
Performance and accuracy of hardware-oriented native-, emulated- and
mixed-precision solvers in FEM simulations (Part 2: Double Precision GPUs)

Dominik Göddeke and Robert Strzodka
Applied Mathematics, Dortmund University of Technology, Germany

Max Planck Center, Max Planck Institut Informatik, Saarbrücken, Germany
http://www.mathematik.tu-dortmund.de/~goeddeke, dominik.goeddeke@math.tu-dortmund.de

http://www.mpi-inf.mpg.de/~strzodka/, strzodka@mpi-inf.mpg.de

In a previous publication, we have examined the fundamental difference between computational precision and result
accuracy in the context of the iterative solution of linear systems as they typically arise in the Finite Element
discretization of Partial Differential Equations (PDEs) [1]. In particular, we evaluated mixed- and emulated-
precision schemes on commodity graphics processors (GPUs), which at that time only supported computations
in single precision. With the advent of graphics cards that natively provide double precision, this report updates
our previous results.

We demonstrate that with new co-processor hardware supporting native double precision, such as NVIDIA’s
G200 architecture, the situation does not change qualitatively for PDEs, and the previously introduced mixed
precision schemes are still preferable to double precision alone. But the schemes achieve significant quantitative
performance improvements with the more powerful hardware. In particular, we demonstrate that a Multigrid
scheme can accurately solve a common test problem in Finite Element settings with one million unknowns in
less than 0.1 seconds, which is truely outstanding performance. We support these conclusions by exploring the
algorithmic design space enlarged by the availability of double precision directly in the hardware.

1 Introduction and motivation

We solve the Poisson problem −∆u = f on a unitsquare domain Ω = [0, 1]2 with Dirichlet boundary
conditions. The Poisson problem is a very important prototypical representative of the class of elliptic
Partial Differential Equations (PDEs), and it often appears as a sub-problem in realistic simulation codes,
for example as the Pressure-Poisson problem when solving the Navier-Stokes equations in fluid dynamics
with an operator-splitting approach. We use a regular subdivision scheme, so that the resulting mesh consists
of N = (2L + 1)2 mesh points for a refinement level of L = 1, . . . , 10. Bilinear, conforming Finite Elements
of the Q1 space are used to discretize the PDE on the mesh. Due to the regular structure of the mesh
(and a linewise numbering of the unknowns), the resulting matrix is large and sparse, with exactly nine
nonzero bands. This logical tensorproduct structure is independent of the location of the mesh points, and
is preserved even for extremely deformed meshes occurring for instance in the context of r-adaptivity. The
performance of low-level linear algebra routines consequently depends only on the special matrix structure
and not on the underlying mesh. Thus, we assemble and store the matrix entries explicitly, even though for
the simple unit square domain, applying only a matrix stencil would suffice. This allows us to estimate the
performance of more complex, realistic grids based on the performance of this rather simple test case. For
more details on the practical aspects of this approach where we cover realistic domains with patches of such
a logical tensorproduct structure, we refer to a previous publication [2].

To measure accuracy, we evaluate the analytic Laplacian of a polynomial test function in the grid points
and use the resulting coefficient vector as the right hand side of the linear system. We thus know the exact
solution of the problem to be solved, and can calculate the error in the integral l2 norm. According to FE
theory, the error reduces by a factor of four (h2 for the mesh width h) after refining all elements into four
smaller ones.

The linear systems arising from the discretization are known to be very ill-conditioned. Table 1 (taken from
the original paper [1]) illustrates that attempting to solve the system in single precision fails, while double

1

single precision double precision

Level Unknowns Error Reduction Error Reduction

2 25 2.391E-3 2.391E-3
3 81 5.950E-4 4.02 5.950E-4 4.02
4 289 1.493E-4 3.98 1.493E-4 3.99
5 1,089 3.750E-5 3.98 3.728E-5 4.00
6 4,225 1.021E-5 3.67 9.304E-6 4.01
7 16,641 6.691E-6 1.53 2.323E-6 4.01
8 66,049 2.012E-5 0.33 5.801E-7 4.00
9 263,169 7.904E-5 0.25 1.449E-7 4.00

10 1,050,625 3.593E-4 0.22 3.626E-8 4.00

Table 1: Influence of solver precision on solution accuracy with increasing level of refinement (L).

precision suffices to reduce the error according to FE theory; and hence, to increase the result accuracy. With
reduced computational precision however, further refinement even increases the error again, even though the
solver claims to have converged well, requiring the same number of iterations as the double precision variant.
This behavior is particularly bad, as the poor accuracy of the computed results can easily be overlooked,
and the increased computational effort (note that N = (L2 + 1)2) is wasted. Moreover, it is difficult to
notice this bad behavior without ground truth, because the solver still converges and reduces the residuals
as expected.

2 Microbenchmarks

Figure 1 shows the performance of four prototypical linear algebra operations used in our solvers. We use the
same input data as for the solver tests below, namely the linear system stemming from refining the underlying
mesh 10 times (L = 10), yielding a vector size of N = 10252 = 1, 050, 625. We execute these benchmarks
on a GeForce 8800 GTX (G80 chip) and the new GeForce GTX 280 (G200 chip). All computations are
performed with CUDA 2.0 beta 2 on a Linux workstation.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 NRM2 DOT AXPY MV

--
--

>
 la

rg
er

 is
 b

et
te

r
--

--
>

G
F

LO
P

/s

 8800 GTX (single)
GTX 280 (single)

GTX 280 (double)

Figure 1: Performance (in GFLOP/s) of four important linear algebra kernels used in our solvers.

The operations NRM2 and DOT are taken from NVIDIA’s CUBLAS library. AXPY is our own implementation
of the BLAS kernel of the same name, we do not need strided access and hence implemented our own version
without the necessary conditionals, resulting in approximately 10% faster execution over cublasS/Daxpy.
The performance of the AXPY kernel is completely limited by the available streaming bandwidth to off-
chip memory and the ability of the hardware to hide latencies by keeping thousands of threads in-flight
simultaneously. Comparing its the performance in single precision on the 8800 GTX and the GTX 280,
we see the expected results: Due to the increased memory bandwidth of the newer board, single precision
performance increases by roughly 2/3. The sustained bandwidth (data throughput) peaks at 76.5 GByte/s
and approximately 126.2 GByte/s respectively (85% and 90% of the theoretical peak bandwidth). The

2

computation in single precision is faster by a factor of 1.86 than the computation in double precision, which
is surprising as we expected exactly a factor of two: AXPY in double precision requires twice the bandwidth to
perform the same number of floating point operations. The double precision version achieves 135.1 GByte/s,
96% of the theoretical peak, which continues this surprising trend. We do not know why on the newer
hardware, DOT is faster than NRM2, as the dot product requires twice the bandwidth and should therefore
take twice the time minus the overhead associated with the parallel reduction, which should be identical for
both operations. The numbers clearly indicate some weirdness of the NRM2 kernel, the comparison of DOT

and AXPY is consistent.

As explained above, the matrix structure (nine bands at fixed offsets) is known a priori, and we can tailor
the corresponding kernel specifically to this format. Listing 1 shows the corresponding CUDA code: We
store the matrix bands as individual vectors of size N in memory, padded appropriately with zeros. We
then compute the result vector row-wise, using one thread per row. Each thread reads nine distinct values
from the matrix bands, and the reads can be perfectly coalesced into combined memory transactions by the
hardware due to the alignment implied by the padding. We use the shared memory of each multiprocessor to
coalesce the reads into the coefficient vector. This additionally enables (limited) data reuse of the coefficient
vector in each multiprocessor, as the data needed for each row of the matrix can be directly reused by the
threads that are scheduled onto the same multiprocessor.

Both effects significantly improve performance, and the performance increase on the GTX 280 is much higher
than for the AXPY kernel that does not rely on shared memory for data reuse: In single precision, we reach
almost a factor of four, and the peak double precision performance of the MV kernel is almost twice as high as
in single precision on the G80-based board. The performance difference between single and double precision
performance is almost exactly the expected factor of two.

As a side note, our alternative implementation using OpenGL and Cg is only achieving a twofold performance
improvement on the new hardware.

More generally, our approach is inspired by viewing the shared memory as a software-managed cache: On
modern CPUs, the hardware prefetching logic needs many cachelines to store data from the matrix bands.
On NVIDIA’s GPUs, it does not make sense to (manually) cache data that can be read in a fully coalesced
way anyway; we ran some experiments and a modification of our AXPY kernel that stages reads to global
memory through shared memory is consistently slower on both hardware generations. Consequently, it does
not make sense for the MV kernel to read data through shared memory that is only used once and then
discarded, so we use all available cache memory to allow data reuse in the coefficient vector.

These numbers clearly indicate that a mixed precision solution scheme is potentially very beneficial on the
GTX 280 despite native double precision support.

A word of caution is required about the code shown in Listing 1. The kernel accesses the array x out-of-
bounds, with a maximum offset of M + 1 (M =

√

N). In plain C on the CPU, this is a perfectly legitimate
performance tuning technique, as we can usually rely on the fact that some garbage value read in from a
memory location x[i<0] (or x[i>N]), multiplied by a zero from the padded bands gives zero. On the CUDA
device however, this is not true. It took almost one week of debugging to track this error, in the process,
we witnessed all kinds of weird side effects, for instance changing the linkage convention of some kernel to
extern C caused previously working code to produce wrong results. After determining that the out-of-bound
memory accesses caused the seemingly random errors, the fix was straight forward. In a first version, we
zero-padded all arrays to an offset of M + 1, which yielded correct results but violated the coalescing rules,
resulting in reduced performance. Zero-padding the arrays by rounding up the offset M + 1 to the nearest
multiple of the block size (128 in the code example in Listing 1) thus turned out to be a good balance of
trading additional memory for good performance.

3

1 // y=Ax , | | x | |= | | y | |= | | d i a g (A) | |= n
2 g l o b a l void smv row (f loat∗ y , f loat∗ x ,
3 f loat∗ l l , f loat∗ ld , f loat∗ lu ,
4 f loat∗ dl , f loat∗ dd , f loat∗ du ,
5 f loat∗ ul , f loat∗ ud , f loat∗ uu ,
6 int n , int m) {
7 extern s h a r e d f loat smv cache [] ;
8 int idx = blockDim . x∗blockIdx . x+threadIdx . x ;
9 // r u n s f r om 0 t o b l o c kD im . x−1

10 int l i ndex = threadIdx . x ;
11 f loat∗ Dcache = smv cache ;
12 f loat∗ Lcache = smv cache+blockDim . x+2;
13 f loat∗ Ucache = smv cache+2∗(blockDim . x+2);
14
15 // p r e f e t c h c h u n k s f r om c o e f f i c i e n t v e c t o r t a k i n g a d v a n t a g e o f c o a l e s c i n g
16 // e a c h t h r e a d l o a d s t h r e e e l em e n t s ,
17 // t h e f i r s t and l a s t one a d d i t i o n a l l y l o a d t h e b o r d e r c a s e s
18 Dcache [l i ndex +1] = x [idx] ;
19 Lcache [l i ndex +1] = x [idx−m] ;
20 Ucache [l i ndex +1] = x [idx+m] ;
21 i f (l i ndex == 0) {
22 // x −1 i n c 0
23 Dcache [0] = x [blockDim . x∗blockIdx . x−1];
24 Lcache [0] = x [blockDim . x∗blockIdx . x−m−1];
25 Ucache [0] = x [blockDim . x∗blockIdx . x+m−1];
26 }
27 i f (l i ndex == blockDim . x−1) {
28 // x b l o c k d i m i n c b l o c k d i m +1
29 Dcache [blockDim . x+1] = x [blockDim . x∗(blockIdx . x+1)] ;
30 Lcache [blockDim . x+1] = x [blockDim . x∗(blockIdx . x+1)−m] ;
31 Ucache [blockDim . x+1] = x [blockDim . x∗(blockIdx . x+1)+m] ;
32 }
33 syncthreads () ;
34 // now , c ompu t e
35 y [idx] = dd [idx]∗ Dcache [l i ndex +1] +
36 (dl [idx]∗ Dcache [l i ndex] + du [idx]∗ Dcache [l i ndex +2] +
37 ld [idx]∗ Lcache [l i ndex +1] + l l [idx]∗ Lcache [l i ndex] +
38 lu [idx]∗ Lcache [l i ndex +2] + ud [idx]∗ Ucache [l i ndex +1] +
39 ul [idx]∗ Ucache [l i ndex] + uu [idx]∗ Ucache [l i ndex +2]) ;
40 }
41
42 // /
43
44 // k e r n e l l a u n c h
45 block . x = 128; // o r some v a l u e r e a d i n f r om b e n c hm a r k i n g
46 int M = (int) sq r t ((double)N) ;
47 gr id . x = (int) c e i l (N/(double) (block . x)) ;
48 smv row<<<grid , block ,3∗ (block . x+2)∗ s izeo f (f loat)>>>

49 (y , x , LL , LD, LU, DL, DD, DU, UL, UD, UU, N, M) ;

Listing 1: Optimized row-wise matrix-vector multiplication using shared memory
in CUDA. The matrix bands are stored in the arrays LL to UU.

3 Mixed precision iterative refinement

Until the introduction of the G200 architecture that provides double precision natively in hardware1, the
accurate solution of linear systems stemming from the discretization of PDE problems with Finite Elements
was only possible through our proposed mixed precision iterative refinement approach or via emulated
precision [1]. Native single precision yielded inaccurate results (cf. Table 1). The mixed precision solver for
a linear system Ax = b basically comprises the following steps:

1. Compute d = b − Ax in double precision.

2. Solve Ac = d approximately in single precision.

3. Update x = x + c in double precision.

4. Check for convergence and iterate.

With native double precision, we now have three different possibilities: We can run the entire solver in
double precision (labeled double-GPU) on the device, we can offload only step 2 to the GPU and execute
the outer loop on the CPU (labeled mixed-CPU, this variant has been possible before), or we can execute
the mixed precision scheme completely on the GPU (labeled mixed-GPU).

Independent of the choice of the inner solver, we confirm that we achieve identical error reduction rates for all
three configurations, i.e. any performance gains of the mixed schemes over double-GPU do not compromise

1AMD’s FireStream 9170 model provides native double precision, and has been available already in late 2007, but we did not
have the opportunity to test our code on this hardware yet.

4

the final accuracy in any way. Additionally, the difference between the results obtained with a reference
solver running in double precision on the CPU are in the noise, indicating that the hardware provides ‘true’
double precision (s52e11) instead of a composed format of two single precision values (s46e8).

4 Conjugate Gradient solver

The first solver we analyse is a standard unpreconditioned2 Conjugate Gradient scheme, as a representative
of Krylov subspace methods. We apply the solver to the linear systems arising from discretizations on
refinement levels L = 7, 8, 9, 10, with N = 16, 641, 66, 049, 263, 169 and 1, 050, 625 unknowns respectively.
The convergence criterion is set to reduce the initial defect by eight digits, and the inner solver is configured
to gain two digits of accuracy. The convergence criterion is chosen such that convergence in the Finite
Element sense is achieved, in other words, such that an error reduction rate of a factor of four is maintained
up to L = 10. Table 2 lists the results3. The measured timings do include all transfers of right hand sides
and iteration vectors, but do not include transfers of the matrices, because this is the setting we employ in
our real applications [2].

double-GPU mixed-CPU mixed-GPU

L #iters time(s) MFLOP/s MByte/s #iters time(s) MFLOP/s MByte/s #iters time(s) MFLOP/s MByte/s

7 147 0.033 2012 13714 269 0.072 1723 5958 269 0.072 1720 5947
8 296 0.101 5233 35662 680 0.214 5720 19609 680 0.197 6205 21271
9 596 0.473 8970 61129 1597 0.842 13558 20328 1597 0.807 14138 48326
10 1202 3.041 11220 76463 3420 4.785 20328 69367 3420 4.513 21551 73541

Table 2: Number of iterations and performance results for the three variants of the Conjugate Gradient
solver.

The baseline variant double-GPU shows the expected behavior of the Conjugate Gradient scheme, the number
of iterations increases linearly in the mesh width h and doubles for each level of refinement. The measured
MFLOP/s rates are in accordance to the benchmark results presented above.

As discussed in our original paper, the Conjugate Gradient algorithm reacts very delicately to the mixed
precision approach. During its iterations, a search space of A-orthogonal directions is constructed, and this
information is lost when the solver is restarted; resulting in a significant increase in the number of iterations
required until convergence. We have designed an improved variant of the solver that maintains this search
space during restarts [3], but at the time of writing, we have not ported this scheme to CUDA yet, as we
want to concentrate on multigrid solvers, which are much more important for our research [2]. Another
aspect is that the A-orthogonal directions are computed via dot products, and it is well-known that such
operations on long vectors are very prone to accumulation of floating point errors. The mixed precision
results above were obtained with our own dot product kernel that computes all intermediate sums on the
GPU in single precision, but performs the final accumulation in double precision on the CPU. This is very
beneficial, because a version that computes entirely in single precision needs approximately 100 additional
iterations for the largest problem size.

Factoring these drawbacks out, the performance results are as expected: The mixed precision schemes are
between 1.4 and 1.9 times more efficient (MFLOP/s-rates) as the native double precision variant, while
requiring 2–3 times the amount of iterations. We want to gain eight digits in accuracy and the inner solver
is configured to reduce the error by two digits, but the entire scheme needs five global correction iterations,
which is one more than expected. We observed the identical behavior in our previous tests [1], with an
equivalent implementation of mixed-CPU in the ‘old-school’ GPGPU (pre-CUDA) setting. Consequently,
the double-GPU variant runs fastest, as it needs the fewest iterations. In the mixed precision versions,

2Due to the regular refinement, preconditioning reduces to a uniform scaling and has no beneficial effect on convergence.
3We use an abstract performance and memory model, for instance, the matrix-vector multiplication y = Ax, x,y ∈ R

N is
counted with 10N loads from and N stores to device memory: one load per matrix entry (9N , each value is used exactly
once), one load per entry of the coefficient vector x (N , we abstract from data reuse through shared memory), and N stores
for the result vector. The operation y = Ax is counted with 17N floating point operations.

5

more than 97% of the arithmetic work is performed in single precision, and therefore the difference between
performing the correction loop on the CPU (including all necessary data transfers of residuals and iteration
vectors from device to host and vice versa) or on the GPU is rather small, the version mixed-GPU without
data transfers executes roughly 5% faster.

5 Multigrid solver

For a Multigrid solver, the situation is fundamentally different: As we have demonstrated previously, using
Multigrid as a preconditioner in a mixed precision setting has no negative effect on convergence, in fact, the
convergence behavior is identical to executing the entire solver in double precision.

We continue to use the simple yet fundamental test case presented above. To reach convergence in the Finite
Element sense, it suffices to configure the solver with two pre- and postsmoothing steps of a Jacobi smoother
in a V -cycle. We employ the Conjugate Gradient algorithm presented above as coarse grid solver. The
convergence criterion is set to reduce the initial residual by eight digits, and the mixed precision schemes
gain two digits in single precision before an update step in double precision is performed. Table 3 lists the
results. The measured timings do again include all transfers of right hand sides and iteration vectors, but
do not include transfers of the matrices, because this is the setting we employ in our real applications [2].

double-GPU mixed-CPU mixed-GPU

L #iters time(s) MFLOP/s MByte/s #iters time(s) MFLOP/s MByte/s #iters time(s) MFLOP/s MByte/s

7 8 0.011 2264 14203 4*2 0.008 3024 10468 4*2 0.009 2788 9651
8 8 0.018 5302 33219 4*2 0.019 5124 17726 4*2 0.012 8086 27973
9 8 0.040 9354 58574 4*2 0.060 6605 22842 4*2 0.026 15179 52496
10 8 0.125 11960 74876 4*2 0.227 6920 23929 4*2 0.073 21406 74022

Table 3: Number of iterations and performance results for the three variants of the Multigrid solver. The
notation 4*2 corresponds to four mixed precision iterations with two Multigrid preconditioning
steps each.

As the Multigrid solver converges identically in all three configurations and independent of the problem size
(refinement level L), the numbers indicate that even for one million unknowns, our Multigrid solver on the
GTX 280 is partly bound in performance by the overhead of launching kernels and transferring data to
and from the device rather than by computations or bandwidth: The number of necessary floating point
operations quadruples with each refinement level, but it takes less than four times longer to solve the larger
problems, so the metrics MFLOP/s and MByte/s increase rapidly (the exception is the mixed-CPU variant
on L = 10). This is partly due to our implementation, we will address this in the following Section.

The mixed precision variant that uses the CPU to execute the correction iteration (mixed-CPU) is slower
than executing the entire solver in double precision on the device (double-GPU). The stalls on the GPU due
to data transfers to and from the CPU for the correction steps have a significant impact on performance
because the solver executes so fast4. Equally important, double precision computations on the CPU are
much more expensive than on the GPU. This is further underlined by the fact that using pageable instead of
pinned memory on the host (implying lower transfer rates) does not substantially degrade performance.

Finally, the mixed precision scheme that executes entirely on the device is 1.7 times faster than the variant
using double precision exclusively. This is a substantial performance improvement over the ‘naive’ approach
of executing entirely in double precision to get accurate results. The raw performance of 21.5 GFLOP/s and
more than 74 GByte/s is outstanding.

4In our abstract performance model, no floating point operations and no bandwidth are counted for device to host transfers
and number format conversions, we are only counting ‘mathematically required’ operations.

6

6 Some remarks on performance

The underlying implementation of the Multigrid solver has not been fully tuned yet. All operations are
implemented as individually tuned kernels, for instance matrix-vector multiplication, one Jacobi step, pro-
longation, restriction, norm computation etc. No effort has been made to fuse several operations into
collective kernels, and consequently, performance is limited by the kernel launch overhead, in particular for
the Conjugate Gradient scheme employed as coarse grid solver.

6.1 Performance comparison with previous generation hardware

Table 4 compares performance on the GTX 280 with the performance achieved on a GeForce 8800 GTX,
which can only execute the mixed-CPU configuration. The code is identical, only the partitioning of the grid
into thread blocks has been adapted to maximize performance.

mixed-GPU GTX 280 mixed-CPU GTX 280 mixed-CPU 8800 GTX
L time(s) MFLOP/s MByte/s time(s) MFLOP/s MByte/s time(s) MFLOP/s MByte/s

7 0.009 2788 9651 0.008 3024 10468 0.015 1691 5853
8 0.012 8086 27973 0.019 5124 17726 0.033 2966 10262
9 0.026 15179 52496 0.060 6605 22842 0.107 3694 12776
10 0.073 21406 74022 0.227 6920 23929 0.440 3587 12404

Table 4: Performance comparison of the new hardware with the previous generation.

When executing the same configuration, mixed-CPU, we observe that the GTX 280 outperforms the previous
hardware generation significantly for small problem sizes, while the improvement degrades to approximately
70% on the largest level of refinement. These results again confirm the reduced kernel launch overhead and
the better coalescing capabilities on the new hardware, as the machine that hosts the GTX 280 does not
provide a Gen2 PCIe interface, resulting in approximately the same transfer rates from host to device and
vice versa as for the 8800 GTX. When taking advantage of the double precision capabilities of the G200
architecture and executing the mixed-GPU configuration, we observe a performance improvement of up to a
factor of six, which is clearly superlinear. In particular, this means that the results from our microbenchmarks
(cf. Figure 1) translate to the full application level.

6.2 Performance comparison with a CPU-based solver

Table 5 compares performance of an optimized conventional implementation executing entirely in double
precision on a single core5 of an Intel Core 2 Duo E6750 (2.66 GHz, 4 MByte L2 cache), in a machine with
PC800 DDR2 memory. This is the fastest CPU and memory subsystem available to us at the moment.

double-CPU Intel double-GPU GTX 280 mixed-GPU GTX 280
L time(s) MFLOP/s MByte/s time(s) MFLOP/s MByte/s speedup time(s) MFLOP/s MByte/s speedup

7 0.021 1405 8012 0.011 2264 14203 1.9x 0.009 2788 9651 2.3x
8 0.094 1114 6352 0.018 5302 33219 5.2x 0.012 8086 27973 7.8x
9 0.453 886 5052 0.040 9354 58574 11.3x 0.026 15179 52496 17.4x
10 1.962 805 4592 0.125 11960 74876 15.7x 0.073 21406 74022 26.9x

Table 5: Performance comparison of the new hardware with a standard CPU.

While the GPU improves efficiency with increasing problem size, performance on the CPU quickly degrades
as soon as the problem does not fit entirely into cache anymore. For the largest problem size, we observe an
astonishing 27-fold speedup when using the faster mixed-GPU configuration, and a speedup of a factor of 16
for the double-GPU variant.

5We found it terribly hard to achieve strong scaling on multicore CPUs for BLAS Level 1 like operations as the ones we use
for our Multigrid solver.

7

Anecdotally, we can state that a Multigrid solver that received the same amount of tuning (measured in
the well-known metric ‘working hours of a PhD student’) achieves approximately 5 GFLOP/s (L = 10)
on a single CPU of the NEC SX-8 supercomputer installation at the HLRS, Stuttgart, Germany. On the
GTX 280, we achieve 21.5 GFLOP/s. This statement should of course be taken with a grain of salt.

6.3 Performance per Watt and performance per Euro

We conclude this paper with a short analyis of derived metrics. The arguments are prototypical in the sense
that we do not fully use all resources, the CPU is idle while the GPU computes and vice versa. Real applica-
tions will have to implement a better heterogeneous scheduling scheme to fully exploit all resources [2]. The
analysis is based on the best results achieved for the CPU (805 MFLOP/s) and the GTX 280 (21.5 GFLOP/s
for the mixed-GPU variant). We only consider the largest problem size (L = 10).

The GTX 280 we use in these tests consumes 236 W under full load. We estimate the idle power consumption
of our test system with 107 W, and 250 W under full load with both cores, 178.5 W under full load with
one core. For the baseline workstation that uses only the CPU, we achieve approximately 805/(178.5) =
4.5 MFLOP/s per Watt. The addition of a GPU as co-processor to the workstation6 increases this value
to approximately 21406/(178.5 + 236) = 51.6 MFLOP/s per Watt, a factor of 11.5. This means that
the observed absolute performance increase is so high that it still leads to significant improvements in the
performance/Watt metric which has become very important both ecologically and economically (‘green
computing’). The savings are however substantially smaller (27x vs. 11.5x) than the improvements in raw
performance.

A typical mid-range workstation that delivers the above performance costs approximately 800 EUR. The
retail price for a GTX 280 board is 570 EUR at the time of writing. The baseline variant without the
GPU co-processor board achieves approximately 1 MFLOP/s per Euro, the GPU-enhanced PC peaks at
15.6 MFLOP/s per Euro, a 16-fold improvement.

7 Conclusions and future work

We have extended our previous work on native- and mixed-precision schemes for the solution of PDE problems
discretized with Finite Elements. The availablity of native double precision directly in CUDA-enabled devices
allows a much broader exploration of the algorithmic design space.

A detailed performance analysis of the GTX 280 reveals that our Multigrid solver is still bound by the
available memory bandwidth, but to a growing extend also by the overhead associated with performing
computations on coarser grids.

Our results indicate that this is not a critical performance limitation. The achieved performance of less
than 0.1 seconds to accurately solve a sparse linear system with one million degrees of freedom implies,
analogously to Amdahl’s Law, that local operations in our large-scale MPI-based solvers are now almost ‘for
free’. Much more performance can be gained by accelerating the parts of our solution scheme that must
execute on the CPU as they need direct access to the interconnects such as Infiniband, or by increasing the
accelerable fraction of the solver scheme with novel numerical algorithms. For details, see Figure 11 and the
corresponding arguments in our application paper [2].

As raw performance does not tell the whole story, we evaluate our results in the derived metrics performance
per Watt and performance per Euro, and we conclude that even though the achieved improvements are
smaller, they are still substantial and economically relevant.

6One core is always busy, as it executes the entire control flow of the CUDA program. The second core is idle.

8

Acknowledgments

We would like to thank Sumit Gupta, David Luebke and Mark Harris from NVIDIA for providing both an
early engineering sample to get this work started and the final board for detailed measurements; and for
their support during the evaluation. Thanks to Dirk Ribbrock and Markus Geveler for helping with index
battles during performance tuning. This work has been supported by the DFG in project TU102/22-1.

References

[1] D. Göddeke, R. Strzodka, and S. Turek. Performance and accuracy of hardware-oriented native-,
emulated- and mixed-precision solvers in FEM simulations. International Journal of Parallel, Emer-
gent and Distributed Systems, 22(4):221–256, 2007. Special Issue: Applied Parallel Computing.

[2] D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and S. Turek. Co-processor
acceleration of an unmodified parallel solid mechanics code with FEASTGPU. accepted for publication
in the International Journal of Computational Science and Engineering, 2008.

[3] R. Strzodka and D. Göddeke. Pipelined mixed precision algorithms on FPGAs for fast and accurate PDE
solvers from low precision components. In FCCM ’06: Proceedings of the 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM’06), pages 259–270, 2006.

9

