
This is a preprint of an article accepted for publication in the Int. J. Computational Science and Engineering

Using GPUs to Improve
Multigrid Solver
Performance on a Cluster

Dominik Göddeke*
Institute of Applied Mathematics, University of Dortmund, Germany
E-mail: dominik.goeddeke@math.uni-dortmund.de
*Corresponding author

Robert Strzodka
Max Planck Center, Computer Science
Stanford University, USA

Jamaludin Mohd-Yusof, Patrick McCormick
Computer, Computational and Statistical Sciences Division
Los Alamos National Laboratory, USA

Hilmar Wobker, Christian Becker, Stefan Turek
Institute of Applied Mathematics, University of Dortmund, Germany

Abstract: This article explores the coupling of coarse and fine-grained parallelism
for Finite Element simulations based on efficient parallel multigrid solvers. The focus
lies on both system performance and a minimally invasive integration of hardware
acceleration into an existing software package, requiring no changes to application
code. Because of their excellent price performance ratio, we demonstrate the viability
of our approach by using commodity graphics processors (GPUs) as efficient multigrid
preconditioners. We address the issue of limited precision on GPUs by applying a
mixed precision, iterative refinement technique. Other restrictions are also handled by
a close interplay between the GPU and CPU. From a software perspective, we integrate
the GPU solvers into the existing MPI-based Finite Element package by implementing
the same interfaces as the CPU solvers, so that for the application programmer they
are easily interchangeable. Our results show that we do not compromise any software
functionality and gain speedups of two and more for large problems. Equipped with this
additional option of hardware acceleration we compare different choices in increasing
the performance of a conventional, commodity based cluster by increasing the number
of nodes, replacement of nodes by a newer technology generation, and adding powerful
graphics cards to the existing nodes.

Keywords: parallel scientific computing; Finite Element calculations; GPUs; floating-
point co-processors; mixed precision; multigrid solvers; domain decomposition

Reference to this paper should be made as follows: Göddeke et al. (2008) ‘Using
GPUs to Improve Multigrid Solver Performance on a Cluster’, Int. J. Computational
Science and Engineering, Vol. x, Nos. a/b/c, pp.1–20.

Biographical notes: Dominik Göddeke and Hilmar Wobker are PhD students, work-
ing on advanced computer architectures, computational structural mechanics and HPC
for FEM. Robert Strzodka received his PhD from the University of Duisburg-Essen in
2004 and is currently a visiting assistant professor, researching parallel scientific com-
puting and real time imaging. Jamaludin Mohd-Yusof received his PhD from Cornell
University (Aerospace Engineering) in 1996. His research at LANL includes fluid dy-
namics applications and advanced computer architectures. Patrick McCormick is a
Project Leader at LANL, focusing on advanced computer architectures and scientific
visualization. Christian Becker received his PhD from Dortmund University in 2007
with a thesis on the design and implementation of FEAST. Stefan Turek holds a PhD
(1991) and a Habilitation (1998) in Numerical Mathematics from the University of
Heidelberg and leads the Institute of Applied Mathematics in Dortmund.

1 INTRODUCTION

The last several years have seen a resurgence of interest
in the use of co-processors for scientific computing. Sev-
eral vendors now offer specialized accelerators that pro-
vide high-performance for specific problem domains. In
the case of a diverse High Performance Computing (HPC)
environment, we would like to select one or more of these
architectures, and then schedule and execute portions of
our applications on the most suitable device. In practice
this is extremely difficult because these architectures often
have different restrictions, the time required to move data
between the main processor and the co-processor can dom-
inate the overall computation time, and programming in a
heterogeneous environment is very demanding. In this pa-
per we explore this task by modifying an existing parallel
Finite Element package, with more than one hundred thou-
sand lines of Fortran code, to leverage the power of spe-
cialized co-processors. Instead of exclusively focusing on
performance gains, we also concentrate on a minimally in-
vasive integration into the original source code. Although
the coupling of coarse and fine-grained parallelism is still
demanding, we can

• restrict the code changes in the original package to
approximately 1000 lines (Section 4.4),

• retain all previous functionality of the package (Sec-
tion 5.3),

• give the benefit of hardware acceleration to unchanged
application code based on the package (Section 4), and

• multiply the performance of the multigrid solvers by
a factor of two to three (Section 5).

In this section we discuss the interaction of the hard-
ware, software and economic considerations, and provide
the necessary background. Section 2 continues with the de-
scription of the test scenario and the involved system com-
ponents. The specific details of the underlying Finite Ele-
ment package are outlined in Section 3. Section 4 considers
the algorithmic approach and implementation details. Re-
sults are discussed in Section 5. Finally, we present our
conclusions and plans for future work in Section 6.

1.1 Hardware for HPC

The vast majority of processor architectures are both fast
and energy efficient when the required data is located
within the processor’s local memory. In contrast, the
transport of data between system and processor memory is
expensive both in terms of time and power consumption.
This applies to both the small scales in a processor, as well
as at the larger system level.

Even though this memory wall problem [67] has been
known for many years, the common choice of processors
and systems in HPC often seems to ignore this fact. The

Copyright c© 200x Inderscience Enterprises Ltd.

problem lies in the performance/cost ratio. While there ex-
ist computing devices better suited to address the memory
wall problem, they are typically more expensive to pur-
chase and operate. This is due to small production lots,
immature or complex software tools, and few experienced
programmers. In addition there is always the question of
compatibility and the risk of having invested into a dis-
continued technology, both of which would lead to higher
overall costs. On the other hand, standard components are
cheaper, readily available, well tested, modular, easier to
operate, largely compatible, and they commonly support
full development tool chains. In the end, these character-
istics tend to favor economic considerations over memory
and computational efficiency.

However, if one standard component is easy to operate
and maintain, this does not imply that a large number of
them is just as easy to handle. Nevertheless, an analysis
of the recent TOP500 lists [46] reveals a quickly growing
number of clusters assembled from commodity hardware
components listed among more traditional HPC systems.
Commodity Central Processing Units (CPUs) have made
the transition from the field of latency dominated office
applications, to the realm of throughput dominated HPC
programs. This trend has been partially driven by the
performance demands of consumer level multimedia appli-
cations. Even with these advancements, commodity pro-
cessors still suffer from the memory wall problem.

The industry is currently experiencing the beginning of
a similar transition of other hardware to the field of HPC,
but this time sustained by the mass market of computer
gaming. Graphics Processing Units (GPUs) and more re-
cently the Cell [50, 68] and the PhysX [1] processors target
this performance hungry entertainment community. In this
case, we once again have a situation in which hardware has
been developed for an application domain that has very
limited relevance to HPC. But similar to today’s commod-
ity CPUs, these devices have advanced to the point that
their performance/cost ratio makes them of interest to the
high-performance community.

A similar development occurs in the market of Field Pro-
grammable Gate Arrays (FPGAs). Initially designed as
general integrated circuit simulators, current devices have
diversified into different types optimized for specific appli-
cations areas. Again HPC is not their main market, but
some of the specializations target similar processing re-
quirements. Cray’s XD1 system is an example of a super-
computer designed to leverage the power of FPGAs [11].

Repeatedly adapting different architectures, especially
those designed for other application domains, to the needs
of HPC is clearly not an ideal situation. However, the cur-
rent high-performance market is not large enough to make
the enormous costs associated with new hardware design
and the supporting development environment profitable.
While some companies offer accelerator boards for HPC,
for example Clearspeed [8], they are typically also suitable
for the needs of other application domains. This leads us
in an interesting direction, where we no longer try to run
everything on the same kind of processor, but rather pick

2

from among numerous devices those that are best suited
for the different parts of our application. This introduces
a new imbalance between the theoretical efficiency of the
given hardware-software combination and the achievable
efficiency, which is likely to degrade with higher numbers
of heterogeneous components.

1.2 Software for HPC

In general, the reluctance to complicate application soft-
ware has been so high that promises of using heteroge-
neous architectures for significant speedups have met lim-
ited success. However, the move towards parallel com-
puting has also reached the CPU arena, while the perfor-
mance gap of the CPU to parallel co-processors has fur-
ther widened. Moreover, computing with dedicated co-
processors not only increases performance but also ad-
dresses the memory wall, the power problem, and can also
reduce other indirect costs associated with the size of clus-
ters because fewer nodes would be required. The success
of a particular co-processor depends heavily on the soft-
ware complexity associated with the resulting heteroge-
neous system.

Therefore, our main focus is the minimally invasive in-
tegration of the fine-grained parallelism of the co-processor
within the coarse-grained parallelism of a Finite Element
(FE) package executing on clusters. Our goal is to inte-
grate the hardware alternatives at the cluster node level.
The global domain decomposition method does not distin-
guish between different architectures but rather between
different solvers for the sub-domains. The CPU is the most
general architecture and supports all types of solvers and
grids. The dedicated co-processors offer accelerated back-
ends for certain problem structures, that can be chosen au-
tomatically if applicable. The application never has to deal
with the different computing and programming paradigms.
Most importantly, the interface to the FE package remains
the same as in the unaccelerated version.

For this abstraction to work, the initial FE package must
fulfill certain criteria. Grid generation for complex simu-
lation domains is a demanding task. While some areas
can be easily covered with a regular grid, others may re-
quire an unstructured or even adaptive discretization to
accurately capture the shape without wasting too many
elements. It is important that the FE package maintains
the distinction between structured and unstructured parts
of the discretization, rather than trying to put everything
into a homogeneous data structure, because the parallel
co-processors can utilize much more efficient solvers when
provided with the additional information about the grid
structure. In fact, not only the co-processors benefit from
this additional information, the sub-problems with a regu-
lar structure also execute much faster on the CPU because
of coherent memory access patterns. However, for the CPU
this is merely an additional advantage in processing of the
data structures, whereas the parallel co-processors depend
heavily on certain data movement patterns and we lose
several factors in speedup if we ignore them.

Because the co-processors are optimized for different ap-
plication areas than HPC, we must respect certain restric-
tions and requirements in the data processing to gain per-
formance. But this does not mean that we are willing
to sacrifice any software functionality. In particular, we
make absolutely no compromises in the final accuracy of
the result. The hardware restrictions are dealt with by
the software which drives the co-processor and where the
co-processor is incapable or unsuitable for executing some
part of the solver, it falls back to the existing CPU imple-
mentation. It is important to note that we are not trying
to make everything run faster on the co-processor. Instead
each architecture is assigned those tasks that it executes
best. The application never has to deal with these de-
cisions, as it sees an accelerated solver with exactly the
same interface as the pure CPU version. One assumption
we make here is that the tasks to be performed are large
enough, so that the costs of configuring the co-processor,
and moving data back and forth between CPU and co-
processor, can be amortized over the reduced runtime.

In view of the memory wall problem we are convinced
that despite the different structures of the co-processors,
the computation can be arranged efficiently as long as data
transport between host and co-processor is minimized and
performed in coherent block transfers that are ideally in-
terleaved with the computation. Therefore, the structure
preserving data storage and handling is the main assump-
tion we make about the FE package to enable the coupling
of the coarse and fine grained parallelism. All other condi-
tions of the existing software packages are kept to a mini-
mum. By taking this approach, the data structure based
coupling can be applied to many parallel applications and
executed on different parallel co-processors.

Despite the different internal structure of the parallel co-
processors, they share enough similarities on the data flow
level to allow for a similar interface to the CPU. Clearly,
the device specific solver must be reimplemented and tuned
for each architecture, but this requires only the code for a
local one node solution, as the coarse grained parallelism is
taken care of by the underlying FE package on the CPUs.
Due to economic considerations, a CPU-GPU coupling in
each node of a cluster is our first choice for a heterogeneous
computing platform. We focus on this hardware combina-
tion throughout the remainder of the paper.

1.3 GPU background

We aim at efficient interoperability of the CPU and GPU
for HPC in terms of both computational and user effi-
ciency, i.e. the user should be able to use the hardware
accelerated solvers with exactly the same ease as their soft-
ware equivalents. In our system, this is achieved by a sim-
ple change in parameter files. We assume that both an
MPI-based FE package and a (serial) GPU-based multi-
grid solver are given. While most readers will be famil-
iar with the ideas and concepts of the former, the same
is probably less true for the latter. Since we believe the
same concept can be applied to other co-processors, we

3

do not use any GPU specific terminology to explain the
interfaces. However, the understanding of the data trans-
port and computation on the GPU in balance with the
CPU (discussed in Section 4) requires some insight into
the computing paradigm on the GPU.

For an algorithmic CPU-GPU comparison without any
graphics terminology we refer to Strzodka et al. [59]. De-
tailed introductions on the use of GPUs for scientific com-
puting with OpenGL and high level graphics languages
(GPGPU – general purpose computation on GPUs) can
be found in several book chapters [30, 52]. For tutorial
code see Göddeke [23]. The survey article by Owens et
al. [48] offers a wider view on different general purpose ap-
plications on the GPU; and the community web site has a
large collection of papers, conference courses and further
resources [27].

Our implementation of linear algebra operators and in
particular multigrid solvers on GPUs builds upon previous
experience in the GPGPU community. Most relevant to
our work are implementations of multigrid solvers on GPUs
studied by Bolz et al., Krüger and Westermann, Goodnight
et al., Strzodka et al. [5, 25, 42, 60] and the use of multiple
GPUs for discrete computations by Fan et al., Fung and
Mann, and Govindaraju et al. [19, 20, 26]. However, these
publications do not focus on the achievable accuracy.

We discuss implementational aspects in Section 4.4.

1.4 Low precision

An important drawback shared by several of the co-
processors is the restriction to single floating-point repre-
sentation. For instance, GPUs implement only quasi IEEE
754 conformal 32-bit floating point operations in hard-
ware, without denormalization and only round-to-zero.
For many scientific computations this is actually an ef-
ficiency advantage as the area required for a multiplier
grows quadratically with the operand size. Thus if the
hardware spends the area on single precision multipliers,
it offers four times as many of them as double multipli-
ers. For floating-point dominated designs this has a huge
impact on the overall area, for cache and logic dominated
designs the effects are much smaller, but we ideally want
many parallel floating-point units (FPUs). In FPGAs, this
benefit is truly quadratic, whereas in the SIMD units of
CPUs, the savings are usually reduced to linear because
of the use of dual-mode FPUs that can compute in sin-
gle and double precision. In addition to more computa-
tional resources, the use of single precision also alleviates
the memory wall problem. For a more thorough discussion
of the hardware efficiency of low precision components see
Göddeke et al. [24].

Clearly, most numerical applications require high pre-
cision to deliver highly accurate (or even correct) results.
The key observation is that high precision is only necessary
in a few, crucial stages of the solution procedure to achieve
the same result accuracy. The resulting technique of mixed
precision iterative refinement has already been introduced
in the 1960s [45]. The basic idea is to repeatedly gain a lit-

tle bit of relative accuracy with a low precision solver and
accumulate these gains in high precision. While originally
this technique had been used to increase the accuracy of a
computed solution, it has recently regained interest with
respect to the potential performance benefits. Langou et
al. evaluate mixed precision schemes for dense matrices in
the LAPACK context on a wide range of modern CPUs
and the Cell processor [43]. The viability of mixed preci-
sion techniques on GPUs for (iterative) multigrid solvers
on strongly anisotropic grids and thus matrices with high
condition numbers is demonstrated by Göddeke et al. [24].
Both publications emphasize that the achievable accuracy
in the results remains identical to computation in high pre-
cision alone. Without the mixed precision approach we
would need to emulate double precision operations on the
parallel devices, thus doubling the required bandwidth and
increase the operation count by at least a factor of ten.

The GPU solvers only contribute a small step forward
towards the overall solution, and our hope is that the ap-
proach is reasonably stable in view of possible false reads
or writes into memory. Graphics cards do not utilize Error
Correcting Code (ECC) memory, which is one of the re-
maining issues for their adoption in HPC applications (the
other one being the lack of double precision storage and
arithmetic, see previous paragraph). By avoiding lengthy
computations on the processor our hope is to reduce the
probability of memory errors and transient faults being in-
troduced into the calculations. Additionally, our proposed
hierarchical solver (see Section 3.2) corrects single-event
errors in the next iteration. To date we have not seen evi-
dence of such memory errors affecting our results. For a
detailed discussion and analysis of architectural vulnera-
bility for GPUs in scientific computing, as well as some
proposals for extending graphics hardware to better sup-
port reliable computation, see Sheaffer et al. [55].

1.5 CPU-GPU coupling

If the Finite Element package manages a combination of
structured and unstructured sub-problems as explained in
Section 1.2, then we want to execute GPU-accelerated
solvers for the structured sub-problems. In the context
of a (parallel) multigrid solver, this assigns the GPU the
task of a local smoother.

For an efficient coupling between the FE package and the
GPU solvers, we need to integrate decisions about how to
distribute the sub-problems onto the different computa-
tional resources. The first choice is simply based on the
availability of solvers. The GPU backend (currently) sup-
ports only a small subset of the CPU solvers, in particular
some sub-problems converge only with an advanced solver
which is available only on the CPU. The second choice is
more complex and involves the assignment to an architec-
ture based on the type and size of the sub-problem. Two
additional factors further complicate the decision process.
First, the GPU solver is in fact always a coupled GPU-CPU
solver as it requires some CPU support to orchestrate the
computation on the GPU, to obtain the double precision

4

accuracy with iterative refinement, to calculate local con-
tributions to global vectors and to perform the MPI com-
munication with the other processes (we discuss this in
more detail in Section 4). Second, due to the memory wall
problem, the computation on a principally slower archi-
tecture might be faster if less data has to be moved. This
means that the ratios between the computational power
and memory bandwidth, techniques to bypass the CPU in
memory transfers to the GPU and to overlap computation
with data transport are crucial.

Overall we have a complicated dynamic scheduling prob-
lem which requires a thorough examination, and we do not
address it in this paper. For the presented examples we
use a simple static or semi-automatic heuristic scheduling
based on experience and serial calibration runs.

1.6 Related work

More elaborate discussions on hardware and software
trends in HPC for PDEs are presented by Rüde, Keyes,
Hoßfeld, Gropp et al. and Colella et al. [9, 28, 34, 37, 51].
Hardware considerations for large-scale computing are
elaborated upon by DeHon, Khailany et al., and Dally et
al. [12, 14, 38]. General trends and challenges to further
uphold Moore’s Law are discussed in detail in the annual
SEMATECH report [54].

Data locality techniques, especially for multigrid meth-
ods, have been extensively studied by Douglas, Rüde et al.
and Turek et al. [16, 17, 41, 65]. Optimization techniques
for HPC are presented by Garg and Sharapov, and Whaley
et al. [21, 66].

Surveys of different parallel computing architectures, es-
pecially reconfigurable systems, can be found in Harten-
stein, Bondalapati and Prasanna, and Compton and
Hauck [6, 10, 32, 33]. Exploitation of different types of
parallelism and their relevance are performed by Sankar-
alingam et al., Guo et al., Taylor et al. [29, 53, 62]. Com-
parisons of multiple parallel architectures on typical stream
kernels and PDE solvers are studied by Suh et al. and
Strzodka [58, 61].

Iterative refinement methods are discussed in length by
Demmel et al., and Zielke and Drygalla [15, 70]. Applica-
tions on the CPU usually focus on efficient extensions of
the precision (in intermediate computations) beyond the
double precision format as demonstrated by Li et al., and
Geddes and Zheng [22, 44]. GPUs and FPGAs and more
literature in the context of emulated- and mixed-precision
computations are discussed by Göddeke et al. [24].

Related work on the use of GPUs as co-processors is
presented in Section 1.3.

2 SYSTEM COMPONENTS

2.1 Test scenario

To evaluate the GPU accelerated solver we focus on the
Poisson problem −∆u = f on some domain Ω ⊆ R

2, which

is justified by the observation that in real-world simula-
tions Poisson problems are often the most time-consuming
subtasks. For instance, the solution of the Navier-Stokes
equations in Computational Fluid Dynamics (CFD) us-
ing projection schemes requires the accurate solution of a
Pressure-Poisson problem in every time-step [64].

In our tests, we discretize several two-dimensional do-
mains using conforming bilinear Finite Elements of the Q1

FEM space. We choose analytic test functions u0 and de-
fine the right hand side as the analytical Laplacian of these
functions: f = −∆u0. Thus we know that u0 is the ex-
act analytical solution to the continuous PDE, and we can
evaluate the integral L2 error of the discretely computed
results against the analytical reference solution u0 to mea-
sure the accuracy.

In the evaluation of this test scenario we are mainly in-
terested in accuracy, absolute performance and weak scal-
ability. See Section 5 for results.

2.2 Hardware

For the solution of the Poisson problem we use up to 17
nodes of two different clusters DQ and LiDO using various
configurations. The DQ cluster nodes contain dual EM64T
CPUs, a single PCI Express (PCIe) connected graphics
card, and an InfiniBand interface that is connected to a
full bandwidth switch. The detailed configuration for each
node is:

CPU: Dual Intel EM64T, 3.4 GHz, 1 MiB L2 cache,
800 MHz FSB, 600 W power supply.

RAM: 8 GiB1 (5.5 GiB available), 6.4 GB/s
shared bandwidth (theoretical).

POWER: ∼315 W average power consumption
under full load without the GPU.

GPU: NVIDIA Quadro FX4500 PCIe, 430 MHz,
114 W max power.

RAM: 512 MiB, 33.6 GB/s bandwidth.

POWER: ∼95 W average power consumption
under full load of the GPU alone.

It costs approximately $1, 400 to add the FX4500 graph-
ics card to the system. In comparison, a new cluster node
with an identical configuration, but without a GPU, costs
approximately $4, 000, not counting infrastructure such as
rack space and free ports of the switches. No additional
power supply or cooling unit is required to support the
graphics cards in the cluster. Moreover, the cluster has
been reliable with the addition of graphics cards that have
required only a small amount of additional administration
and maintenance tasks. Equivalent consumer-level graph-
ics cards cost approximately $500.

The chipset used in DQ’s EM64T architecture presents
a significant performance bottleneck related to a shared
memory bus between the two processors. The LiDO cluster

1International standard [35]: G= 109, Gi= 230, similarly Mi, Ki.

5

does not have this limitation and allows us to quantify the
resulting benefits of the higher bandwidth to main mem-
ory. Each node of LiDO is connected to a full bandwidth
InfiniBand switch and is configured as follows:

CPU: Dual AMD Opteron DP 250, 2.4 GHz, 1 MiB
L2 cache, 420 W power supply.

RAM: 8 GiB (7.5 GiB available), 5.96 GB/s peak
bandwidth per processor.

POWER: ∼350 W average power consumption
under full load.

A new cluster node with an identical configuration costs
approximately $3, 800. Unfortunately, this cluster does not
contain graphics hardware, therefore, we cannot test all
possible hardware configurations. But the importance of
the overall system bandwidth becomes clear from the re-
sults presented in Section 5.

2.3 Software

We use the Finite Element package Feast [3, 4, 65] as a
starting point for our implementation. Feast discretizes
the computational domain into a collection of macros. This
decomposition forms an unstructured coarse grid of quadri-
laterals, and each macro is then refined independently into
generalized tensor-product grids, see Figure 1. On the re-
sulting computational grid, a multilevel domain decompo-
sition method is employed with compute intensive local
preconditioners. This is highly suitable for the parallel
co-processors, as there is a substantial amount of local
work on each node to be done, without any communica-
tions interrupting the inner solver. In addition, new local
smoothers can be developed and tested faster on a single
machine because they are never involved in any MPI calls.

Feast provides a wide selection of smoothers for
the parallel multigrid solver, e.g. simple Jacobi itera-
tion for almost isotropic sub-grids or operators, and ILU
or alternating-directions tri-diagonal Gauss-Seidel (ADI-
TRIGS) for more anisotropic cases. Thus, the solver for
each macro can be chosen to optimize the time to con-
vergence. However, this matching of solvers and macros
is a fairly recent feature in Feast. Currently, two dif-
ferent local solvers can be used concurrently: CPU-based
components take advantage of the collection of solvers
readily available in Feast and are applied to local sub-
problems that require strong smoothing due to high de-
grees of anisotropy in the discretization. Our GPU-based
multigrid solver currently only offers Jacobi smoothing and
is applied to mostly isotropic sub-problems. Implementing
stronger smoothers on the GPU in the future will allow
us to tackle harder problems with fine grained parallelism.
The next section motivates and explains in more detail
Feast’s approach to domain discretization and the hier-
archical solution.

We use the GotoBLAS and UMFPACK [13] libraries
in parts of the CPU implementation, and NVIDIA’s Cg
language with OpenGL for the GPU code.

3 DATA STRUCTURE AND TRAVERSAL

3.1 Structured and unstructured grids

Figure 1: An unstructured coarse grid composed gener-
alized tensor-product macros with isotropic (regular) and
anisotropic refinement.

Unstructured grids give unlimited freedom to place grid
nodes and connect them to elements, but this comes at
a high cost. Instead of conveying the data structure to
the hardware, we let the processor speculate about the ar-
rangement by prefetching data that might be needed in
the future. Obviously, execution can proceed much faster
if the processor concentrates on the computation itself and
knows ahead of time which data needs to be processed. By
avoiding memory indirections the bandwidth is utilized op-
timally, prefetching only the required data and maximizing
the reuse of data in smaller, higher level caches.

From an accuracy point of view, the absolute freedom
of unstructured grids is also not needed or can be achieved
with a mild increase in the number of elements. To capture
the large-scale form of the computational domain, Feast

covers it with an unstructured coarse grid of macros, each
of which is refined into a generalized tensor-product grid
(cf. Figure 1 and Section 2.3). There is still a lot of free-
dom in placing the grid nodes on the finest level, but the
regular data structure of the local grid is preserved. To
obtain higher resolution in certain areas of the computa-
tional domain, the macros can be adaptively refined fur-
ther, i.e. each macro can have a different number of grid
nodes, introducing hanging nodes on the inner boundaries
between neighboring macros. Finally, Feast can also han-
dle r-adaptivity on the macro level by moving existing grid
nodes based on an error estimation of intermediate solu-
tions. The global structure of local generalized tensor-
product grids is always preserved; only the local problem
size and condition number may change.

Discretized PDEs on unstructured grids generally lead
to data representations with a sparse matrix structure such
as the compact row storage format. Such storage formats
generate coherency in the matrix rows but imply an in-
coherent, indirect memory access pattern for the vector

6

components. This is one of the main reasons why they per-
form weakly with respect to the peak efficiency of modern
hardware [3, 65]. Generalized tensor-product grids on the
other hand lead to banded matrices after PDE discretiza-
tion, and matrix-vector multiplication can in turn be im-
plemented in a memory coherent way by using blocked
daxpy-like operations for each band. Although the entire
coarse grid may be quite complex, for each macro the re-
quired data flow in a matrix vector product is known in
advance. This allows the optimization of the memory ac-
cess patterns depending on the target architecture.

Memory coherency is now such an important factor that
it favors basically all computationally oriented architec-
tures despite their fundamental differences. The impact
is especially high for parallel co-processors which devote a
higher percentage of transistors to FPUs rather than logic
or cache hierarchies. The parallelism supplied by many
FPUs enforces an explicit block-based data transfer model
for most of the parallel devices. For example, almost all
data transport to the graphics card happens in 1D, 3D
or most commonly 2D arrays and the driver rearranges
the data to benefit local neighborhood access patterns.
The Cell processor requires even a two-level explicit block-
based data movement model, and in FPGAs obviously all
levels of data storage and transport are handled explicitly,
most often in blocks or streams.

In principle, this explicit block-based data communica-
tion does not make handling of unstructured data impossi-
ble, but it is more complex and loses a significant amount
of performance, mainly due to the implied memory indi-
rections, in comparison to the structured case. So instead
of trying to implement these irregular structures, much
more performance can be gained by accelerating more of
the common cases on the co-processors.

3.2 Coupling and decoupling

For large-scale linear equation systems arising from a dis-
cretization of PDEs, two general goals typically conflict:
For efficient numerical convergence it is advantageous to
incorporate a global coupling in the solution process; for
efficient parallelization, on the other hand, locality greatly
reduces the communication overhead. Multigrid methods
that incorporate powerful smoothers such as SOR, ILU
or ADI-TRIGS generally deliver very good serial perfor-
mance, numerical robustness and stability. However, they
imply a strong global coupling and therefore global com-
munication due to their recursive character. Non-recursive
smoothing operators like Jacobi act more locally, but can
lead to poorly converging or even diverging multigrid iter-
ations in the presence of anisotropies. Additionally, the ra-
tio between communication and computation deteriorates
on coarser multigrid levels. At the bottom of the hierarchy,
the coarse grid solver always implies global communication
and can similarly become the bottleneck.

In contrast, domain decomposition methods partition
the computational domain into several sub-domains and
discretize the PDE locally. This introduces artificial in-

ner boundaries for the coupling between the local prob-
lems, but retains good parallel scalability since much more
computational work is performed on the fine grids. For a
detailed introduction on Schur-complement- and Schwarz-
methods we refer the reader to the books by Smith et al.,
Toselli and Widlund, and Kornhuber et al. [40, 56, 63].

The ScaRC (Scalable Recursive Clustering, [3, 39])
scheme combines the advantages of these two conflicting
approaches in a multilevel domain decomposition tech-
nique. On the global level, a domain decomposition tech-
nique on the (unstructured) coarse grid is applied, and
several macros are grouped in sub-domains (MPI pro-
cesses). Each macro is then refined into a generalized
tensor-product grid. The degree and method of refine-
ment can be different for each macro, some are refined
regularly while others are refined anisotropically (see Fig-
ure 1). The idea behind this technique is to exploit struc-
tured parts of the domain while hiding anisotropies locally,
to maximize the robustness and (numerical and computa-
tional) efficiency of the overall solution process. On each
refined macro, the ScaRC scheme employs a local multi-
grid solver. This local solver requires only local commu-
nication, namely after each step of the outer solver, data
is exchanged over the inner boundaries introduced by the
decomposition on the macro level. In the easiest case, the
global solver is just a straight-forward Richardson defect
correction loop. On the next level of complexity, Krylov
subspace methods can be applied, for instance the conju-
gate gradient iterative scheme. Ultimately, smoothing an
outer multigrid scheme with local multigrid solvers on each
macro yields the best convergence rates and fastest time
to solution on large or anisotropic domains. In summary,
this approach avoids deterioration of the convergence of
the global solver by hiding (encapsulating) anisotropies lo-
cally, while exploiting regular structures to leverage high
computational efficiency. For a detailed analysis, we refer
to Kilian and Becker [3, 39].

Feast is built around the ScaRC approach and uses
MPI for inter-node communication. The artificial inner
boundary conditions implied by the decomposition are
treated automatically. This decouples the local solver
from any global communication and global data structures.
The local solver only needs to request data for a local
sub-problem that comprises several macros, which always
have the structure of a generalized tensor-product mesh.
The only necessary communication calls are exchange-
and-average operations once the local solvers are finished.
Thus, new smoothers such as our GPU-based multigrid
implementation can be added with a comparatively small
amount of wrapper code.

4 IMPLEMENTATION

4.1 Coarse-grained parallelism

Figure 2 presents the algorithm for the outer iteration. In
the global loop we execute a biconjugate gradient (BiCG)

7

Assemble all local matrices in double precision

BiCG solver on the fine grid
Preconditioner:

MG V-cycle 1+1 on the fine grid
Coarse grid solver:

direct LU solver
Smoother:

for each macro execute local solver, Figure 3
internal communication between macros

in the same sub-domain
external communication (MPI) between macros

in different sub-domains

Figure 2: Coarse-grained parallelism in the outer solver.

solver preconditioned by the outer, data-parallel multigrid
iteration. Enclosing multigrid solvers in Krylov subspace
methods significantly improves the convergence and ro-
bustness in general, see for example Smith et al. [56]. The
stabilizing effect also enables the global multigrid to per-
form only one pre- and postsmoothing step and to exe-
cute an inexpensive V-cycle. The small drawback of this
setup is the increased storage requirement by five addi-
tional global vectors. The stopping criterion of the out-
ermost BiCG solver is set to reduce the initial residuals
by eight digits. On the global coarse grid (comprising the
unrefined macros), the outer multigrid uses a direct solver
based on an LU decomposition.

The outer multigrid passes its current defect dl as a right
hand side to the inner solver, l ∈ {10, . . . , 1} is the multi-
grid level. Hence, the inner solver is a (local) smoother
from the outer solver’s point of view. The initial guess
for the inner solver is always the zero vector as it works
on residual systems only, so just one data vector is passed
from the outer to inner solver. After smoothing by the
inner solver, the correction vector cl is passed back to the
outer solver and is used to correct the outer defect on the
current level l, and the outer multigrid continues with its
restriction or prolongation.

Taking into account the minimal overlap of the data
shared on macro edges, we should point out that the whole
scheme is implemented without building up any global ma-
trix. The only global work that is required is the direct
solution of the coarse grid problem, comprised of the un-
refined macros. The global defects on the different levels
of the global multigrid solver are computed by exchanging
and averaging values on the macro edges, only after each
smoothing step of the outer multigrid. When scheduling
two adjacent jobs on the same node (cf. Section 5), we take
additional advantage of OpenMPI (in contrast to several
other MPI implementations) being able to perform this
part of the communication via shared memory. Hence, the
strong global coupling of the outer multigrid is reduced to
a minimum, since the smoothing is only performed locally.
The implementation of the artificial inner boundary con-

ditions in Feast minimizes communication, but implies
slightly increased local smoothing requirements.

With regard to the fine-grained parallel co-processors we
target in this paper, this approach strictly distinguishes be-
tween local and global problems, and local problems can be
scheduled onto the co-processors independently. No addi-
tional iterations of the outer multigrid solver are required
due to the decoupled local smoothing, except for extremely
high anisotropies in the local problems [24].

Depending on the hardware configuration one or more
CPU or GPU jobs are scheduled to the nodes. Due to the
limited solver capabilities currently implemented on the
GPU, the GPU processes can only solve mildly anisotropic
local problems. More difficult problems are scheduled as
CPU processes. Beside this qualitative restriction, the
scheduler also tries to establish a quantitative balance of
the runtimes, because the CPU and GPU need a different
amount of time for the same problem. Currently, we use a
simple a priori scheduling based on the size and type of the
sub-domain (anisotropy of the elements). As the CPU and
GPU solvers are directly interchangeable, no code changes
are required when executing the same program on different
clusters. Only some machine parameters must be entered
so that the static scheduler knows whether it may use the
GPU solvers, and their performance relation to the CPU.
In fact, the ratio can be derived from a serial calibration
run. This arrangement is very convenient, as it guarantees
the execution of the application without dedicated hard-
ware support, but leverages the hardware when present.

Before the computation starts, the Feast package as-
sembles all local matrices on all multigrid levels in double
precision. This is not as critical as it may seem, because
all but the finest level consume only one third of the mem-
ory required for the finest level matrix. Once all data is
present locally, we are able to take full advantage of fine
grained parallelism.

4.2 Fine-grained parallelism

transform dl to single precision

if (level l ≥ lt)
transfer dl to GPU
GPU MG F-cycle 4+4 for levels l . . . lc + 1

and GPU preconditioned CG direct solution on level lc
transfer solution cl from GPU to CPU

else
CPU preconditioned CG computes cl from dl

transform cl to double precision and pass to outer solver

Figure 3: Fine grained parallelism in the inner solver: GPU
multigrid solver on a local macro of level l passed from the
outer multigrid, cf. Figure 2.

The GPU uses a multigrid solver with a Jacobi
smoother. Due to the moderate anisotropies in our test

8

cases and due to the slightly increased smoothing re-
quirements by Feast’s domain decomposition approach
(see Sections 4.1 and 5.1), we perform four pre- and
postsmoothing steps in an F-cycle to increase the solver’s
robustness and to be relatively independent of the vari-
ous relaxation and damping parameters in the multigrid
algorithm. We found no improvement in running (more
expensive) W-cycles. The entire inner solver operates in
single precision. This is not a problem, as we only try to
reduce the initial residual by two digits, see Section 1.4.
Figure 3 provides a pseudo code listing of the inner solver
on the GPU. Note that the setup is symmetric to the outer
solver. The current defect dl to be smoothed is provided
by the outer solver and the final correction term cl com-
puted by the inner solver is consumed by the outer solver
for defect correction and communication of boundary ele-
ments. The choice of the coarse grid level lc and the CPU
threshold lt is discussed in the next section.

While the local CPU solver can operate directly with the
double precision data, the GPU solver must first transform
the values into a single precision representation, and then
transfer them to GPU memory. Here we only discuss how
we manage the data vectors, the matrix data is covered in
Section 4.3.

Ideally, one would like to take advantage of asynchronous
data transfer to and from the video memory, and thus
overlap communication and computation. This is espe-
cially important because the precision conversion can place
a significant strain on the bandwidth available to the
CPU(s), in particularly with the shared memory bus in
DQ’s EM64T-based chipset architecture. On LiDO, the
Opteron processors have independent memory buses and
this is not a dominant issue. We discuss the impact of
memory bus contention further in Section 5.2.

In reality, however, true asynchronous transfers are not
easy to achieve. Moving data to the GPU might be asyn-
chronous, but this is controlled by the driver and not ex-
posed to the programmer. Recent driver revisions show a
tendency to transfer the data from mapped CPU memory
to GPU memory as late as possible, impeding the data
flow. Asynchronous readbacks are only asynchronous on
the CPU side by design, and extensive tests have revealed
that they only yield faster overall performance for image
data formats and not for the floating point formats that
we use [23, 31]. Clearly, this is not an optimal situation,
but much better performance is possible with the emerging
GPGPU languages that expose the hardware more directly,
see Section 4.4.

4.3 Tradeoffs in parallelism

The use of block-based data transfers and regular access
patterns reduces the impact of latency due to cache misses
on the CPU and GPU. Avoiding the impact of limited
bandwidth is a much more difficult problem to solve in a
general way. The primary issue is that a banded matrix-
vector product has a very low computational intensity.
The inner loop of the product repeatedly fetches two data

items (the matrix and vector entries per band), performs
a single multiply-add instruction and outputs the result-
ing data item. On almost all systems, the performance of
this operation is limited by the memory bandwidth and
not the peak computation rate. On a heterogeneous ar-
chitecture the solution to this bottleneck is to move the
matrix data, which is typically read multiple times in an
iterative scheme, to the memory system with the high-
est bandwidth. In the case of our CPU-GPU cluster, the
sizes of the caches on the CPU and the memory on the
graphics card play a key role in helping us to schedule a
particular problem. The texture caches on the GPU are
significantly smaller than on the CPU and are optimized
for 2D coherent neighborhood lookups, so they do not play
an important role in the scheduling, as long as the access
patters are coherent.

When the problem data fits easily into the L2 cache,
it is assigned to the CPU since the cache has typically
a higher bandwidth in comparison to graphics memory;
moreover the data has to be transfered to the GPU via the
comparably slow PCIe bus first. For larger problems, the
decision depends on the existence, size, and bandwidth
of an L3 cache. If it is still faster than GPU memory,
(once again including data transfer overhead) the task is
assigned to the CPU. Large problem sizes are best suited
for the graphics card as the video memory is much larger
than the CPU caches, and it provides a much higher band-
width than the main memory (cf. Section 2.2, [57]). Thus,
the low-level data transport considerations within our ap-
proach are similar for both the CPU and the GPU, first
transfer of data to local memory, then processing of data in
this higher bandwidth memory. Note, that both the trans-
fer of data from main memory to the local memory/cache
and the bandwidth from local memory/cache to the pro-
cessor is higher for the CPU. However, the GPU has much
more local memory (512MiB).

In the inner solver (Figure 3), this idea is implemented
by the explicit comparison of the finest level l of the current
macro (passed from the outer solver) with a threshold level
lt. Note that level l yields a local problem size of (2l +1)2,
and in our calibration runs, we found that a threshold of
lt = 6 corresponding to the local problem size 4, 225 is the
the best choice.

Irrespective of the initial size of the macro, the inner
solver on the GPU at some stage always has to work on
coarser levels in the multigrid cycle, and thus small grids.
One could think of rescheduling those small inner multi-
grid problems that fall below the above threshold back to
the faster CPU cache, and in fact the CPU would solve the
problem faster. However, the comparatively slow PCIe bus
would have to be crossed to reach the CPU cache. Thus,
the GPU has to solve these small intermediate problems it-
self. But on the GPU it does not make sense to operate on
very small grids, because the architecture then cannot ex-
ploit its parallelism any more. So instead of following the
multigrid cycles to the coarsest grids (3x3), we stop earlier
and solve a coarse grid problem with (2lc + 1)2 unknowns
with a few iterations of a preconditioned conjugate gra-

9

dient solver. This is overall much faster than continuing
with the multigrid transfers down to the trivial problem
sizes.

The inner solver description (Figure 3) omits the con-
version to single precision and transfer of the matrices to
the GPU, because it is not performed for each outer itera-
tion. To explain the procedure we model the 512MiB video
memory on the graphics card as a ’gigantic’ L3 cache for
the GPU. We can use it in two different modes.

In the first mode we use manual data prefetching. As
the video memory of the graphics cards in the cluster can
easily hold three complete data sets (matrix hierarchies,
iteration vectors, right hand sides etc.) at the same time,
interleaving computation on one macro and transfer for the
previous and next macros is the most efficient approach. In
this mode, we use these available data sets in a round-robin
fashion and for increased efficiency, the conversion to single
precision is merged with the transfer. The practicability of
this mode depends on the existence of asynchronous trans-
fer methods for the data used, and as discussed in the pre-
vious section there are none currently for our setup. The
benefit of the explicit model is clearly that the memory
footprint of the single precision copies is reduced to a mi-
nimum.

In the second mode, that we apply for the matrices
currently, we use the video memory as a dedicated L3
cache with automatic data prefetching. After the CPU
has built up all matrices for all levels (see Figure 2), we
transform the matrices to single precision and store them
in driver-controlled memory. The disadvantage clearly is
that the amount of data is much larger than the avail-
able video memory. But this approach yields faster ac-
cumulated transfer times on our hardware, as the driver
can now decide on its own when data is paged in and out
of the video memory, overlaying some of the computation
with communication which we could not do in the manual
mode (cf. Section 4.2).

4.4 Design effort and limitations

As one of our main goals has been a minimally invasive in-
tegration of the Feast package with the GPU-based multi-
grid solver, it is important to understand the impact this
had on the effort and the remaining limitations.

Prior to this work, the GPU application provided a se-
rial standalone multigrid solver for a one-macro configu-
ration. We should note that with the emerging GPGPU
languages and programming environments such as Stan-
ford’s Brook [7], AMD’s close to the metal (CTM) [49]
and NVIDIA’s compute unified device architecture (CUDA,
which additionally provides a subset of the BLAS [47]), the
challenge of implementing Finite Element solvers on the
GPU does no longer lie in employing graphics APIs for
non-graphics tasks. The real challenge is to devise efficient
mappings of existing algorithms to the streaming compute
paradigm with 1000s of lightweight hardware threads be-
ing executed simultaneously. See Section 1.3 for references
relevant in the context of our work.

We first designed a lean interface layer (implemented
in C) between Feast (Fortran) and the GPU package
(C++). The GPU package was encapsulated in a library,
providing the backend for the interface. This setup allowed
us to reuse the GPU code without modification. The in-
terface provides bidirectional passing of configurations and
status messages, and multigrid data is exchanged via pass-
ing pointers to the Feast data in memory, allowing the
GPU-based solver to read its input data and write back its
results directly, without expensive data copying.

The changes to the infrastructure in the Feast package
were few and accounted for approximately 1000 lines of
code, taking advantage of the modular design of Feast’s
solver and smoother routines. The main obstacle was the
coding of the previously unavailable non-uniform partition-
ing and scheduling of macros to the now heterogeneous
parallel jobs.

The challenges we met in this somewhat natural ap-
proach were twofold (compiler and library issues are omit-
ted): In matured packages it is more difficult to realize
functionality which was not planned in the initial design.
For instance, the possibility to reassign a problem from
one local smoother to another based on its size was never
considered in Feast before. Thus, if the GPU code re-
jects a small problem (cf. Section 4.2), the CPU executes
a re-implementation of the solver in C++ instead of just
calling a Feast routine. The plan is to make the Fortran
CPU smoothers and solvers more accessible to external
callers in the future. The main challenge was to design
and implement the interface with maximum efficiency. A
first functioning version was not too difficult to build, but
it involved too many unnecessarily inefficient data trans-
fers. As we strongly emphasized the importance of data
transport reduction, we were finally not surprised to see
that the biggest speedup from any code improvement (a
factor of two) resulted from finally finding an efficient way
to interleave the format conversion with the data transfer
(cf. Section 4.3). Optimizations of the GPU solvers yielded
a 10% improvement, and the size dependent assignment of
tasks to the CPU or GPU gained almost another factor of
two despite the less carefully optimized re-implementation
of the Feast code in C++.

Feast also only recently started to offer support for
different solvers on different macros. Therefore, we do not
have the full flexibility here and the default build supports
just two different solvers. One of the problems in imple-
menting more generality in this context is the assignment
of the solvers to the macros. While it is not very difficult
to initialize more solvers, the problem is to formulate the
rules upon which the assignment takes place.

A similar problem occurs with the assignment of jobs
within the MPI framework when faced with heterogeneous
architectures. In the absence of explicit directives, the as-
signment of jobs to nodes is clearly sub-optimal in these
cases. For ’pure’ GPU cases (which still require CPU man-
agement, see Section 1.5), as for pure CPU jobs, the assign-
ment is simple since all jobs are equally sized. However, for
mixed GPU-CPU runs, the allocation of jobs across nodes

10

must be managed more carefully, since MPI cannot distin-
guish between a ’pure’ CPU job and a CPU job which is
actually managing a GPU-based solver. Thus, before the
insertion of explicit assignment directives, these runs often
resulted in extreme imbalance between nodes and similarly
poor performance.

As a concrete example, for a combined run with CPU
and GPU jobs, instead of the desired partitioning of one
CPU macro and one GPU macro per node, the default
scheduling assigned two CPU macros each to the first
half of the nodes and two GPU macros each to the sec-
ond. Given that each node has only one GPU, this results
in both GPU jobs competing for the same co-processor.
These clearly incorrect assignments resulted in extremely
poor performance, and required significant effort to rem-
edy.

A further complication introduced by the heterogeneous
architecture is load balancing between the two different
processors. While some of the partitioning is dictated by
the solver capabilities or memory considerations (see Sec-
tion 4.3), there is still considerable leeway in the assign-
ment of macros to either processor. Obviously, the goal is
to have all macros complete simultaneously, to minimize
wait times. As we shall see from the results in the next
Section, the optimal partitioning of macros between GPU
and CPU is both problem and size dependent, and requires
considerable effort to explore the parameter space.

Here we see the main challenge for the future. Feast

will have to be extended by a dynamic scheduler which
knows the characteristics of the different hardware archi-
tectures and based on different parameters of the macros
decides where to execute them.

5 RESULTS

5.1 Test configurations

In our tests we solve the Poisson problem (Section 2.1)
on two different grid formats. The first is a moderately
anisotropic Cartesian grid. This allows the use of a the
simple Jacobi smoother and exploits the 2-level ScaRC

scheme to hide the anisotropies from the global solver, see
Section 3.2. The second is an inhomogeneous mixture of
regular and anisotropically refined macros which require
a more advanced solver for convergence. Starting with
some initial guess, the goal in both cases is to gain eight
digits of accuracy. In all our tests, we achieve the same
accuracy and error reduction irrespective of the hardware
architecture used for the computation, i.e. the restriction of
the GPU to single precision has no effect on the final result
due to our iterative refinement technique. In addition, the
number of iterations and (global) convergence rates are
identical.

We run the test scenario from Section 2.1 on one master
and up to 16 compute nodes of the clusters DQ and LiDO
(Section 2.2). For the different test configurations we use

the following notation:

AgPm BcQm Cn Name LL,

• A ∈ {0, 1} is the number of GPUs used per node,

• P ∈ {0, . . . , 12} is the number of macros per GPU
process (if A = 0 then Pm is omitted),

• B ∈ {0, 1, 2} is the number of CPUs used per node,

• Q ∈ {0, . . . , 12} is the number of macros for the CPU
process(es) (if B = 2 then each CPU is assigned Q/2
macros, if B = 0 then Qm is omitted),

• C ∈ {2, 4, 8, 16} is the number of compute nodes
(there is always one master node in addition),

• Name ∈ {DQ, LiDO} is the name of the cluster, and

• L is the level of the macros, consisting of (2L + 1)2

degrees of freedom (DOFs), all macros in one config-
uration have the same size.

The overall number of processes is always equal to
(A + B) · C, and the global number of unknowns can be
derived from (P + Q) · C and the multigrid level, since
all macros have the same number of DOFs. For exam-
ple, 0g 2c8m 16n LiDO means that 16 compute nodes of
the LiDO cluster are used, processes are scheduled to both
CPUs and every CPU treats four macros, hence, we have
8 · 16 macros distributed among (0 + 2) · 16 processes;
1g4m 0c 16n DQ uses 16 compute nodes of the DQ clus-
ter, processes are scheduled only to the GPU and every
GPU treats four macros; 1g7m 1c1m 8n DQ uses eight
DQ compute nodes with eight processes being scheduled
to the GPUs and eight to the CPUs, treating seven and
one macros, respectively. In the 1g4m 0c 16n DQ exam-
ple where no CPU is explicitly used for the solution of
sub-problems, one CPU per node is implicitly occupied to
some extent because they have to support the GPU in the
computation and run the outer solver. A 0g notation on
the other hand means that the GPUs are completely idle.

Recall, that this is a cascaded multigrid scheme (cf. Sec-
tion 4.1). The outer multigrid solver always runs on the
CPUs, and executes the inner multigrid as a smoother on
the different levels for each macro. Even if all macros have
the same size on the finest level, sub-problems of various
sizes are generated during the outer iteration. Depend-
ing on the current problem size, GPU processes reschedule
their work onto the CPU if the local problems are small
(cf. Section 4.3). Thus, even if no processes are scheduled
for the CPUs, they will receive more or less work from the
GPU processes depending on the value of this threshold.
This is also the reason, why we never execute 1g 2c config-
urations, as this would simply schedule too much work to
the CPUs, and also congest the bus to the main memory.

Whenever some values are omitted in the above nota-
tion, we refer to all possible completions in the given con-
text at the same time, e.g. we often consider only the hard-
ware configuration, like 0g 2c DQ, irrespective of the dis-
tribution and size of macros.

11

The test cases are limited because LiDO’s nodes do not
contain any GPUs, and DQ’s nodes cannot accommodate
two graphics cards. With newer hardware, we hope to
extend the test series to these configurations in the future.

To improve the clarity of the presentation, we use graphs
to show the results. The appendix contains detailed tables
with all the exact numbers.

5.2 Homogeneous domains

In this section we assume that the macros discretiz-
ing the domain are homogeneous and only moderately
anisotropic. This configuration is designed to be a pro-
totype, the stronger the anisotropies are, the better the
ScaRC scheme is suited compared to standard data pa-
rallel multigrid solvers, see Section 3.2 for details.

For such sub-domains a multigrid iteration with a Ja-
cobi smoother converges very quickly, and we need only
three outer BiCG iterations (hence, six global multigrid
cycles) for all cases in this section, cf. Algorithm 2. A cor-
responding inner solver is implemented both on the CPU
and GPU and, therefore, we have no restrictions in assign-
ing the processes to the architectures, i.e. we can test all
available configurations 0g 1c, 0g 2c, 1g 0c and 1g 1c. By
varying the number of processors and size of the macros
we obtain various problem sizes from 16 Mi to 128 Mi grid
nodes.

5.2.1 CPU vs. GPU

 0

 50

 100

 150

 200

 250

16Mi, C=8
 (64 L9 mac)

32Mi, C=16
 (128 L9 mac)

64Mi, C=8
 (64 L10 mac)

128Mi, C=16
 (128 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 o
ve

ra
ll

tim
e

in
 s

ec

#degrees of freedom (DOFs)

0g_2c8m_Cn_DQ
0g_2c8m_Cn_LiDO

1g8m_0c_Cn_DQ
1g7m_1c1m_Cn_DQ

Figure 4: CPU vs. GPU cluster configurations: absolute
execution time (see Table 3 in the Appendix for the exact
numbers).

Figure 4 compares the performance of the DQ and LiDO
clusters using their CPUs and the DQ cluster in two GPU
configurations with different macro sizes and processor
numbers. Problem sizes vary from 16Mi to 128Mi un-
knowns. First, we observe that the execution times are
more similar for the smaller L9 ((29 + 1)2 DOFs) macros.
This is not surprising as smaller macros mean that there is

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

16Mi, C=8
 (64 L9 mac)

32Mi, C=16
 (128 L9 mac)

64Mi, C=8
 (64 L10 mac)

128Mi, C=16
 (128 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 n
od

e
tim

e
pe

r
D

O
F

 in
 s

ec
 (

tim
e*

C
/D

O
F

s)

#degrees of freedom (DOFs)

0g_2c8m_Cn_DQ
0g_2c8m_Cn_LiDO

1g8m_0c_Cn_DQ
1g7m_1c1m_Cn_DQ

Figure 5: CPU vs. GPU cluster configurations: node time
per degree of freedom (see Table 4 in the Appendix for the
exact numbers).

less local work on each node between synchronizations and
also a less favorable ratio of computation to communica-
tion. For GPUs this effect is particularly large, because, in
addition to the above, GPUs have a configuration time for
each macro (hardware setup and data transport) that must
be amortized over the execution time. The normalized
node time per DOF for the same runs (Figure 5) clearly
shows that this constant overhead is less significant for the
larger L10 macros, and thus the GPUs perform much more
efficiently. In addition we see that the nodes perform with
similar efficiency in the 8n and 16n runs; weak scalability
is discussed in more detail further below.

Overall, we see that the GPU configurations on the
older DQ cluster perform similarly to the newer LiDO clus-
ter for the L9 macros, whereas the difference is clear for
the L10 macro configurations. In particular, on the L10
macros the DQ cluster with GPUs solves the test problem
around three times faster than without. The reason for
the large difference between the CPU configurations of DQ
and LiDO and the small difference between the pure GPU
(1g 0c DQ) against the combined GPU-CPU (1g 1c DQ)
configuration is addressed in the following.

5.2.2 System bandwidth

The previous figures featured comparisons of configura-
tions with the same number of nodes. Figures 6 and 7
show execution times for the same number of processes,
but not necessarily the same number of nodes. This is
achieved by running 0g 2c or 1g 1c DQ configurations on
half the number of nodes than 0g 1c and 1g 0c configu-
rations. The configurations solve problems with the same
number of unknowns, but these are distributed onto more
nodes in the case of the single CPU (0g 1c) or GPU (1g 0c)
configurations.

While for LiDO the 0g 1c4m configuration is slower than
0g 2c8m, because of the additional external communica-

12

 0

 50

 100

 150

 200

 250

16Mi, C=4
 (16 L10 mac)

32Mi, C=8
 (32 L10 mac)

64Mi, C=16
 (64 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

#degrees of freedom (DOFs)

0g_1c4m_Cn_DQ
0g_1c4m_Cn_LiDO

0g_2c8m_(C/2)n_DQ
0g_2c8m_(C/2)n_LiDO

Figure 6: Impact of the system bandwidth and weak scala-
bility (see Table 5 in the Appendix for the exact numbers).

tion (same domain across more nodes), for DQ it is the
other way round and 0g 1c4m is much faster than 0g 2c8m,
although all problems execute the same number of FLOPs.
However, for the data intensive linear algebra operations
required in the solution of sparse linear equation systems,
the number of FLOPs is less important, instead the band-
width to the processors is crucial. The chipset in DQ’s
nodes has a shared memory bus to the processors, such
that the 0g 1c4m configuration offers the same amount
of bandwidth to one processor as the 0g 2c8m configura-
tion does to two. With twice the number of nodes in the
0g 1c4m configuration we have thus effectively doubled the
overall system bandwidth and (minus the additional ex-
ternal communication overhead) it performs accordingly
almost twice as fast as 0g 2c8m.

The chipset in LiDO’s nodes has separate memory buses
for the processors, so that the processors do not diminish
each others effective bandwidth. Accordingly we see the
opposite effect that executing on fewer nodes is faster. The
importance of sufficient bandwidth support in the chipset
is emphasized by the fact that LiDO loses the 0g 1c4m
comparison with DQ, but resoundingly wins the 0g 2c8m
race. The former loss is mainly attributed to DQ’s better
interconnections. The external communication itself only
becomes decisive when the internal system bandwidths are
relatively equal. Although the 0g 1c4m DQ configuration
with twice the number of nodes offers more system band-
width than 0g 2c8m LiDO (n · 2 · 6.4 > n · 2 · 5.96, see
Section 2.2), it is slightly slower, because of the doubled
amount of external communication.

The same general reasoning about system bandwidth
can be applied to adding graphics cards to DQ. Their pri-
mary benefit is the sextupling of DQ’s system bandwidth
and not the compute parallelism in GPUs. In fact, like the
CPUs, the GPUs also wait for data most of the time and
could perform many more computations in the same time.
Unfortunately, the additional bandwidth of the graphics
card can only be reached after passing through the PCIe

bottleneck. This may sound unfair, as PCIe is much faster
than the previous technologies (PCI, AGP), but the uni-
directional 4 GB/s (of which less than 2 GB/s are made
available by the device driver [57]) are small compared to
the 33.6 GB/s on the graphics board. This emphasizes
again the necessity of having enough decoupled work for
the GPU to take advantage of the faster processing. It
also underlines the need for a closer integration of the co-
processors into the system, as pursued by the Torrenza [2]
and Geneseo [36] projects, see also DRC [18] and Xtreme-
Data [69] for Hypertransport couplings of FPGA acceler-
ators and CPUs.

Note, that PCIe is a similar bottleneck to the GPU as the
PCI-X based InfiniBand cards with 1.25 GB/s peak (780
MB/s benchmarked) in DQ and LiDO are a bottleneck in
accessing a different CPU node. So another interpretation
of the graphics cards is to see them as a specialized sepa-
rate node that can only be connected to a CPU node and
not among themselves (in principle graphics cards can be
connected directly with DVI). However, the co-processor
model discussed in Section 4.3 with the video memory in-
terpreted as a L3 cache for the GPU is more consistent, be-
cause the GPUs still need enough support from the CPU,
that it seems unjustified to speak of the graphics cards as
separate nodes.

Figure 7 shows that the effective gain in system band-
width through the addition of the GPUs is more than
3.2, approximately half the theoretical value of 6.25 =
(33.6+6.4)/6.4 (cf. Section 2.2). Here, the combined GPU-
CPU (1g 1c DQ) configurations perform only half as well,
because they have only half the number of nodes (thus
bandwidth) available.

The bandwidth to the CPUs is only a small fraction
(∼ 1/6) of the system bandwidth once the graphics cards
have been added. Thus, only a small advantage can be
gained by scheduling some of the work and running the
CPU in parallel to the GPU, see Figure 4. On the DQ
cluster this advantage is particularly small because the bus
is shared, and the second CPU is already using it by sup-
porting the GPU process (cf. Section 4.3). Thus, only the
remaining bandwidth fraction can lead to further acceler-
ation. On the LiDO cluster the CPU bandwidth would
contribute more to the system bandwidth as the second
CPU supporting the GPU process would have its own bus.

The dominance of the contribution to the system band-
width provided by the graphics cards can be also seen in
Figure 7, by realizing that the most extreme balancing of
macros towards the GPU (1g7m 1c1m DQ) is faster than
the more balanced 1g6m 1c2m DQ configuration with two
macros on the CPU.

5.2.3 Weak scalability

Figures 6 and 7 demonstrate the weak scalability of our
solvers on the two clusters. We increase the problem size
from 16Mi to 64Mi degrees of freedom while also dou-
bling the number of nodes in each step. Overall, we see
in Figure 6 that all configurations scale very well. While

13

 0

 20

 40

 60

 80

 100

 120

 140

16Mi, C=4
 (16 L10 mac)

32Mi, C=8
 (32 L10 mac)

64Mi, C=16
 (64 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

#degrees of freedom (DOFs)

0g_1c4m_Cn_DQ
1g6m_1c2m_(C/2)n_DQ
1g7m_1c1m_(C/2)n_DQ

1g4m_0c_Cn_DQ

Figure 7: Weak scalability and impact of the system band-
width (see Table 6 in the Appendix for the exact numbers).

the graph of the 0g 1c4m DQ configuration is totally flat,
the connections in the LiDO cluster are a bit slower and
cause a slight increase of execution time in case of the
0g 1c4m LiDO configurations, where only four macros re-
side on each node. But when we double the amount of
local data (0g 2c8m LiDO) the LiDO graph is also flat.
The 2c 2n setup forms a bit of a special case with only two
compute nodes communicating with each other, but only
the faster connections on the DQ cluster can exploit this
fact for non-proportionally faster execution.

The graphs in Figure 7 demonstrate very good scalabil-
ity of the GPU configurations from 4 to 16 nodes. This
encourages us to look out for opportunities to execute this
test scenario on clusters with more GPU equipped nodes
in the future.

5.3 Heterogeneous domains

In this test series, we demonstrate the viability of using dif-
ferent hardware solvers for different sub-domains. The idea
is to use both CPU and GPU for what they are best suited
for, the CPU is assigned few, irregular macros and the
GPU is assigned many, regular macros. We thus demon-
strate that we do not lose any functionality present in the
original FEM package by adding GPUs as co-processors;
rather we gain speedups by leveraging the additional band-
width.

The test domain is square-sized, with anisotropic re-
finement towards the boundaries, which in practice is of-
ten needed to accurately resolve boundary layers, e.g. in
fluid dynamics. The adaptive refinement causes the sim-
ple Jacobi multigrid to diverge, even with a high amount
of smoothing steps. We again solve the Poisson problem
as explained in Section 2.1 with L9 and L10 macros, yield-
ing 6Mi to 192Mi degrees of freedom. We use up to 16
compute nodes of the DQ cluster for these configurations.

On the CPU, we employ a powerful alternating direc-
tions smoother of type line-wise tridiagonal Gauss-Seidel

(ADI-TRIGS) for the inner multigrid. As previous ana-
lysis has shown [24], two pre- and post-smoothing steps
suffice to treat almost any kind of ill-condition in the lo-
cal matrices caused by anisotropic mesh refinement, up to
the limitations of the double precision floating point for-
mat. The GPU continues to use simple Jacobi with four
pre- and post-smoothing steps of the inner multigrid, re-
spectively. Note that it is only possible to perform differ-
ent amounts of smoothing steps per macro because of the
strong decoupling, as explained in Section 3.2.

A conventional CPU package would perform this com-
putation with the ADI-TRIGS smoother alone, with an
equal distribution of the macros to the jobs. In the graph
below, this setup is labeled 0g 2c12m Cn DQ.

The equivalent 1g 1c configuration requires very care-
ful load balancing, because a different amount of work is
performed on the GPU and CPU.

 0

 50

 100

 150

 200

 250

 300

 350

6Mi
C=2

12Mi
C=4

24Mi
C=8

48Mi
C=16

24Mi
C=2

48Mi
C=4

96Mi
C=8

192Mi
C=16

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 o
ve

ra
ll

tim
e

in
 s

ec

#degrees of freedom (DOFs)

0g_2c12m_Cn_DQ L9
1g8m_1c4m_Cn_DQ L9

0g_2c12m_Cn_DQ L10
1g8m_1c4m_Cn_DQ L10

Figure 8: Absolute execution time for the heterogeneous
domain, speedup and weak scalability (see Table 7 in the
Appendix for the exact numbers).

Figure 8 shows the absolute timing of these two solvers
for L9 and L10 macros. Except a small deviation of the
eight node runs, both the CPU only and the CPU-GPU
configuration show good weak scalability with increasing
problem size. The CPU-GPU configuration is 1.4 times
faster for L9 macros than the traditional CPU approach.
The GPUs excel for the large L10 macros, where we ob-
serve an overall speedup by a factor of two, in line with the
discussion of the results in Sections 5.2.1, 5.2.2 and 5.2.3.

5.4 Cluster up- and downgrade

The use of GPUs as scientific co-processors demonstrated
in the previous sections opens alternatives to traditional
approaches of cluster up- and downgrading. In this section
we evaluate two practical scenarios not only with respect to
performance but also in view of the aspects of costs, space
and power requirements. The analysis uses the numbers
from Section 2.2. The starting point in both cases is a
cluster of eight DQ type of nodes without the GPUs. In

14

the first scenario we are concerned with strong scalability
of the system, in the second with downgrading the size of
the cluster (to free up the space and save power) while
retaining its performance.

 0

 50

 100

 150

 200

16Mi, C=4
 (64 L9/16 L10)

16Mi, C=8
 (64 L9 mac)

64Mi, C=8
 (64 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 o
ve

ra
ll

tim
e

in
 s

ec

#degrees of freedom (DOFs)

0g_2c_Cn_DQ (U)
0g_2c_(2*C)n_DQ (N)

0g_2c_Cn_LiDO (B)
1g_1c_Cn_DQ (G)

Figure 9: Cluster up- and downgrading: absolute execu-
tion time (see Table 8 in the Appendix for the exact num-
bers).

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

16Mi, C=4
 (64 L9/16 L10)

16Mi, C=8
 (64 L9 mac)

64Mi, C=8
 (64 L10 mac)

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 n
od

e
tim

e
pe

r
D

O
F

 in
 s

ec
 (

tim
e*

C
/D

O
F

s)

#degrees of freedom (DOFs)

0g_2c_Cn_DQ (U)
0g_2c_(2*C)n_DQ (N)

0g_2c_Cn_LiDO (B)
1g_1c_Cn_DQ (G)

Figure 10: Cluster up- and downgrading: node time per
degree of freedom (see Table 9 in the Appendix for the
exact numbers).

5.4.1 Upgrade

Given a cluster of eight DQ type of nodes, what is the
best procedure to increase its performance on a given set
of problems? We analyze the following options:

• U - unchanged: The cluster configuration remains
unchanged.

• N - more nodes: Double the number of the existing
nodes.

• B - better nodes: Replace the DQ type nodes by
LiDO type nodes.

• G - insert GPUs: Insert powerful GPUs into the
existing nodes.

The middle and right comparisons in Figures 9 and 10
(absolute and normalized numbers respectively) show the
impact on the performance of the approaches on differ-
ent problem sizes with L9 (16Mi DOFs) and L10 macros
(64Mi DOFs), respectively. As discussed in Section 5.2.1,
the smaller problems (L9 macros) with less local data and
shorter times between synchronizations produce more rel-
ative overhead and offer less opportunities for the GPU
to reduce the overall runtime. Still the G option already
surpasses the configuration with doubled nodes (N) and
more clearly outperforms the B option, with better nodes
(Figures 9 and 10 in the middle).

On large problem sizes with L10 macros the GPUs gain
additional speedups. Now, there is enough local work to
justify the data transfer through the PCIe bottleneck to
the superior bandwidth bus on the graphics card, and the
G option is clearly better, 3.02 times faster than the orig-
inal cluster. The N options performs (not surprisingly)
twice as fast, and the B option comes close to it by improv-
ing the speedup to a 1.90 factor. Figure 10 clearly shows
how the efficiency of the GPU improves for the larger prob-
lems while it hardly changes for the CPU configurations.

Table 1: Evaluation of the different upgrade options (Sec-
tion 5.4.1) under various aspects. Arrows indicate if larger
or smaller numbers are better, boldface indicates the best
case.

Aspect better U N B G

Performance
on small problems

↑ 1.00 1.99 1.74 2.09

Performance
on large problems

↑ 1.00 1.98 1.90 3.02

Space requirements ↓ 1.00 2.00 1.00 1.00

Acquisition costs ↓ 0.00 1.00 0.95 0.35
Average power
under full load

↓ 1.00 2.00 1.11 1.30

Av. performance
/ cost

↑ - 1.99 1.92 7.03

Av. performance
/ power

↑ 1.00 1.00 1.64 1.97

Performance is only one aspect in the consideration of
a cluster upgrade. Table 1 puts some other aspects in re-
lation, with bold numbers denoting the best value in each
aspect. We see that the G option wins in most categories
and often with a very significant margin. Even doubling
the number of nodes (N) cannot match the performance of
the GPUs, and in terms of acquisition costs N and B are
clearly worse. Only the the power consumption would be

15

slightly smaller with the newer nodes and performance on
small problems is similar on twice as many nodes. How-
ever, the comparable GPU performance applies only to the
strict strong scalability when exactly one problem has to
be solved fast. As soon as two or more of the small prob-
lems are to be solved independently (e.g. different problem
parameter settings), then there would be more local data,
and using half of the GPU nodes for each of the problems
would deliver a clearly superior performance as demon-
strated in the next section.

When we analyse the combined benefits through the per-
formance/cost and performance/power ratios in Table 1
the advantage of the G option for the upgrade becomes
even more obvious. Note, that the performance/cost ratio
refers to an upgrade scenario, i.e. the eight DQ nodes are
already present and only the additional costs are consid-
ered. If a completely new system is assembled then one
would obviously opt for the faster, newer nodes and eval-
uate the GPUs there, but we could not test this because
LiDO has no GPUs.

5.4.2 Downgrade

The scenario discussed in this Section is to downgrade the
size of the cluster while minimizing the effect on its per-
formance. Given a cluster of eight DQ type of nodes, how
much performance can we achieve with only four nodes?
Again we look at three options.

• U - unchanged: The cluster configuration remains
unchanged.

• N - fewer nodes: Reduce the number of nodes in
the cluster by half.

• B - better nodes: Replace the nodes with half the
number of LiDO type nodes.

• G - insert GPUs: Remove half the cluster and place
powerful GPUs in the remaining nodes.

The middle and left comparison in Figures 9 and 10
shed light on the performance of the downgraded sys-
tems according to the above options. Obviously, once we
have downgraded the cluster to fewer nodes, we will have
less memory available and will not be able to solve the
large problems anymore. Therefore, we compare the per-
formance of the new configurations with the original L9
results (red bar in the middle of figures). Note, that in
the previous section option N was doubling the number of
nodes and now it is halving them, thus in case of the left
comparison (C=4) the notation 0g 2c (2*C)n DQ in the
legend with 2*C suggesting a node doubling is inappro-
priate, all configurations in the left comparison use four
nodes.

Simply halving the number of nodes degrades the per-
formance by almost the same factor. The B option does a
better job and achieves 87% of the previous performance.
The G option, however, actually outperforms the original
system by 59%, despite having only half the number of

nodes. This is possible because the efficiency on the larger
macros is high, see Figure 10. For the CPU only runs
we tried both possible macro configurations giving 16Mi
DOFs on four nodes: 16 L9 macros or 4 L10 macros per
node and use the former which is slightly faster.

Table 2: Evaluation of the different downgrade options
(Section 5.4.2) under various aspects. Arrows indicate if
larger or smaller numbers are better, boldface indicates the
best case.

Aspect better U N B G

Performance
on small problems

↑ 1.00 0.50 0.87 1.59

Space requirements ↓ 1.00 0.50 0.50 0.50

Acquisition costs ↓ 0.00 0.00 0.48 0.18
Average power
under full load

↓ 1.00 0.50 0.56 0.65

Performance
/ cost

↑ - - 1.81 8.83

Performance
/ power

↑ 1.00 1.00 1.55 2.45

As in the upgrading case the G option wins most cate-
gories in the comparison (Table 2). For very low acquisi-
tion costs it is the only configuration that can preserve and
even surpass the previous performance level of the original
cluster with twice as many nodes. The very high per-
formance/cost ratio emphasizes this fact. As explained in
Section 5.4.1 we only consider additional costs, so not buy-
ing anything gives an infinite ratio, but this would fail the
main goals of reducing the space requirement and retain-
ing the performance. Overall power consumption would
be slightly lower with the better nodes (B), but the per-
formance/power ratio is much in favor of the GPU solution
again (G).

5.4.3 Massively parallel systems

We understand that the above discussion would be more
exciting if the initial configuration did not consist of eight
nodes, but rather 128 or even 4096 and we were discussing
the corresponding upgrades or downgrades by factors of
two. If we assume the same performance relations as dis-
cussed above then the aspects of costs, space and power
have a much larger impact on these scales, as they clearly
stand out of the noise present in these aspects and influ-
ences of additional factors. A problem in performing such
a study is the lack of large clusters equipped with cur-
rent graphics hardware technology. On the other hand,
studies such as this one are necessary to demonstrate that
this type of approach to system acceleration is feasible and
would warrant an application on large scales. Increasingly
larger GPU systems are already being employed and we
will consider larger scale computations in the future.

16

6 CONCLUSIONS AND FUTURE WORK

We have tackled the difficult problem of efficient utiliza-
tion of heterogeneous processors with different computing
paradigms in a commodity based cluster. More and more
hardware accelerators based on standard hardware compo-
nents offer very high performance in their application ar-
eas, but the challenge lies in the integration of these advan-
tages into established software environments. We have ac-
cepted the challenge and designed an interface to graphics
processors (GPUs) for the parallel Finite Element package
Feast. Rather than sacrificing modularity for ultimate
performance, a minimally invasive integration of the GPU
as a scientific co-processor has been pursued.

With a lean interface to the Feast package we obtain a
modular and extensible framework which delivers speedups
of two to three for sufficiently large problems. Detailed
analysis of the system bandwidth as the most important
performance factor for linear system solvers is provided and
supported by results. Although the GPU itself is fairly re-
stricted in data handling and precision, we maintain the
same functionality and result accuracy as in the original
FE package. The restrictions are encapsulated in the im-
plementation of the interface and do not affect the appli-
cation programmer who benefits from the hardware ac-
celerated solvers by simple changes to configuration files,
without the necessity for any code changes.

We have analyzed an up- or downgrade of a cluster
through GPUs in comparison to standard approaches of
varying the number or substituting newer nodes. The
GPUs are clearly dominant in the performance and costs
aspects, but also perform comparably well with respect to
space and power requirements. While only modified soft-
ware can benefit from the additional GPU power, we have
demonstrated that providing hardware acceleration for a
large software package (> 100.000 lines of code) may be
achieved by touching 1% of the code basis, and providing
a device-specific implementation of the (inner) solver.

The most challenging task in the future will be to devise
a dynamic scheduling scheme, which takes into considera-
tion the condition of the sub-problems, the expected run-
time, the availability and suitability of the co-processors
and the bandwidth of and between the different proces-
sors.

We plan on extending the GPU-based code with more
advanced smoothing operators and coarse grid solvers.
More tradeoffs in parallelism, in particular a better balance
between the bandwidth and processing power of GPU’s,
are necessary. Ultimately, more of the emerging commod-
ity floating point co-processors need to be evaluated and
integrated into our system.

ACKNOWLEDGMENT

We thank Sven Buijssen, Matthias Grajewski and
Thomas Rohkämper for co-developing Feast and its tool
chain. Thanks to Michael Köster, David Daniel, John

Patchett, Jason Mastaler, Brian Barrett and Galen Ship-
man for help in debugging and tracking down various clus-
ter software and hardware issues. Also thanks to NVIDIA
and AMD for donating hardware that was used in devel-
oping the serial version of the GPU backend.

This research has been partly supported by a Max
Planck Center for Visual Computing and Communication
fellowship, by the German Science Foundation (DFG),
project TU102/22-1 and by the U.S. Department of En-
ergy’s Office of Advanced Scientific Computing Research.

DETAILED TEST RESULTS

Table 3: CPU vs. GPU cluster configurations: absolute
execution time.

0g 2c8m 0g 2c8m 1g8m 0c 1g7m 1c1m
#DOFs C #macros Cn DQ Cn LiDO Cn DQ Cn DQ

16Mi 8 64 (L9) 50.36 28.98 25.75 24.12

32Mi 16 128 (L9) 50.51 29.12 27.19 24.21

64Mi 8 64 (L10) 226.96 119.72 66.40 74.69

128Mi 16 128 (L10) 227.98 120.25 79.29 74.37

Table 4: CPU vs. GPU cluster configurations: node time
per degree of freedom.)

0g 2c8m 0g 2c8m 1g8m 0c 1g7m 1c1m
#DOFs C #macros Cn DQ Cn LiDO Cn DQ Cn DQ

16Mi 8 64 (L9) 2.39e-05 1.38e-05 1.22e-05 1.15e-05

32Mi 16 128 (L9) 2.40e-05 1.38e-05 1.29e-05 1.15e-05

64Mi 8 64 (L10) 2.70e-05 1.42e-05 7.90e-06 8.89e-06

128Mi 16 128 (L10) 2.71e-05 1.43e-05 9.43e-06 8.85e-06

Table 5: Impact of the system bandwidth and weak scala-
bility.

0g 1c4m 0g 1c4m 0g 2c8m 0g 2c8m
#DOFs C #macros Cn DQ Cn LiDO (C/2)n DQ (C/2)n LiDO

16Mi 4 16 (L10) 125.25 122.29 216.88 118.58

32Mi 8 32 (L10) 126.71 140.83 226.73 119.55

64Mi 16 64 (L10) 127.26 141.90 226.96 119.72

Table 6: Weak scalability and impact of the system band-
width.

0g 1c4m 1g6m 1c2m 1g7m 1c1m 1g4m 0c
#DOFs C #macros 0gCn DQ (C/2)n DQ (C/2)n DQ Cn DQ

16Mi 4 16 (L10) 125.25 81.45 72.53 31.68

32Mi 8 32 (L10) 126.71 86.54 73.03 33.64

64Mi 16 64 (L10) 127.26 87.20 75.47 39.74

Table 7: Absolute execution time for the heterogenous do-
main, speedup and weak scalability.

0g 2c12m 1g8m 1c4m
#DOFs C #macros Cn DQ Cn DQ

6Mi 2 24 (L9) 75.9 55.9

12Mi 4 48 (L9) 75.5 54.7

24Mi 8 96 (L9) 81.0 55.3

64Mi 16 192 (L9) 77.2 56.4

24Mi 2 24 (L10) 296.3 168.5

48Mi 4 48 (L10) 306.3 174.9

96Mi 8 96 (L10) 325.6 179.5

192Mi 16 192 (L10) 307.7 173.5

Table 8: Cluster up- and downgrading: absolute execution
time.

0g 2c 0g 2c 0g 2c 1g 1c
Cn DQ (2·C)n DQ Cn LiDO Cn DQ

#DOFs C #macros (U) (N) (B) (G)

64 (L9)/
16Mi 4 16 (L10) 100.25 57.96 31.68

16Mi 8 64 (L9) 50.36 25.29 28.98 24.09

64Mi 8 64 (L10) 226.96 114.42 119.72 75.23

17

Table 9: Cluster up- and downgrading: node time per de-
gree of freedom.

0g 2c 0g 2c 0g 2c 1g 1c
Cn DQ (2·C)n DQ Cn LiDO Cn DQ

#DOFs C #macros (U) (N) (B) (G)

64 (L9) /
16Mi 4 16 (L10) 2.39e-05 1.38e-05 7.54e-06

16Mi 8 64 (L9) 2.39e-05 1.20e-05 1.38e-05 1.14e-05

64Mi 8 64 (L10) 2.70e-05 1.36e-05 1.42e-05 8.95e-06

REFERENCES

[1] AGEIA Technologies, Inc. (2006). AGEIA PhysX pro-
cessor. http://ageia.com/physx/index.html.

[2] AMD, Inc. (2006). Torrenza technology.
http://enterprise.amd.com/us-en/AMD-Business/

Technology-Home/Torrenza.aspx.

[3] Becker, C. (2007). Strategien und Methoden zur Aus-
nutzung der High-Performance-Computing-Ressourcen
moderner Rechnerarchitekturen für Finite Element Sim-
ulationen und ihre Realisierung in FEAST (Finite Ele-
ment Analysis & Solution Tools). PhD thesis, Univer-
sität Dortmund, Fachbereich Mathematik.

[4] Becker, C., Kilian, S., and Turek, S. (2007). FEAST
– Finite element analysis and solution tools. http://

www.feast.uni-dortmund.de.

[5] Bolz, J., Farmer, I., Grinspun, E., and Schröder, P.
(2003). Sparse matrix solvers on the GPU: Conjugate
gradients and multigrid. ACM Transactions on Graphics
(TOG), 22(3):917–924.

[6] Bondalapati, K. and Prasanna, V. K. (2002). Recon-
figurable computing systems. Proceedings of the IEEE,
90(7):1201–1217.

[7] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian,
K., Houston, M., and Hanrahan, P. (2004). Brook for
GPUs: Stream computing on graphics hardware. ACM
Transactions on Graphics (TOG), 23(3):777–786.

[8] ClearSpeed Technology, Inc. (2006). ClearSpeed
Advance Accelerator Boards. www.clearspeed.com/

products/cs advance/.

[9] Colella, P., Dunning, T. H., Gropp, W. D., and Keyes,
D. E. (2003). A science–based case for large–scale
simulation. Technical report, DOE Office of Science.
http://www.pnl.gov/scales.

[10] Compton, K. and Hauck, S. (2002). Reconfigurable
computing: A survey of systems and software. ACM
Computing Surveys, 34(2):171–210.

[11] Cray Inc. (2006). Cray XD1 supercomputer. www.

cray.com/products/xd1.

[12] Dally, W. J., Hanrahan, P., Erez, M., Knight, T. J.,
Labonté, F., Ahn, J.-H., Jayasena, N., Kapasi, U. J.,
Das, A., Gummaraju, J., and Buck, I. (2003). Merrimac:
Supercomputing with streams. In SC ’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing,
page 35.

[13] Davis, T. A. (2004). A column pre-ordering strategy
for the unsymmetric-pattern multifrontal method. ACM
Transactions on Mathematical Software, 30(2):165–195.

[14] DeHon, A. (2002). Very large scale spatial comput-
ing. Lecture Notes in Computer Science, Proceedings of
the Third International Conference on Unconventional
Models of Computation, 2509:27–36.

[15] Demmel, J., Hida, Y., Kahan, W., Li, X. S., Mukher-
jee, S., and Riedy, E. J. (2006). Error bounds from
extra-precise iterative refinement. ACM Transactions
on Mathematical Software, 32(2):325–351.

[16] Douglas, C. C., Hu, J., Karl, W., Kowarschik, M.,
Rüde, U., and Weiß, C. (2000a). Fixed and adaptive
cache aware algorithms for multigrid methods. In Dick,
E., Riemslagh, K., and Vierendeels, J., editors, Multi-
grid Methods VI, volume 14, pages 87–93. Springer.

[17] Douglas, C. C., Hu, J., Kowarschik, M., Rüde, U., and
Weiß, C. (2000b). Cache optimization for structured and
unstructured grid multigrid. Electronic Transactions on
Numerical Analysis, 10:21–40.

[18] DRC Computer Corporation (2006). DRC Recon-
figurable Processor Units. http://www.drccomputer.

com/drc/modules.html.

[19] Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S.
(2004). GPU cluster for high performance computing. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 47.

[20] Fung, J. and Mann, S. (2004). Using multiple graph-
ics cards as a general purpose parallel computer: Appli-
cations to computer vision. In Proceedings of the 17th
International Conference on Pattern Recognition (ICPR
2004), volume 1, pages 805–808.

[21] Garg, R. P. and Sharapov, I. (2001). Techniques for
Optimizing Applications: High Performance Computing.
Sun Microsystems Inc.

[22] Geddes, K. O. and Zheng, W. W. (2003). Exploiting
fast hardware floating point in high precision computa-
tion. In ISSAC ’03: Proceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computa-
tion, pages 111–118.

[23] Göddeke, D. (2006). GPGPU coding tutorials.
Technical report, University of Dortmund, Institute
of Applied Mathematics and Numerics. http://www.

mathematik.uni-dortmund.de/∼goeddeke/gpgpu/.

[24] Göddeke, D., Strzodka, R., and Turek, S. (2007).
Performance and accuracy of hardware-oriented native-,
emulated- and mixed-precision solvers in FEM simula-
tions. International Journal of Parallel, Emergent and
Distributed Systems, 22(4):221–256.

18

[25] Goodnight, N., Woolley, C., Lewin, G., Luebke, D.,
and Humphreys, G. (2003). A multigrid solver for
boundary value problems using programmable graphics
hardware. In Graphics Hardware 2003, pages 102–111.

[26] Govindaraju, N. K., Sud, A., Yoon, S.-E., and
Manocha, D. (2003). Interactive visibility culling in
complex environments using occlusion-switches. In SI3D
’03: Proceedings of the 2003 symposium on Interactive
3D Graphics, pages 103–112.

[27] GPGPU (2007). General-purpose computation using
graphics hardware. http://www.gpgpu.org.

[28] Gropp, W. D., Kaushik, D. K., Keyes, D. E., and
Smith, B. F. (2001). High performance parallel implicit
CFD. Parallel Computing, 27:337–362.

[29] Guo, Z., Najjar, W., Vahid, F., and Vissers, K. (2004).
A quantitative analysis of the speedup factors of FPGAs
over processors. In FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays, pages 162–170.

[30] Harris, M. (2005). Mapping computational concepts
to GPUs. In Pharr, M., editor, GPUGems 2 : Pro-
gramming Techniques for High-Performance Graphics
and General-Purpose Computation, chapter 31, pages
493–508. Addison-Wesley.

[31] Harrison, O. and Waldron, J. (2007). Optimising data
movement rates for parallel processing applications on
graphics processors. In Proceedings of the 25th Interna-
tional Conference Parallel and Distributed Computing
and Networks (PDCN 2007), pages 251–256.

[32] Hartenstein, R. (2001). A decade of reconfigurable
computing: A visionary retrospective. In Design, Au-
tomation and Test in Europe 2001, Proceedings, pages
642–649.

[33] Hartenstein, R. (2003). Data-stream-based comput-
ing: Models and architectural resources. In Interna-
tional Conference on Microelectronics, Devices and Ma-
terials (MIDEM 2003).

[34] Hoßfeld, F. (2001). Perspektiven für Supercomputer–
Architekturen. Technical report, FZ Jülich - Zentralin-
stitut für Angewandte Mathematik.

[35] IEC (2000). Letter symbols to be used in electrical
technology - Part 2: Telecommunications and electron-
ics, second edition.

[36] Intel, Inc. (2006). Geneseo: PCI Express technology
advancement. http://www.intel.com/technology/

pciexpress/devnet/innovation.htm.

[37] Keyes, D. E. (2002). Terascale implicit methods for
partial differential equations. Contemporary Mathemat-
ics, 306:29–84.

[38] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J.,
Owens, J. D., and Towles, B. (2003). Exploring the
VLSI scalability of stream processors. In Proceedings of
the Ninth Symposium on High Performance Computer
Architecture.

[39] Kilian, S. (2001). ScaRC: Ein verallgemeinertes
Gebietszerlegungs-/Mehrgitterkonzept auf Parallelrechn-
ern. PhD thesis, Universität Dortmund, Fachbereich
Mathematik.

[40] Kornhuber, R., Periaux, J., Widlund, O. B., Hoppe,
R., Pironneau, O., and Xu, J., editors (2005). Domain
Decomposition Methods in Science and Engineering, vol-
ume 40 of Lecture Notes in Computational Science and
Engineering. Springer.

[41] Kowarschik, M., Weiß, C., Karl, W., and Rüde, U.
(2000). Cache–aware multigrid methods for solving pois-
sons equation in two dimensions. Computing, 64:381–
399.

[42] Krüger, J. and Westermann, R. (2003). Linear al-
gebra operators for GPU implementation of numerical
algorithms. ACM Transactions on Graphics (TOG),
22(3):908–916.

[43] Langou, J., Langou, J., Luszczek, P., Kurzak, J., But-
tari, A., and Dongarra, J. (2006). Tools and techniques
for performance – exploiting the performance of 32 bit
floating point arithmetic in obtaining 64 bit accuracy
(revisiting iterative refinement for linear systems). In
SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 113.

[44] Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G.,
Hida, Y., Iskandar, J., Kahan, W., Kang, S. Y., Kapur,
A., Martin, M. C., Thompson, B. J., Tung, T., and Yoo,
D. J. (2002). Design, implementation and testing of ex-
tended and mixed precision BLAS. ACM Transactions
on Mathematical Software, 28(2):152–205.

[45] Martin, R., Peters, G., and Wilkinson, J. (1966).
Handbook series linear algebra: Iterative refinement of
the solution of a positive definite system of equations.
Numerische Mathematik, 8:203–216.

[46] Meuer, H., Strohmaier, E., Dongarra, J. J., and Si-
mon, H. D. (2007). Top500 supercomputer sites. http:
//www.top500.org/.

[47] NVIDIA Corporation (2007). NVIDIA CUDA com-
pute unified device architecture programming guide.
http://developer.nvidia.com/cuda.

[48] Owens, J. D., Luebke, D., Govindaraju, N., Harris,
M., Krüger, J., Lefohn, A. E., and Purcell, T. J. (2007).
A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113.

19

[49] Peercy, M., Segal, M., and Gerstmann, D. (2006). A
performance-oriented data parallel virtual machine for
GPUs. In ACM SIGGRAPH 2006 Conference Abstracts
and Applications.

[50] Pham, D., Asano, S., Bolliger, M., Day, M. N., Hofs-
tee, H. P., Johns, C., Kahle, J., Kameyama, A., Keaty,
J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wen-
del, D., Yamazaki, T., and Yazawa, K. (2005). The
design and implementation of a first-generation CELL
processor. In Solid-State Circuits Conference 2005, Di-
gest of Technical Papers, pages 184–592 Vol. 1.

[51] Rüde, U. (1999). Technological trends and their im-
pact on the future of supercomputers. In Bungartz, H.-
J., Durst, F., and Zenger, C., editors, High Performance
Scientific and Engineering Computing, volume 8 of Lec-
ture notes in Computational Science and Engineering,
pages 459–471.

[52] Rumpf, M. and Strzodka, R. (2005). Graphics pro-
cessor units: New prospects for parallel computing. In
Bruaset, A. M. and Tveito, A., editors, Numerical Solu-
tion of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational
Science and Engineering, pages 89–134. Springer.

[53] Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C.,
Huh, J., Burger, D., Keckler, S. W., and Moore, C. R.
(2003). Exploiting ILP, TLP, and DLP with the poly-
morphous TRIPS architecture. ACM SIGARCH Com-
puter Architecture News, 31(2):422–433.

[54] SEMATECH (2006). International technology
roadmap for semiconductors (ITRS). http://www.

sematech.org/corporate/annual.

[55] Sheaffer, J. W., Luebke, D. P., and Skadron, K.
(2007). A hardware redundancy and recovery mecha-
nism for reliable scientific computation on graphics pro-
cessors. In Aila, T. and Segal, M., editors, Graphics
Hardware 2007, pages 55–64.

[56] Smith, B. F., Bjørstad, P. E., and Gropp, W. D.
(1996). Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations.
Cambridge University Press.

[57] Stanford University Graphics Lab (2006). GPUbench
– how much does your GPU bench? http://graphics.

stanford.edu/projects/gpubench/results.

[58] Strzodka, R. (2004). Hardware Efficient PDE Solvers
in Quantized Image Processing. PhD thesis, University
of Duisburg-Essen.

[59] Strzodka, R., Doggett, M., and Kolb, A. (2005). Sci-
entific computation for simulations on programmable
graphics hardware. Simulation Modelling Practice and
Theory, Special Issue: Programmable Graphics Hard-
ware, 13(8):667–680.

[60] Strzodka, R., Droske, M., and Rumpf, M. (2003). Fast
image registration in DX9 graphics hardware. Journal
of Medical Informatics and Technologies, 6:43–49.

[61] Suh, J., Kim, E.-G., Crago, S. P., Srinivasan, L., and
French, M. C. (2003). A performance analysis of PIM,
stream processing, and tiled processing on memory-
intensive signal processing kernels. In DeGroot, D., ed-
itor, ISCA ’03: Proceedings of the 30th annual interna-
tional symposium on Computer architecture, Computer
Architecture News, pages 410–421.

[62] Taylor, M. B., Kim, J. S., Miller, J., Wentzlaff, D.,
Ghodrat, F., Greenwald, B., Hoffmann, H., Johnson, P.,
Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M.,
Shnidman, N., Strumpen, V., Frank, M., Amarasinghe,
S. P., and Agarwal, A. (2002). The Raw microprocessor:
A computational fabric for software circuits and general
purpose programs. IEEE Micro, 22(2):25–35.

[63] Toselli, A. and Widlund, O. B. (2004). Domain
Decomposition Methods - Algorithms and Theory, vol-
ume 34 of Springer Series in Computational Mathemat-
ics. Springer.

[64] Turek, S. (1999). Efficient Solvers for Incompress-
ible Flow Problems: An Algorithmic and Computational
Approach. Springer, Berlin.

[65] Turek, S., Becker, C., and Kilian, S. (2003).
Hardware–oriented numerics and concepts for PDE soft-
ware. Future Generation Computer Systems, 22(1-
2):217–238.

[66] Whaley, R. C., Petitet, A., and Dongarra, J. J. (2001).
Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35.

[67] Wilkes, M. (2000). The memory gap (keynote). In
Solving the Memory Wall Problem Workshop. http:

//www.ece.neu.edu/conf/wall2k/wilkes1.pdf.

[68] Williams, S., Shalf, J., Oliker, L., Kamil, S., Hus-
bands, P., and Yelick, K. (2006). The potential of the
Cell processor for scientific computing. In CF ’06: Pro-
ceedings of the ACM International Conference on Com-
puting Frontiers, pages 9–20.

[69] XtremeData, Inc. (2006). The XD1000 FPGA
Coprocessor Module for Socket 940. http://www.

xtremedatainc.com/Products.html.

[70] Zielke, G. and Drygalla, V. (2003). Genaue Lösung
linearer Gleichungssysteme. GAMM-Mitteilungen,
2(1):7–107.

20

