet, and confine ourselves
to static partitions of exemplary test domains in this paper.

The last bottleneck is that the GPU is idle when the CPU performs the accumulation and
update steps, and the computation is stalled during transfers from and to the co-processor.
We addressed this issue by implementing a streaming solution scheme for all sub-problems
(macros) that are scheduled onto the same node: While sub-problem ¢ is smoothed on the
GPU, the data for sub-problem ¢ + 1 is transferred to the GPU memory using DMA, and the
result vector of problem 7 — 1 is read back to the host and accumulated to the local solution.
This streaming technique of interleaved transfers and computation also reduces the impact
of the transfer over the comparatively slow PCle bus.

4 Preliminary results

In our tests we solve the Poisson problem —Au = f with zero Dirichlet boundary condi-
tions on two different grids. All tests are executed on a cluster with 32 compute nodes and
one master node. Each node comprises a dual Intel EM64T 3.4 GHz and a NVIDIA Quadro
FX1400 PCIe (mid-range) graphics card. The nodes are fully connected via Infiniband.
The first mesh is a simple cartesian grid which allows to use fast simple solvers. The sec-
ond is a mixture of regular and generalised tensor product macros which require a more
advanced solver for convergence. In all our tests, we achieve the same accuracy and er-
ror reduction irrespective of the hardware architecture used for the computation, i.e. the
restriction of the GPU to single precision has no effect on the final result.

4.1 Regular grids

On square-like grids a multigrid cycle with a Jacobi smoother converges very quickly, and
a corresponding inner solver is available on both on the CPU and GPU. Thus, we can



schedule a task to the CPU or GPU depending solely on the problem size on the current
outer multigrid level. This is done statically for the macros, and again dynamically based
on the CPU-GPU switch described above. We evaluate six different configurations:

1x16p CPU: 16 nodes, one CPU each, one CPU process

1x16p GPU: 16 nodes, one GPU each, one GPU process

2x16p CPU: 16 nodes, two CPUs each, two CPU process

2x16p GPU: 16 nodes, two CPUs and one GPU each, one CPU and one GPU process
1x32p CPU: 32 nodes, one CPU each, one CPU process

1x32p GPU: 32 nodes, one CPU and one GPU each, one GPU process

Currently, we do not have nodes in which we can use two graphics cards in parallel, but
this will be possible in the future. The grid we use comprises 16x16 macros. All macros
have the same size (2© + 1)2, where L is the level of the macro. By varying the level we
obtain overall problem sizes from ~1M to ~67M grid nodes.

In figure 1 (left) we compare the performance of the cluster with one or two CPUs per
node and with or without a graphics card. The first diagram shows the absolute execution
time, the second the time normalised by the number of unknowns per macro. Comparing
the 1x16p CPU against the 2x16p CPU configuration, we see that the second CPU pro-
cess per node gains approximately 20% in performance. This number is fairly low because
our computations are very data intensive and the CPUs share a common bus to the main
memory.

Comparing the combined CPU-GPU solvers against the CPU solver, we see at first a sur-
prising up and down movement, which is particularly clear in the normalised graph. There
are two causes for this behaviour. For small levels almost all work is scheduled to the CPU
(cf. section 3) because the GPU is only efficient on large macros. Therefore, the first lev-
els basically compare the C++ against the (much more optimised) Fortran multigrid solver.
The former wins at first due to the lower bandwidth requirements (single precision). On
the highest level we finally see the acceleration by the GPU, which performs very well on
large problems. This advantage is large enough for the 1x16p GPU version to outperform
the 2x16p CPU version. From an economic point of view this means that equipping the
cluster nodes with one processor plus a mid-range graphics card can already outperform a
dual processor node for this kind of application. Clearly, this is not a general statement, but
we expect the advantage to grow for higher levels, which we could not verify on time due
to scheduling problems with the Linux kernel and unoptimised MPI buffered transfers over
the Infiniband interconnects.

Figure 1 (centre) compares a 16 node two processor against a 32 node one processor con-
figuration. Again we show the absolute numbers on top and the normalised times at the
bottom. We see a similar behaviour as in the previous graph. The significantly better per-
formance of the 1x32 configurations shows once again the importance of high bandwidth
in the system. Both configuration types 2x16 and 1x32 utilise the same number of CPUs,
but the latter has more bandwidth available because the CPUs are not sharing a bus. This
advantage clearly outweighs the additional communication necessary. Because the entire



bandwidth is now available to the CPU, the 1x32 GPU version is fastest on the highest
level by a smaller margin than before.

GPU, GPU Performance Study for 1x16p, 2x16p (Threshold=20K) CPU, GPU Performance Study for 1x32p, 2x16p (Threshold=20K) CPU, GPU Performance Study for 2x16p (Threshold=20K)
300 250 30
1167, CPUMGCPU2 —O— 1x325 CPU MGCPUZ x16p CPU ADI + CPU JAC —— -
1x16p GPU FX1400 —- 1x32p GPU FX1400 —- 2x16p CPU ADI + GPU FX1400 X/ |
206 CPU MGCPU2 -3 2016 CPU MGCPU2 X 300 /
2x16p GPU FX1400 <7 200 2416p GPU FX1400 <%,

250

200

Seconds

150

Seconds

100

6 65 7 75 8 85 9 6 65 7 75 8 85 9 6 65 7 75 8 85 9
Level Level Level

CPU, GPU Performance Study for 1x16p, 2x16p (Threshold=20K) CPU, GPU Performance Study for 1x32p, 2x16p (Threshold=20K) CPU, GPU Performance Study for 2x16p (Threshold=20K)

16 CPUMGCPUZ o 1332p CPU MGCPUZ o Zx16p CPU ADI + CPU JAC —|
£ 2x16p CPU ADI + GPU FX1400 ~3¢-

grid

conds per macro
Seconds per macro grid node

Seconds per macro grid node

set

Figure 1: Absolute (top) and normalised (bottom) cluster performance: Left: 16 nodes, reg-
ular grid, one or two CPUs and zero or one GPU per node. Centre: 16 or 32 nodes, regular
grid, one or two CPUs and zero or one GPU per node. Right: 16 nodes, coarsely adapted
grid, one or two CPUs and zero or one GPU per node.

4.2 Coarsely adaptive grids

Here we test the situation for a grid containing generalised tensor-product macros which
require a more advanced solver, currently not available on the GPU. The idea is to schedule
the anisotropic macros to an advanced CPU solver and utilise the GPU for the quick solu-
tion of several isotropic macros in the meantime. The GPU smoother continues to use the
size dependent switch to divert small problems to the CPU. The timings are again obtained
with a static partitioning of the domain. Figure 1 (right) shows the absolute and normalised
execution time for the Poisson problem on this domain. We use two configurations:

2x16p CPU ADI + CPU JAC: 16 nodes, two CPUs and two CPU processes each.
The first process handles the anisotropic macros with an ADI-TRIGS multigrid, the
second several of the simple ones with a Jacobi multigrid solver.

2x16p CPU ADI + GPU: 16 nodes, two CPUs and one GPU each, one CPU and
one GPU process. The CPU handles the anisotropic macros with the ADI-TRIGS
multigrid, the GPU several of the simple ones with a Jacobi multigrid solver.

The results are consistent with the previous graphs. Once the problem size becomes large,
the GPU can process the data in parallel quicker than the second CPU in the 2x16p CPU
ADI+CPU JAC configuration. An additional advantage of the GPU processing is that we



put less strain on the main memory system, whereas in the CPU-CPU configuration both
processors compete for bandwidth. Nevertheless, there is still potential to further accelerate
the 2x16p CPU ADI+GPU configuration, since tests on a single node show that the GPU
can perform up to 5 times as much work as the CPU [GST06].

5 Summary and future work

We have demonstrated a prototypical approach to leverage the bandwidth and compute
power of GPUs in the parallel Finite Element package FEAST. Our integration is mini-
mally invasive in the sense that apart from some control code, the original FE package
remains untouched, and the GPU is included as a new type of smoother. The adapted iter-
ative refinement method solves one key disadvantage of GPUs, namely the restriction to
single precision floating point computation: In our results, we gain the same accuracy as if
the entire computation was performed in double precision.

Our results are preliminary in two ways: First, we did not have the time to include compu-
tations on level 10, on which we expect the speedup of the GPUs to be most significant.
Second, we did not address the hard dynamic scheduling problem yet. Despite these two
drawbacks, our results demonstrate the potential of enhancing commodity clusters with
GPUs, not only for pure speedup, but also in view of the total cost of ownership: Includ-
ing GPUs is a much more cost-efficient enhancement than adding more compute nodes to
increase the performance of an existing cluster.

Acknowledgments

This work is — in parts — a collaboration with Robert Strzodka and Patrick McCormick. We
would like to thank the FEAST developers, Sven Buijssen, Matthias Grajewski, Susanne
Kilian and Hilmar Wobker, for their support. This work has been in part supported by the
German Science Foundation (DFG), project TU102/22-1.

References

[BKTO03] Ch. Becker, S. Kilian, and S. Turek. Hardware—oriented numerics and concepts
for PDE software. In FUTURE 1095, pages 1-23. Elsevier, 2003. International
Conference on Computational Science ICCS2002, Amsterdam.

[GSTO6] D. Goddeke, R. Strzodka, and S. Turek. Performance and accuracy of
hardware-oriented native-, emulated- and mixed-precision solvers in FEM sim-
ulations. International Journal of Parallel, Emergent and Distributed Systems,
2006. to appear.

[OLG™05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn,
and T. Purcell. A survey of general-purpose computation on graphics hardware.
In Eurographics, State of the Art Reports, pages 21-51, September 2005.



