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ABSTRACT

We have previously suggested a minimally invasive approach
to include hardware accelerators into an existing large-scale
parallel finite element PDE solver toolkit, and implemented
it into our software FEAST. Our concept has the important
advantage that applications built on top of FEAST benefit
from the acceleration immediately, without changes to appli-
cation code. In this paper we explore the limitations of our
approach by accelerating a Navier-Stokes solver. This non-
linear saddle point problem is much more involved than our
previous tests, and does not exhibit an equally favourable
acceleration potential: Not all computational work is con-
centrated inside the linear solver. Nonetheless, we are able
to achieve speedups of more than a factor of two on a small
GPU-enhanced cluster. We conclude with a discussion how
our concept can be altered to further improve acceleration.

KEYWORDS: Large Scale Scientific Computing, Paral-
lelization of Simulation, Fine-Grain Parallelism and Archi-
tectures

1. INTRODUCTION

Computational science and numerical simulation are in the
midst of a revolution, caused by the fundamental paradigm
shift of the underlying hardware towards parallelism and het-
erogeneity. Due to power and heat considerations, chip man-
ufacturers now scale the number of cores per chip rather than
clock frequencies. At the same time, memory bandwidth
and latency continue to improve at a much slower rate than
(peak) compute performance, further inhibited by pin lim-
its. This well-known memory wall problem is worsened by
multicore architectures: The available bandwidth typically
scales with the number of sockets per compute node and not
with the number of cores per chip. Graphics processor units
(GPUs) on the other hand provide a much higher bandwidth
than commodity CPU designs, and their architecture and pro-
gramming model is representative of future manycore archi-
tectures.

1.1. Hardware-Oriented Numerics

The memory wall problem is particularly critical in the nu-
merical simulation of physical phenomena described by par-
tial differential equations (PDEs), such as the Navier–Stokes
equations governing fluid flow. In the finite element method
(FEM) and similarly for finite differences and finite volumes,
the discretisation of the PDEs leads to large, sparse systems
of equations, and linear algebra operations such as matrix-
vector multiplication exhibit an arithmetic intensity (ratio of
floating point operations per memory access) of 1:1 or less,
while peak processor performance is only attained for ratios
of 10:1 or higher. In addition, the discrete problems are typ-
ically much too large to be solved on a single computer, and
parallel solution schemes are necessary. We are convinced
that in this situation, significant performance gains can only
be achieved by ‘hardware-oriented numerics’. This concept
comprises much more than a highly-tuned implementation
involving optimal data structures and maximising data reuse
to exploit (cache) memory hierarchies. Here, we only illus-
trate the broad ideas, and refer to previous work for more
details [22, 23].

For ill-conditioned problems depending on the mesh width,
multigrid methods are obligatory due to their asymptotic op-
timality: Even for a simple Poisson problem, a multigrid
solver with the worst possible choice of smoother, data struc-
ture and numbering scheme for the unknowns executes faster
than a Krylov subspace solver with a very powerful elemen-
tary preconditioner like ILU [15]. On the other hand, as long
as the factorisation overhead can be amortised over several
right hand sides, the (serial) direct solver in the UMFPACK
library [5] outperforms multigrid for up to 20–60,000 un-
knowns, depending on the hardware. Serial smoothers with
‘optimal’ numerical properties are strongly recursive, pre-
venting a scalable implementation in parallel. Instead, meth-
ods are employed that are potentially less efficient in terms of
numerics (i. e., convergence rates), but that are much better
suited for the communication characteristics of the parallel
computer. In general, hardware trends enforce research into
novel numerical methodology that in turn exploits the avail-
able hardware in a better way.



Obviously, the total time to solution is the metric most rele-
vant to the user. However, we believe that extracting even-
tually 10% more performance for one particular problem on
one particular computer system after maybe an entire month
of meticulous tuning is of minor importance. The robustness
of the numerical discretisation and solution schemes across a
wide range of problem classes, problem instances and archi-
tectures is in most cases much more relevant. This last aspect
explicitly implies that numerical schemes and their imple-
mentations should be future-proof for a reasonable timespan,
instead of being superseded with the availability of the next
hardware generation. The fundamental idea of ‘hardware-
oriented numerics’ is thus to balance all these conflicting
goals.

1.2. GPU Computing

Over the past several years, graphics processors (GPUs)
have rapidly gained interest as a viable architecture for data-
parallel general purpose computations. In fact, GPUs are
now widely considered as forerunners of future manycore
architectures, comprising many thin cores with limited func-
tionality rather than few fat ones. Peak performance of GPUs
exceeds that of CPUs by at least an order of magnitude,
a single high-end GPU is capable of delivering more than
one TFLOP/s and a sustained bandwidth of 160 GB/s to off-
chip memory. This high level of performance is achieved
by keeping thousands of threads ‘in flight’ simultaneously,
supported by a hardware scheduler that very efficiently sus-
pends threads stalled for memory transactions. It is impor-
tant to note that this extremely high memory bandwidth can
in fact be achieved in real applications. We refer to a re-
cent article by Fatahalian and Houston for an overview of
the throughput-oriented GPU architecture [8].

Despite all advances and achievements, it must be kept in
mind that GPUs are co-processors in the traditional sense.
Several GPUs within one compute node have to be manu-
ally coordinated on the CPU; and for parallel computations
on clusters, the CPU retains full control of the interconnect,
data has to be manually moved from device memory to host
memory prior to be sent over the network, and vice versa.

From a software perspective, programming was cumbersome
and often ‘hacky’ in the early years of GPGPU, as algorithms
had to be cast in graphics terms. The advent of NVIDIA’s
CUDA and AMD’s STREAM platforms in late 2006 has re-
sulted in a major surge of interest, culminating in the recent
standardisation of OpenCL. The survey articles by Owens et
al. [17,18] provide an excellent overview of the field in terms
of applications and techniques, and we refer to the commu-
nity website GPGPU.ORG and the vendors’ websites for de-
tails and sample applications on the actual implementation of
scientific algorithms on graphics hardware.

1.3. Paper Contribution and Overview

We have previously suggested, in the spirit of the gen-
eral ideas and goals of hardware-oriented numerics outlined
above, an approach to include GPUs into a large-scale paral-
lel finite element based PDE toolkit without having to change
a single line of application code [10]. The latter benefit
is very relevant in practice, in particular in the engineering
context where the balancing of implementational effort and
prospective performance gains is more important than the
best achievable speedup through a full re-implementation of
a particular code. We briefly summarise our suggested ap-
proach and previous tests for linear problems in Sections 2
and 3.

Many PDE problems in practice are nonlinear. Focussing
entirely on accelerating (portions of) linear solvers is still
justified, because the approximate solution of linear sub-
problems often constitutes the most time-consuming task in
the solution process, especially for saddle point problems
arising, e. g., in CFD. However, this focus naturally limits
the achievable speedups, as the system matrices for the lin-
earised problems have to be assembled in each nonlinear
sweep. In this paper, we explore the limitations of our ap-
proach by applying it to the acceleration of a Navier–Stokes
solver for small Reynolds numbers, computing a stationary
laminar flow (see Section 4). We refrain from investigat-
ing non-stationary flows for two reasons: First, the result in
terms of speedups would be qualitatively comparable and the
time-stepping loop only increases the runtime of our experi-
ments. Second, the stationary approach significantly worsens
the condition number of the matrices, which can be critical as
our GPUs only support single precision floating point arith-
metics. Hence, by confining ourselves to the stationary case,
we actually examine the more difficult configuration. Sec-
tions 5 and 6 discuss the results of our evaluation.

1.4. Related Work

Keyes and Colella et al. [4, 13] survey trends towards teras-
cale computing for a wide range of applications, including
Finite Element software. They conclude that only a com-
bination of techniques from computer architecture, software
engineering, numerical modeling and numerical analysis will
enable a satisfactory scale-out on the application level. This
is exactly what we refer to as hardware-oriented numerics.
Fan et al. were among the first to accelerate a Lattice Boltz-
mann CFD solver on a GPU cluster [7]. Navier-Stokes sim-
ulations on the GPU are abundant, but tend to use Stam’s
approach which is known to be only visually accurate [20].
Elsen et al. present complex, engineering-level simulations
based on the Euler equations on a single GPU [6]. Closest
to our work is probably the work by Phillips et al. on ac-
celerating an existing Fortran code-base for solving the Eu-



ler equations on a GPU cluster [19]. Common to all these
publications on using GPUs for fluid dynamics simulations
is that single precision is sufficient in the respective metric
which is used to evaluate the accuracy of the results. In case
of the Navier-Stokes equations, however, the elliptic char-
acter resulting from the incompressibility condition leads to
Poisson-like operators. We have previously demonstrated
that double precision is necessary in this case [11].

2. FEAST – HARDWARE-ORIENTED NU-
MERICS

FEAST (Finite Element Analysis and Solution Toolkit) is our
next-generation parallel finite element and solver toolkit for
the solution of PDE problems on HPC systems, actively de-
veloped at TU Dortmund. It implements many concepts
of hardware-oriented numerics to maximise single-processor
performance, and to achieve near-perfect weak and strong
scalability. In this section, we briefly summarise the most
important ones in the scope of this paper. For more informa-
tion on FEAST, we refer to previous publications [22, 23].

2.1. Globally Unstructured, Locally Structured Grids

FEAST covers the computational domain with a collection of
quadrilateral subdomains. These patches form an unstruc-
tured coarse mesh and each subdomain is refined in a reg-
ular, generalised tensor product fashion. The unstructured
coarse mesh retains flexibility in resolving geometric details,
while the tensor product property of the local meshes en-
tails a linewise numbering of the unknowns which is ex-
ploited in optimised linear algebra components. The guid-
ing idea of this separation between structured and unstruc-
tured data is that matrices stemming from the FE discreti-
sation on fully adaptive, unstructured grids typically lead to
a significant performance penalty for linear algebra compo-
nents such as sparse matrix vector multiply, see Köster et
al. [15] for illustrative examples in the scope of this paper.
On the other hand, the linewise numbering in FEAST leads
to banded matrices which permits matrix-vector multiplica-
tion and other multigrid solver components such as the appli-
cation of smoothers to be implemented with direct memory
accesses only, significantly reducing the bandwidth require-
ments and increasing performance: In view of the memory
wall problem, this approach allows for implementations ex-
hibiting very good spatial and temporal locality, executing
close to peak bandwidth and throughput with near-optimal
cache hit rates [2]. Anisotropic refinement within each sub-
domain, hanging nodes on subdomain boundaries and r-
adaptivity via mesh deformation can be realised without af-
fecting the tensor product property.

2.2. Parallel Multilevel Solvers

SCARC (Scalable Recursive Clustering), the solver concept
at the core of FEAST, generalises techniques from multilevel
domain decomposition and parallel multigrid; combining
their respective advantages into a very robust, and (numeri-
cally and computationally) efficient parallel solution scheme
for (scalar) elliptic PDEs. Matrices and vectors exist only
locally, based on minimally overlapping subdomains, which
means that, essentially, only data associated with vertices ly-
ing on subdomain boundaries have to be shared via commu-
nication [14]. Between the different mesh resolutions, the
coupling is multiplicative, as in classical multigrid. Within
one hierarchy level, the coupling is additive, i. e. the min-
imally overlapping subdomains are treated simultaneously
and independently of each other. Global coarse grid prob-
lems are solved with UMFPACK [5] on a master node.

Instead of the blockwise application of elementary lo-
cal smoothers, the SCARC scheme employs full multigrid
solvers acting locally on the individual subdomains to ‘hide’
local irregularities as much as possible from the outer solver.
The local solvers are typically configured to, e. g., gain one
digit, and can fully exploit the underlying tensor product
property of the local problems. SCARC can be interpreted
as a ‘generalised domain decomposition multigrid method’;
we use the terminology of two-layer SCARC solvers.

The resulting hierarchical solvers are very robust, exhibit-
ing very good weak and strong scaling. In previously pub-
lished work, we demonstrated—for the maximum number of
resources available to us at that time—perfect weak scala-
bility for the Poisson problem on up to 320 Xeon proces-
sors [9], and excellent strong scaling for applications from
linearised elasticity and incompressible flow for an exper-
iment that subsequently quadrupled the resources up to a
maximum of 128 CPUs [23].

2.3. Scalar and Vector-Valued Problems

The original implementation of SCARC supports scalar sys-
tems only. Vector-valued systems, such as the Navier–Stokes
equations, are treated so that as much of the existing linear
algebra and solver infrastructure can be reused, in particu-
lar optimisations for various architectures. To achieve this,
the unknowns are numbered equation-wise, leading to block-
structured matrices. In this paper, blocks correspond to the
velocities in x and y direction, and to pressure. All opera-
tions on the block system, from linear algebra to entire multi-
grid solvers, are implemented as sequences of scalar opera-
tions corresponding to the blocks. Block systems can be re-
stricted to individual subdomains, resulting in a generalised
SCARC solver for vector-valued problems. We illustrate this
approach in more detail in Section 4.2.



3. MINIMALLY INVASIVE GPU INTEGRA-
TION

We previously suggested an approach of a minimally inva-
sive co-processor integration, tailored to the solution of PDE
problems on heterogeneous commodity based HPC clusters.
GPUs are particularly well suited hardware accelerators for
FE codes, because they provide an order of magnitude more
bandwidth to off-chip memory. In addition, this bandwidth
increases at a much faster rate than in commodity CPU de-
signs, a consequence of the latency-hiding massively mul-
tithreaded hardware architecture. In view of our concept
of hardware-oriented numerics, GPUs are thus a viable tar-
get architecture, the gains in performance and their future
prospects outweigh the initial effort of re-implementing parts
of existing codes.

The core idea of our approach is to replace only the lo-
cal multigrid solvers within a two-layer SCARC scheme by
GPU-accelerated counterparts. This means that there is a
considerable amount of arithmetic work on the device, which
is important as GPUs communicate with the rest of the node
(CPU, main memory, interconnect) over a bandwidth bottle-
neck. This approach is not limited to GPUs alone, differ-
ent backends, e. g., for the Cell processor, can be added with
minimal effort as soon as the implementation of the multi-
grid solver on the co-processor is available. Our current im-
plementation only supports GPUs though. In particular, ap-
plications built on top of FEAST can benefit from the GPU
acceleration of the underlying solvers without any changes
to application code, speedups are enabled by changing a tar-
get parameter inside some configuration file. As these de-
vices execute much faster in single than in double precision,
or only support single precision such as the GPUs we use for
this paper, the entire scheme constitutes a mixed precision
solver.

The concept has been thoroughly evaluated in a series of
three journal articles. The first one presents the concept,
and evaluates it in various performance and energy related
metrics [10]. The second paper confirms that the excellent
scalability of the CPU-based SCARC solvers is retained on
a 160 node hybrid CPU-GPU cluster [9]. Both publications
are restricted to the Poisson equation as an important model
problem. The last paper evaluates the concept for more chal-
lenging simulations in linearised elasticity [12]. In all tests
so far, we always achieve the same accuracy in the results,
despite the restriction of the local solvers to single precision.

However, all these experiments are limited to linear prob-
lems. In this paper we extend our evaluation to the Navier–
Stokes equations, a nonlinear saddle point problem which
requires a more complicated solution scheme exhibiting a
smaller acceleration potential.

It is also worth noting that we migrated from an OpenGL-
based implementation of the GPU code, used in the previ-
ous publications, to NVIDIA CUDA. This had two benefits:
First, performance increased by roughly 10% because of us-
ing hardware features (in particular, the parallel data cache)
not exposed to the graphics API. Second, the CUDA back-
end of our co-processor extension to FEAST is roughly half
as complex (measured in lines of code) as the OpenGL ver-
sion, an important benefit in terms of debugging and main-
tainability.

4. NAVIER–STOKES SOLVERS IN FEAST

The Navier–Stokes equations are derived under certain as-
sumptions and simplifications from the general conservation
laws for mass, momentum and energy in continuum mechan-
ics. They govern the flow of incompressible, isothermal, ho-
mogeneous and isotropic Newtonian fluids and gases. The
kinematic viscosity ν, the ratio between inertial and viscous
forces, is assumed to be constant. It is inversely proportional
to the Reynolds number of the fluid; more precisely, the rela-
tion is Re = UL/ν where U is the characteristic fluid veloc-
ity and L the characteristic length. Low Reynolds numbers
correspond to highly viscous fluids, small spatial dimensions
or low flow speeds.

The stationary Navier–Stokes equations read in their dimen-
sionless form:

− 1
Re

∆u + (u · grad)u + grad p = f in Ω

div u = 0 in Ω (1)
u = uD on ΓD

− 1
Re

(n · grad)u + pn = t on ΓN

Here, u denotes velocity, p pressure, f body forces, Ω ⊆ R2

the domain with outer normal vector n , and ΓD and ΓN
the boundary parts with, respectively, Dirichlet and natural
boundary conditions (i. e., inflow, outflow and adhesion/slip
conditions). A common simplification are the Stokes equa-
tions for very low Reynolds numbers. In this case, the
viscous term dominates and the nonlinear transport term
(u · grad)u can be omitted, leading to a linear problem.

4.1. Discretisation

We consider the weak formulation of equation system (1) and
apply a Finite Element discretisation with conforming bilin-
ear elements of theQ1 space for both u and p. This Galerkin
approach exhibits instabilities which stem from dominating
convection and from the violation of the discrete inf-sup
or LBB-condition [3]. For stability on arbitrary meshes,
pressure-stabilisation (PSPG) and streamline-upwind stabil-
isation (SUPG) is applied choosing the mesh-dependent pa-



rameters in accordance with Apel et al. [1]. The resulting
discrete nonlinear equation system readsA11 A12 B1

A21 A22 B2

BT
1 BT

2 C

u1

u2

p

 =

f1
f2
g

 ,

with

A11 :=
1
Re

L11 + N11(u) + C̃11

A12 := C̃12

A21 := C̃21

A22 :=
1
Re

L22 + N22(u) + C̃22,

in short Kv = h where the matrices Lii correspond to the
Laplacian operator and Nii(u) to the convection operator. B
and BT are discrete analogues of the gradient and divergence
operators while C and C̃ij stem from the discretisation of
the PSPG and SUPG stabilisation terms, respectively. For
the case of an isotropic mesh, we notice the following: C is
identical to a discretisation of the pressure Poisson operator,
scaled with the mesh size h2.

4.2. Solution Algorithm

The nonlinear problem is reduced to a sequence of linear
problems by applying a fixed point defect correction method

vk+1 = vk + ωK̃−1
B (h−Kvk) k = 1, . . .

where the application of K̃B can be identified with the so-
lution of linearised subproblems with the nonlinear residual
as right hand side and using the solution u from the previ-
ous nonlinear iteration for assembly of the Nii(u) part of K.
These still vector-valued linearised subproblems are subse-
quently tackled with help of a pressure Schur complement
approach. We illustrate it with the following basic iteration,
but prefer a Krylov subspace solver such as BiCGStab for
increased numerical efficiency:(

un+1

pn+1

)
=
(
un

pn

)
+ K−1

S

[(
f
g

)
−
(

A B
BT C

)(
un

pn

)]
(2)

A is a block-structured matrix consisting of the linearised
matrices Aij , BT is defined as (BT

1 ,B
T
2 ) and the vectors un

and f as the iterates of the solution (u1,u2)T and right hand
side (f1, f2)T, respectively. The preconditioner KS is defined
as the lower block triangular matrix:

KS :=
(

A 0
BT −S

)
involving the pressure Schur complement matrix

S := BTA−1B−C.

It is easy to prove that the square of the iteration matrix of
the preconditioned system

K̂ := I−K−1
S

(
A B
BT C

)
vanishes [16], which is equivalent to the associated Krylov
space, span{r, K̂r, K̂2r, K̂3r, . . .}, having dimension 2.
This implies that—with exact arithmetics—any Krylov sub-
space solver would terminate in at most two iterations with
the solution to the linear system arising in system (2), us-
ing the the preconditioner KS. Few iterations with a ‘good’
approximate K̃S of KS hence suffice to solve system (2).

In summary, the basic iteration (2) entails the following
steps:

1. Compute the global defect

(d1,d2,d3)T =
(

f
g

)
−
(

A B
BT C

)(
un

pn

)
2. Apply the block preconditioner K̃S by approximately

solving
A(c1, c2)T = (d1,d2)T (3)

and
Sc3 = −d3 + BT

1 c1 + BT
2 c2 (4)

3. Update the global solution with the (damped) correction
vector:

(un+1,pn+1)T = (un,pn)T + ω(c1, c2, c3)T

The second step is the most expensive one and requires closer
examination. Note that the diagonal block matrices Aii cor-
respond to scalar operators due to the momentum equations,
so FEAST’s tuned scalar solvers can be applied. Our solution
scheme is a two-layer SCARC solver, generalised to treat
the vector-valued block system (3). The outer layer com-
prises a global multigrid solver configured to perform a V cy-
cle with 1 pre- and no postsmoothing step (more smoothing
only results in longer total runtimes). As UMFPACK outper-
forms multigrid methods for small problem sizes, the multi-
grid stops traversing the grid hierarchy at the first refinement
level with less than 20,000 unknowns. The global multigrid
solver is additively smoothed by local multigrid issued on ev-
ery subdomain and run either on the CPU or GPU. This inner
layer performs a V cycle with 4 pre- and postsmoothing steps
using a Jacobi smoother. Its coarse grid solver is a conjugate
gradient method, as a direct solver has not been implemen-
tated yet on the GPU. The number of unknowns for which
this multigrid is truncated in favour of the coarse grid solver
is 200. Both global and local multigrid stop as soon as the
respective initial residual is reduced by one digit.
To treat the S block efficiently, an appropriate preconditioner
for the pressure Schur complement is required. It has been



fixed point iteration
solving linearised subproblems with

global BiCGStab (reduce initial residual by 1 digit)
preconditioned by applying K̃S via

1) approx. solve A(c1, c2)T = (d1,d2)T with
global MG (V 1+0), additively smoothed by

for all Ω̄(i): solve A
(i)
11 c

(i)
1 = d

(i)
1 with

local MG (V 4+4, Jacobi, CG)

for all Ω̄(i): solve A
(i)
22 c

(i)
2 = d

(i)
2 with

local MG (V 4+4, Jacobi, CG)

2) update RHS: d3 = −d3 + BT(c1, c2)T

3) scale c3 = (ML
p)−1d3

Figure 1: Our Navier–Stokes Solution Scheme

shown that the pressure mass matrix Mp is a good precondi-
tioner for the diffusive part of S [21]. The use of a lumped
mass matrix ML

p reduces solving equation (4) to scaling the
right hand side with the inverse of this diagonal matrix. As
the convection part is neglected it is clear that this choice of
the preconditioner is only favourable for stationary Navier–
Stokes problems at low Reynolds numbers. Figure 1 sum-
marises the solver scheme, the accelerable parts of the algo-
rithm are highlighted.

5. RESULTS

5.1. Test Procedure

The addition of GPUs to an existing cluster increases the
compute resources. Therefore, the correct model to anal-
yse performance is strong scalability within each node. In
other words, the time spent in portions of the entire scheme
that cannot be accelerated limits the achievable speedup. To
quantify this effect, we instrument the code with timers mea-
suring only the local multigrid solvers, as this is the only
part of the solver that is accelerated by the GPUs so far (see
Figure 1). This allows us to distinguish between the total
speedup and the local speedup achieved by the GPUs alone.
We execute all tests on our small four-node GPU-enhanced
cluster. Table 1 summarises the hardware details of a sin-
gle node, note that the GPUs stem from the same hardware
generation as the remaining cluster components. This small
amount of compute nodes unfortunately prevents performing
meaningful scalability tests. We know from previous work
that FEAST scales very well, and we are confident that these
results transfer to our Navier–Stokes solver [9, 12].
Our primary test problem (see Figure 2) is a driven cavity
simulation on a unit-square domain—a standard benchmark
for CFD codes. The domain is partitioned into eight sub-
domains, each of which is refined regularly L times, lead-
ing to global problem sizes of 395 523, 1 577 475, 6 300 675
and 25 184 259 degrees of freedom for L = 7, . . . , 10. The
corresponding local, scalar sub-problems comprise 16 641,

Table 1: Hardware Details of our 4-Node GPU Cluster

CPU AMD Opteron X2 Santa Rosa

1.8 GHz, 1 MB L2 cache per core

CPU memory 8 GB DDR2 667

6.4 GB/s bandwidth

GPU NVIDIA GeForce 8800 GTX

16 multiprocessors (128 ‘cores’), 1.35 GHz

GPU memory 768 MB GDDR3

86.4 GB/s bandwidth

Interconnect DDR Infiniband

66 049, 263 169 and 1 050 625 degrees of freedom. The
global problem sizes are chosen to fill the available memory
of the four nodes, and we statically schedule two subdomains
per node.

Figure 2: Driven Cavity Simulation at Re=100 and 250

5.2. Analysis of the Linear Solver

Our first experiment focusses on the linear solver alone, so
we consider the (linear) Stokes problem instead of perform-
ing a full Navier–Stokes simulation. We equip the code with
timers as explained above, and measure the following quan-
tities of interest:

• TC,G
lin – time to solve the linear problem, superscripts C

and G denote the original CPU and the GPU-accelerated
solver respectively

• TC,G
loc – time spent in the local scalar multigrid solvers

• Racc = TC
local/T

C
lin – accelerable fraction of the linear

solver
• Smax = 1/(1−Racc) – maximal theoretical speedup
• Sloc = TC

loc/T
G
loc – local speedup by the GPU

• Stot = TC
lin/T

G
lin – total speedup of the entire parallel

linear solver

Table 2 (top) presents the results, using one core of each
CPU. Several important observations can be made: For the
two small refinement levels, there is simply not enough local
work to achieve good local and global speedups. This can
also be seen by comparing the rise of TC

loc with TG
loc for in-

creasing level of refinement. On the finest level, the GPUs
accelerate the solution of the local problems by a factor of
more than 12. However, the acceleration potential of the



solver is (excluding L = 7) only approximately 60%, lim-
iting the achievable speedup to 2.3–2.6 (cf. Amdahl’s Law).
The measured total speedup is very close to this predicted
maximum. Another way to interpret this result is that further
tuning of the GPU solver will not lead to significant overall
performance improvements, as (again excluding the smallest
test case) the increase in local speedup does not translate into
a corresponding increase of the total speedup.

Table 2: Performance of the Stokes Solver. Top: one CPU
Core vs. one GPU, bottom: one CPU Core vs. one GPU.

L T C
lin T C

loc T G
lin T G

loc Racc Smax Sloc Stot

7 5.1 2.3 3.9 1.1 0.45 1.82 2.30 1.31

8 18.6 10.7 9.9 2.2 0.58 2.35 4.86 1.88

9 69.4 42.6 31.5 5.0 0.61 2.59 8.52 2.20

10 327.6 201.8 145.5 16.3 0.62 2.60 12.38 2.25

L T C
lin T G

lin Ssingle- vs. dualcore Stot

7 3.4 3.9 1.50 0.87

8 11.9 9.9 1.56 1.20

9 45.3 31.5 1.53 1.44

10 202.8 145.5 1.62 1.39

An ideal GPU cluster includes one GPU per CPU core to
maximise performance improvements, different from our test
setup. Nonetheless, we perform the same experiment again,
but this time we schedule the two subdomains per node not
to one core, but to both cores. As the two cores in the Santa
Rosa architecture share the memory controller and have dis-
junct caches, we do not expect ideal strong scaling. Table 2
(bottom) summarises the timing measurements and derived
quantities, the GPU timings are repeated from the previous
table. On average, using two cores is 1.5–1.6 times faster
than using only one core, and consequently, the total speedup
obtained by the GPU reduces to approximately 1.4. For
small local problem sizes, two cores even outperform a sin-
gle GPU. As we can only use two subdomains per node due
to memory limitations, we cannot test the ideal hybrid con-
figuration of one CPU core executing the solver on one sub-
domain, and one CPU core managing the GPU which treats,
e. g., two or three subdomains. We have tested this config-
uration successfully for the Poisson problem in a previous
publication [10].

5.3. Analysis of the Navier–Stokes Solver

For the stationary Navier–Stokes simulation, we are mainly
interested in how the various fractions of the total runtime
of the individual solver components change by GPU accel-
eration. We perform two test series, one for Reynolds num-
ber 100 and one for 250. Note that the problem is harder
to solve the higher the Reynolds number gets since the pres-
sure mass matrix becomes a less feasible preconditioner. The
outer BiCGStab method requires more iterations, leading in

turn to an increase in the total number of global multigrid it-
erations. For our discussion, we need the following (derived)
quantities:

• Racc – accelerable fraction
• Rass – fraction spent in matrix assembly
• Rlin – fraction spent in linear solver
• Stot – total speedup

We first confirm that in all cases, both the unaccelerated
and the accelerated solver compute exactly the same result,
by measuring the kinematic energy 1

2

∫
Ω
||u||2dΩ, a grid

independent quantity regularly compared for driven cavity
tests [24]. This endorses our previous results [12], that even
for very ill-conditioned problems, the restriction of the in-
nermost linear solver to single precision does not have any
negative side effect. The two solvers do not converge in ex-
actly the same way, occasionally the linear solves are slightly
cheaper on the CPU, and on a different refinement level, the
local multigrid solvers on the GPU converge minimally bet-
ter. This is actually expected behaviour, due to the huge
amount of floating point operations and the ill-conditionness
of the problem: The descent directions of the outer Krylov
space solver differ slightly in the event of minor variations of
the global multigrid preconditioner. In the course of the non-
linear loop, these differences build up, but are always within
5%, and we do not normalise our timings to hide the small
differences. All our performance indicators as listed above
are computed directly from the wall clock runtime of the sim-
ulation.

Table 3: Stationary Navier–Stokes Solver Timings

Re L RC
ass RC

lin RG
ass RG

lin Racc Stot Smax

100 7 0.31 0.67 0.34 0.63 0.31 1.09 1.45

8 0.33 0.65 0.44 0.54 0.39 1.33 1.63

9 0.33 0.66 0.46 0.52 0.42 1.41 1.72

10 0.28 0.71 0.50 0.48 0.46 1.74 1.86

250 7 0.12 0.87 0.12 0.87 0.43 1.05 1.76

8 0.12 0.87 0.18 0.81 0.53 1.45 2.12

9 0.12 0.88 0.22 0.77 0.56 1.86 2.29

10 0.11 0.89 0.24 0.75 0.58 2.09 2.38

Table 3 presents the results we obtain. As we use the same
linear solver as for the Stokes tests, the local acceleration
factor is identical and we do not repeat the exact numbers
here. Looking at the Re = 100 testcase first, we observe
global speedup factors up to 1.7, which is very close to the
achievable maximum of 1.85 because at most 46% of the en-
tire solver can be accelerated. For the CPU variant, the linear
solver dominates the runtime. Note that the fractions do not
necessarily add up to 100 because we exclude the few percent
needed by the nonlinear defect correction loop. This is not
the case for the accelerated solver and the highest level of re-
finement; here, assembly and solving take approximately the



same time. For the more involved higher Reynolds number,
the speedup is roughly 2 for the largest test instance, a con-
sequence of the better acceleration potential Racc due to the
linear problem being harder to solve (see above). In this case,
the linear solving still constitutes the most time-consuming
substep of the entire simulation, despite the acceleration.

5.4. Channel Flow Around a Cyclinder

Our final test is based on the 1996 DFG benchmark config-
uration Benchmark computations of laminar flow around a
cylinder [25]. Figure 3 shows the domain, the unstructured
coarse grid and the computed pressure and velocity. As our
Schur complement approach is designed for non-stationary
flows and is not the optimal choice for the computation of
steady flows [21], we reduce the Reynolds number Re from
1000 to 100, but otherwise, we solve exactly the same con-
figuration as described in the benchmark. The coarse grid
comprises 24 subdomains, so we cannot perform the simula-
tion for refinement level 10 due to memory constraints. The
largest problem size is 18 891 264 degrees of freedom.

Table 4: Performance of the Channel Flow Benchmark

L RC
ass RC

lin RG
ass RG

lin Racc Sloc Stot Smax

7 0.04 0.96 0.05 0.95 0.59 1.20 1.21 2.43

8 0.08 0.92 0.11 0.89 0.62 2.14 1.37 2.60

9 0.13 0.86 0.25 0.74 0.60 5.97 1.88 2.50

Again, the original and the accelerated solver compute the
exactly same result in a slightly different way. In detail, for
L = 7 the CPU requires 12% more linear iterations, and
for refinement levels 8 and 9, the GPU needs 13% and 6%
more iterations, respectively. Table 4 summarises the rele-
vant derived quantities from our timing measurements. The
results confirm the general speedup trends established in all
our experiments: The local speedup is—across all refinement
levels—in the same range as measured before, reaching a
factor of 6 forL = 9. Approximately 60% of the entire simu-
lation can be accelerated, and we achieve a total speedup fac-
tor of 1.88 for the largest configuration. This is again close
to the theoretical maximum, at least when factoring out the
6% difference in iterations.

6. CONCLUSION

Our experiments are designed to demonstrate the feasibility
of our minimally invasive GPU acceleration in the case of
the Navier-Stokes equations, but also to explore its limita-
tions. The local speedup of the accelerable parts of the solu-
tion process is excellent, reaching 12 and higher. However,
if less than half of the total time is spent in these parts, the
acceleration of the entire scheme is limited (Amdahl’s Law).

Figure 3: Channel Flow Around a Cylinder

One idea to shift the ratio in favour of the accelerable portion
of the linear solver is to replace the nonlinear defect correc-
tion loop with a Newton–Raphson method. This would lead
to less nonlinear steps, equivalent to reducing the fraction of
non-accelerated assembly time, while typically, a more ac-
curate solution of the linear subproblems would be required.
For stationary problems this is clearly worth pursueing in fu-
ture. For large-scale time-dependent complex simulations,
though, it is in general challenging to predict whether it pays
off to invoke—in each time step—such a method instead of
the computationally cheaper defect correction loop. Either
way, the actual runtime for time-dependent simulations is
measured in hours and days, and a speedup of factor two with
the presented approach against a highly tuned CPU code is
indeed relevant.

An alternative avenue for future work is to relax our mini-
mally invasive approach by shifting more functionality onto
the GPU. We are convinced that matrix assembly can be effi-
ciently implemented for GPUs, the challenge lies in rearrang-
ing memory accesses and memory writes for optimal locality
and coherency. The second important consideration is that
matrices must be assembled in double precision, as the ellip-
tic character of the Poisson-like operators dominates. GPUs
have only recently begun to support double precision, and
peak performance reaches less than 10% of single precision
performance.

Our experiments also reveal that, eventually, more than the
local multigrid solvers within the linear solvers should be
moved to the GPU. This is even more challenging, because it
violates the locality principle: Only a very small amount of
work (e. g., one matrix-vector multiplication) is performed
on the device before the data has to be moved through two
bandwidth bottlenecks: Data is first copied via the PCIe bus
from device memory to host memory, again copied from
host memory into some MPI buffer, sent over the network,
and copied again twice until it reaches the destination de-
vice memory. It is currently not possible to use DMA trans-
fers to move data directly from device memory to intercon-
nect buffers, bypassing the CPU. Future hardware genera-



tions might lift this restriction. For the same reason as before,
double precision is needed for this step.
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