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Cyclic Reduction Tridiagonal Solvers on GPUs
Applied to Mixed Precision Multigrid

Dominik Göddeke and Robert Strzodka

Abstract—We have previously suggested mixed precision iterative solvers specifically tailored to the iterative solution of sparse linear
equation systems as they typically arise in the finite element discretization of partial differential equations. These schemes have been
evaluated for a number of hardware platforms, in particular single precision GPUs as accelerators to the general purpose CPU. This
paper reevaluates the situation with new mixed precision solvers that run entirely on the GPU: We demonstrate that mixed precision
schemes constitute a significant performance gain over native double precision. Moreover, we present a new implementation of cyclic
reduction for the parallel solution of tridiagonal systems and employ this scheme as a line relaxation smoother in our GPU-based
multigrid solver. With an alternating direction implicit variant of this advanced smoother we can extend the applicability of the GPU
multigrid solvers to very ill-conditioned systems arising from the discretization on anisotropic meshes, that previously had to be solved
on the CPU. The resulting mixed precision schemes are always faster than double precision alone, and outperform tuned CPU solvers
consistently by almost an order of magnitude.

Index Terms—GPU Computing, Mixed Precision Iterative Refinement, Multigrid, Tridiagonal Solvers, Cyclic Reduction, Finite
Elements, NVIDIA CUDA.
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1 INTRODUCTION

1.1 Background
Geometric multigrid solvers are the most efficient meth-
ods for the solution of finely discretized elliptic partial
differential equations (PDEs). Best results are obtained
when the multigrid cycle type, the number of pre- and
postsmoothing steps and the smoother type are adapted
to the problem. Black-box multigrid solvers are variants
that utilize very strong smoothers and typically W-
cycles to ensure convergence with the same parameter
settings for large problem classes. In general, the more
ill-conditioned a system is, the stronger the smoother has
to be in the multigrid cycle.

Because of their favorable numerical properties there
is a great interest in parallel implementations of multi-
grid solvers. Extensive work has been performed in this
direction for SMP systems and clusters. When paral-
lelizing across multiple processors, the communication
between them quickly becomes the bottleneck and other
methods, e.g., domain decomposition, have to be used
or combined with them.

When multiple cores reside on the same chip the com-
munication between them is not dominating anymore
and other performance characteristics come into play.
In particular, on graphics processors (GPUs) as the first
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representatives of many-core devices, multiple factors
must be taken into account: Performance is mainly influ-
enced by the ability of implementations to benefit from
fine-grained per-block synchronization via small but fast
shared memories, and by hiding latencies of off-chip
memory accesses via many active blocks on each core,
realized through massive hardware-multithreading. The
most prominent example of a current many-core archi-
tecture is NVIDIA CUDA [1], and we refer to several
excellent survey articles for more details on GPU Com-
puting with CUDA [2], [3] and the underlying hardware
architecture and programming model [4], [5].

The transfer operations between grids parallelize nat-
urally as do basic smoothers like the Jacobi method
or a red-black SOR solver. Therefore, multigrid solvers
with the Jacobi smoother and a simple V-cycle have
been demonstrated early on the GPU using ‘legacy
GPGPU’ techniques based on graphics APIs [6], [7], [8].
Earlier GPUs did not support double precision and the
above references discuss only single precision multigrid
schemes. A mixed precision iterative refinement scheme
allows us to recover double precision results through
additional updates on the CPU in this case [9]. In this
paper we can perform these double precision updates
on the GPU itself, enabling higher performance and
broadening the applicability of GPU-based techniques
to the case where single precision alone fails. More
recent publications reporting on multigrid solvers with
simple smoothers in CUDA include stitching of gigapixel
images [10], power grid analysis [11] and the solution of
the Euler equations [12].

More advanced smoothers are more difficult to handle
in parallel. Kass et al. [13] presented the first GPU imple-
mention of the alternating direction implicit tridiagonal
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solver (ADI-TRIDI) based on shading languages. Later
Sengupta et al. [14] used on-chip memory with CUDA
to obtain faster results. Both parallelization approaches
are based on classical cyclic reduction [15]. Two other
parallel algorithms for the solution of tridiagonal equa-
tion systems are parallel cyclic reduction [16] and recur-
sive doubling [17]. Recently, Zhang et al. [18] discussed
the applicability of these algorithms on modern GPUs.
They conclude that cyclic reduction suffers from shared
memory bank conflicts (see Section 3) and poor thread
utilization in lower stages of the solution process, while
parallel cyclic reduction is not asymptotically optimal
and recursive doubling is not optimal and additionally
exhibits numerical stability issues. They propose a hy-
brid combination of cyclic reduction and parallel cyclic
reduction to alleviate these deficiencies.

1.2 Paper Contribution
Simultaneously to the work by Zhang et al. [18], we
have developed a cyclic reduction implementation that
does not exhibit the above mentioned memory access
problems at the expense of 50% more on-chip storage.
Our variant significantly outperforms a standard cyclic
reduction implementation, and reaches the same perfor-
mance as their best hybrid algorithm.

Using this solver in an alternating direction implicit
(ADI) iteration as a multigrid smoother, we are the
first to assemble a multigrid solver capable of dealing
with very anisotropic meshes and therefore severely ill-
conditioned systems entirely on the GPU. Finally, we
almost double its performance by executing our previous
mixed precision iterative refinement scheme now com-
pletely on the GPU.

1.3 Paper Organization
Section 2 motivates the use of mixed precision methods
and explains how our schemes can be applied in a
bigger framework. Section 3 discusses different multi-
grid smoothers and presents our fast implementation of
the cyclic reduction. In Section 4 we lay out our test
cases and solver configurations and Section 5 discusses
the accuracy and performance results. We conclude in
Section 6.

2 WHY MIXED PRECISION?
2.1 Test Problem
We solve the Poisson problem −∆u = f on isotropic
and anisotropic domains Ω with homogeneous Dirichlet
boundary conditions. The Poisson problem is a very
important prototypical representative of the class of
elliptic PDEs, and it often appears as a sub-problem in
simulation codes: Examples include the Pressure-Poisson
problem when solving the Navier-Stokes equations in
fluid dynamics with an operator-splitting approach, lin-
earized elasticity (displacements in compressible ma-
terials subject to small deformations under external

load) or electrostatics (potential calculations). Conform-
ing bilinear quadrilateral elements are used for the spa-
tial finite element discretization of rectangular domains
Ω = [0, a] × [0, b]. We use a conforming (yet possibly
anisotropic) subdivision scheme, so that the resulting
mesh consists of N = (2L + 1)2 mesh points for a
refinement level of L = 1, . . . , 10. We obtain a linear system
of equations

ALx = b,

where AL is an N × N sparse matrix with exactly nine
nonzero bands at known offset positions, because of
the regular structure of the mesh. This logical tensor
product structure is independent of the location of the
mesh points, and is preserved even for extremely de-
formed meshes occurring for instance in the context of
r-adaptivity [19]. The performance of low-level linear al-
gebra routines consequently depends only on the special
matrix structure and not on the underlying mesh.

Fig. 1. Examples of different mesh anisotropies on levels
1–3. Left: Uniform subdivision of an anisotropic coarse
mesh. Right: Anisotropic subdivision of the rightmost and
bottommost element layer in each refinement step.

In our setting, a mixed precision solver must deliver
the same accuracy as if computing entirely in high preci-
sion, in particular in case of strongly varying coefficients
and thus high condition numbers. In our previous pa-
per [9] we utilized test matrices arising from anisotropic
mesh refinements, which is a common case in finite
element based simulations. In this paper, we continue
to evaluate the same test problems:

Uniform anisotropies: Using rectangular instead of
square elements allows us to specify the aspect ratio of
each element in the refined discretization. We refine the
mesh uniformly (cf. Figure 1 on the left) which leads
to the same degree of anisotropy in each entry of the
matrix.

Anisotropic refinement: In this strategy, we start with
the unit square and in each refinement step, we sub-
divide the bottommost and rightmost layer of elements
anisotropically (cf. Figure 1 on the right). This refinement
scheme is often used to accurately resolve boundary
layers in fluid dynamics, or discontinuities in solid me-
chanics. For each refined element in these layers, the
new midpoint xc is calculated by recursively applying
the formula xc = xl + ν · xr−xl

2 with a given anisotropy
factor ν (ν = 1.0 yields uniform refinement) and xl
and xr denoting the x-coordinates of the left and right
edge of an element before subdividing (analogously
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for the y-component). All other elements are refined
uniformly. This leads to matrices with locally condensed
anisotropies instead of uniform ones and thus higher
condition numbers.

We note that the above cases generate matrices which
also occur when discretizing anisotropic operators like
div(G∇u). For example, if G is a constant diagonal
matrix then the uniform anisotropic refinement leads to
the same stiffness matrix, and similarly for anisotropic
refinement and spatially varying coefficients of the ma-
trix G. Consequently, our test results are also relevant
for problems with operator anisotropy.

2.2 The Bigger Picture

The test configurations in this paper represent an impor-
tant building block in our finite element based discretiza-
tion and solver toolkit FEAST [20], [21], [22]. FEAST is
designed to combine high performance computing tech-
niques with state-of-the-art numerical methodology, and
executes on large-scale distributed memory machines.
The basic idea in FEAST is to cover the computational
domain with an unstructured collection of subdomains,
each of which has the logical tensor product struc-
ture. FEAST thus balances high performance (locality,
no indirect memory accesses) of the local components
with the flexibility to resolve arbitrary domains in an
unstructured way. We have previously reported on the
solution of large-scale problems in solid mechanics and
fluid dynamics on GPU-accelerated clusters [23], [24]
and suggested a minimally invasive approach to include
accelerator hardware like GPUs into a matured MPI-
based package, we refer to these publications for details.

All previous results employed a GPU-accelerated
multigrid with simple Jacobi smoothing only, advanced
smoothers had only been available on the CPU at that
time. In this paper, we aim at closing this gap by
evaluating the performance of an advanced smoother,
specifically tailored to the underlying logical tensor
product structure, for the prototypical ‘one subdomain’
configuration. In view of the bigger picture, the entire
MPI infrastructure, the domain decomposition and the
parallel multilevel solver employed by FEAST benefit
directly from the improvements suggested in this paper,
as the entire solution scheme is in fact a mixed precision
scheme already.

2.3 Single Precision Accuracy

To measure accuracy, we evaluate the analytical Lapla-
cian of the polynomial function u0(x, y) = x(a−x)y(b−y)
at the grid points and use the resulting coefficient vector
as the right hand side of the linear system; a and b
are chosen so that the function always vanishes on the
boundary of the rectangular test domains. We thus know
the exact solution of the problem to be solved, and can
calculate the error in the l2 norm by integrating over
the domain. According to finite element theory, the error

TABLE 1
Influence of solver precision on the accuracy of the

solution with increasing level of refinement (L) and total
problem size (N ).

single precision double precision
L N Error Red. Error Red.
2 25 7.1663649E-2 7.1663606E-2
3 81 1.7802522E-2 4.03 1.7802586E-2 4.03
4 289 4.4428836E-3 4.01 4.4429161E-3 4.01
5 1,089 1.1103626E-3 4.00 1.1102363E-3 4.00
6 4,225 2.7897810E-4 3.98 2.7752805E-4 4.00
7 16,641 5.5209742E-5 5.05 6.9380191E-5 4.00
8 66,049 2.8037403E-5 1.97 1.7344895E-5 4.00
9 263,169 2.2419906E-4 0.13 4.3362264E-6 4.00

10 1,050,625 1.0585913E-3 0.21 1.0841185E-6 4.00

reduces by a factor of four (h2 for the mesh width h) after
refining each element into four smaller ones.

Even for the fully isotropic case (U1 configuration, see
Section 4.1), the linear system arising from the discretiza-
tion is known to be ill-conditioned, the condition number
is essentially proportional to the reciprocal square of the
mesh width [25]. Table 1 illustrates that attempting to
solve the system in single precision fails, while double
precision suffices to reduce the error according to finite
element theory; and hence, to guarantee the result ac-
curacy. In single precision, however, further refinement
increases the error again: The additional refinement re-
sults in a solution that is objectively worse, although
more unknowns are involved and hence more work is
performed. Adding to the detriment, this behavior is dif-
ficult to notice without ground truth, because the solver
still converges and reduces the residuals as expected.

2.4 Single vs. Double Precision Floating Point Per-
formance

The relative performance improvement of single over
double precision computations varies between architec-
tures: For NVIDIA’s GT200 GPU that we employ in
our tests (cf. Section 4) the factor is eight, and five for
AMD’s R800 (Evergreen) chip. The first generation Cell
processor [26] executed single precision floating point
operations 14 times faster than double precision. Even
on the SIMD units of conventional CPUs (SSE), single
precision is twice as fast as double, the same factor has
been announced for NVIDIA’s new Fermi GPU [27]. In
our applications, theoretical peak performance is not the
relevant factor however, because we are mostly limited
by the available bandwidth to off-chip memory (memory
wall problem). The use of single precision consequently
halves the bandwidth requirements of a given computa-
tion, and one can expect up to a twofold speedup.

The savings from using single precision are often even
higher in practice, because the argument applies to all
levels of storage: Single precision puts less pressure on
the registers and twice the amount of data can be held
in small, fast on-chip memories and caches, resulting in
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Fig. 2. Microbenchmarks in single and double precision
for grid sizes N = (2L + 1)2 of varying level L.

a better data reuse and in particular in CUDA, a higher
occupancy of multiprocessors.

We demonstrate this effect by two small microbench-
marks, executed on a GeForce GTX 280 GPU. The
standard BLAS level 1 kernel AXPY (y = αx + y) is
used to assess the savings for purely bandwidth-bound
operations. In the DEFECT kernel (d = b−Ax) for a nine-
banded matrix stemming from the underlying logical
tensor product mesh, we use one CUDA thread per
matrix row, and employ shared memory to manually
cache portions of the coefficient vector x that are reused
in the course of the computation, which additionally en-
ables full coalescing and a minimal number of memory
transactions. A second level of caching is provided by the
on-chip texture cache, which is optimized for streaming
locality. We refer to the references given in Section 1.1
for details on CUDA performance tuning strategies.

Figure 2 depicts the performance data we obtain for
increasing level of refinement. The AXPY kernel is able
to extract 85% and 87 % (120 GB/s and 123 GB/s) of
the theoretical peak bandwidth for the largest input
vectors in single and double precision respectively, and
consequently, the GFLOP/s rate in double precision is
half that of single precision as soon as the chip is entirely
saturated. The carefully tuned implementation of the
DEFECT kernel exploits data reuse via (manual) caching
and results in excellent performance, reaching as much
as 46.4 GFLOP/s in single precision and 18.5 GFLOP/s
in double precision. So single precision is 2.5 times
faster, more than the 2x factor we would expect from
bandwidth considerations alone.

These numbers show the high potential of using single
instead of double precision number formats. In Section 5
we show that these microbenchmark advantages indeed
translate into a similar advantage for the complete multi-
grid solver. We achieve up to twice the performance
while delivering results of equal accuracy (Table 5).

2.5 Mixed Precision Iterative Refinement

Mixed precision iterative refinement methods have been
known for more than 100 years already. They gained
rapid interest with the arrival of computer systems in
the 1940s and 1950s. Wilkinson et al. [28], [29], [30] com-
bined the approach with accumulated inner products
as a mechanism to assess and increase the accuracy of
computed results for linear system solvers, and provided
a solid theoretical foundation of these methods. Shortly
afterwards, Moler [31] extended the analysis from fixed
point to floating point arithmetic.

The mixed precision solver for a linear system Ax = b
basically comprises the following steps:

1) Compute d = b−Ax in double precision.
2) Solve Ac = d approximately in single precision.
3) Update x = x + c in double precision.
4) Check for convergence and iterate.
For large sparse matrices step (2) uses an iterative

solver. Therefore, we have two iterations: the outer it-
eration with the high precision updates and the inner
iteration solving the low precision problem iteratively.
Until the introduction of GPUs with native double pre-
cision support, the accurate solution of linear systems
stemming from the discretization of PDE problems with
finite elements was only possible with such a mixed
precision scheme that executes step (2) on the GPU and
the double precision outer loop on the CPU [9]: Native
single precision yields inaccurate results (cf. Table 1),
and as we have shown in the same paper, emulated
arithmetic (double-single, storing low and high order
portions of a quasi s46e8 number as an unevaluated sum
of two single precision floating point values [32]) fails for
the largest problem sizes. In this paper, we demonstrate
that the mixed precision technique is superior on the
GPU to executing entirely in double precision.

3 MULTIGRID SMOOTHERS

After the discretization of the PDE we have a linear
equation system ALx = bL to solve where AL is a sparse
N × N matrix with nine bands, see Section 2.1. This is
our problem on the finest level L. The multigrid cycle
asks for the solution of Akxk = dk on each grid level,
where Ak is the restriction of AL to the k-th grid level
and dk the restriction of the defect from the previous
level. All matrices Ak exhibit the nine band structure.
So in the following discussion of the different options
for smoothers for a fixed level k, we drop the index and
simply seek to solve

Ax = d,

where A is a nine band matrix. Common to the following
schemes is the iterative nature of the solution. Starting
with some vector x0 we iterate

xn+1 = F (xn)

for a fixed number of iterations (smoothing steps).
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3.1 Jacobi
In case of the Jacobi smoother our iteration reads

xn+1 = FJAC(xn) := xn + ωD−1(d−Axn),

where D is the diagonal of A and ω ∈ (0, 1] a damping
factor. All components of xn+1 can be computed in
parallel from xn. This simple smoother has been used
by multigrid solvers on the GPU in the past, see the
Introduction for references.

3.2 Gauß-Seidel
The Gauß-Seidel solver requires the update

xn+1 = FGS(xn) := (1− ω)xn + ω(L+D)−1(d− Uxn),

A = L+D + U,

with the splitting of A into a strict lower triangular
component L, the strict upper triangular matrix U and
the diagonal D, and ω ∈ (0, 2). In case of ω > 1 we
speak of successive over-relaxation (SOR). The practical
advantage of Gauß-Seidel over Jacobi is that typically,
damping is not necessary. Here the update of xn+1

α

depends on all xn+1
β , β < α for which Aαβ = Lαβ 6= 0,

so they cannot be performed immediately in parallel.
In case of a 5-point stencil in 2D one typically uses

a red-black Gauß-Seidel scheme to recover parallelism,
because all odd-indexed unknowns can be updated in-
dependently of the even-indexed ones and vice versa.
In our finite element setting we have a 9-point sten-
cil and use a multi-coloring scheme with four colors
c00, c01, c10, c11 to relax the dependencies. The coloring
scheme assigns the color c(x%2,y%2) to the node with the
index (x, y) in the 2D grid, so the nodes split into four
disjoint index sets C00, C01, C10, C11 that correspond to
the four colors: In other words, we alternate colors be-
tween lines in the mesh, and additionally alternate colors
between adjacent degrees of freedom per line. The Gauß-
Seidel update decomposes into four sequential in-place
updates on these index sets, which are trivially parallel
as described above (note that the operator FJAC involves
a defect calculation and thus incorporates previously
computed contributions):

xn+1 = xn,

∀α ∈ C00 : xn+1
α = FJAC(xn+1)α,

∀α ∈ C01 : xn+1
α = FJAC(xn+1)α,

∀α ∈ C10 : xn+1
α = FJAC(xn+1)α,

∀α ∈ C11 : xn+1
α = FJAC(xn+1)α.

3.3 Tridiagonal Solver
The disadvantage of the previous schemes is the weak
coupling across the domain, i.e., it takes many iterations
until the values near the left border of the domain
influence the values near the right border, a characteristic
of elliptic PDEs. To obtain a better coupling along one

dimension we decouple the problem along the other
dimension, i.e. we solve independently for all mesh lines
l (these are not the matrix rows):

∀αl ∈ Il : (Ax)αl
= dαl

,

where Il is the set of indices belonging to the l-th line
of nodes in the mesh. We can express the independent
solves on the lines with the following matrix splitting,

A = D +AX +AX̄ , (1)
∀αl ∈ Il : ((D +AX)xn+1)αl

= (d−AX̄xn)αl
,

xn+1 = FXTRIDI(x
n) := (D +AX)−1(d−AX̄xn),

where D is the diagonal, AX contains the coefficients
that describe the interaction with the left and right
nodes in the domain and AX̄ contains the remaining
coefficients. We could apply an iterative scheme to solve
these systems, but (D+AX) is a tridiagonal matrix which
can be inverted efficiently by direct methods. On the
CPU, the most commonly used scheme for this task
is the Thomas algorithm, which is essentially Gaussian
elimination for the case of a tridiagonal matrix [33].

Since the lines in the mesh are independent, we have
enough parallel work to occupy all cores of a many-core
device like the GPU. However, for an efficient inversion
of each system we want to keep the required coefficients
(D + AX)αl

and (d − AX̄xn)αl
in fast on-chip memory.

For long mesh lines this means that only one line can be
treated at the same time in each core. To use the paral-
lelism in each core efficiently we thus require a parallel
algorithm for solving Eq. 1, as the Thomas algorithm is
inherently sequential. In the Introduction we have listed
three such parallel algorithms. Cyclic reduction is the
most common algorithm for this task, and it is work-
efficient with a linear amount of arithmetic operations in
the number of unknowns. The algorithm proceeds in two
steps: a forward reduction and a backward substitution.
Both steps can be performed in-place, which is beneficial
in terms of the limited on-chip storage, but induces
unfavorable memory access patterns that reduce the
overall performance, see Figure 3. In contrast to previous
GPU implementations of cyclic reduction we present a
solution that is not completely in-place but performs
much better because of more favorable memory access
patterns, see Figure 4.

3.4 Cyclic Reduction on GPUs
In this section we describe our implementation of the
cyclic reduction (CR) algorithm in detail. We have M =√
N lines in our mesh and in each line there are M

equations eα, α ∈ S0:= {0, . . . ,M − 1}. As all mesh lines
can be treated independently of each other, we describe
the parallel solution within a single line. Let us define
the three non-zero coefficients of the matrix and the right
hand side corresponding to one mesh line as

(a0
α,b

0
α, c

0
α) := (D +AX)α, (2)

v0
α := (d−AX̄xn)α .
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The CR algorithm reduces this M × M system
to a bM/2c × bM/2c system with index set
S1:= {0, . . . , bM/2c − 1} and recursively down to a
2 × 2 system. One thread per odd-indexed equation is
used, and the reduction proceeds by computing for all
odd α ∈ Sk

fl := akα/b
k
α−1, (3)

fu := ckα/b
k
α+1,

ak+1
α := −flakα−1,

bk+1
α := bkα − flckα−1 − fuakα+1,

ck+1
α := −fuckα+1,

vk+1
α := vkα − flvkα−1 − fuvkα+1.

Each new equation is a linear combination of itself and
its two even neighbors. After this update, we renumber
all odd α from Sk consecutively and thus obtain the
reduced index set Sk+1. This reduction continues until
we reach a 2× 2 system that can be solved directly, see
Figure 3.

Then the backward substitution starts, which again
proceeds recursively. Assume we reach the above situ-
ation and we have computed the solution to Eq. 1 in
vk+1
α for all α in Sk+1. After renumbering, these indices

correspond to the odd α in Sk. We obtain the solution
for all even α from Sk with

vkα := (vk+1
α − ak+1

α vk+1
α−1 − ck+1

α vk+1
α+1)/bk+1

α . (4)

After this update we have the solution for both the odd
and even α in the index set Sk, which means that we
have the solution for all odd α in Sk−1 and can continue
with the backward substitution until in the last step we
obtain the solution for the entire index set. Figure 3
visualizes this process.

Fig. 3. Data flow and placement in shared memory in
the standard cyclic reduction. Hats stand for updated
equations and circles in the same column occupy the
same memory address, i.e. denote in-place updates.

If all updates in the above scheme occur in-place, i.e.
(ak,bk, ck,vk)α all occupy the same storage for all k,

then the reading and writing occurs with a 2k stride in
step k, see also Figure 3. This causes bank conflicts in the
on-chip memory and greatly reduces the internal band-
width: Shared memory in current GPUs is implemented
with 16 memory banks, and if two concurrent threads
address the same bank, accesses are serialized.

Our solution to this problem is to group the indices in
each level of the reduction tree in two contiguous arrays
of odd and even indices. When we load the initial data
into shared memory (Eq. 2) we already separate the even
and odd indices. With an appropriate padding between
the arrays this is a bank conflict free read operation from
global to shared memory. The output of each forward
update step (Eq. 3) writes again into separate even and
odd arrays. The even indices of level k + 1 overwrite
the location of the odd indices of level k in a contiguous
fashion, whereas the odd indices of level k+1 are written
into a new array, see Figure 4. With appropriate padding
there are absolutely no bank conflicts in the involved
read and write operations. As a tradeoff, we can remove
the recursive padding and introduce 2-way conflicts for
the writes only.

Unfortunately, any out-of-place CR scheme makes the
backward substitution more difficult, because now the
even-indexed vkα cannot be updated in-place. Instead,
they are updated as in Eq. 4 and written with a 2-stride
into the the odd array on level k. The second 2-stride
write into this array copies the already known odd-
indexed vkα values. Only on the last level 0 all even-
indexed v0

α can be updated in place, before we write
out the result back into global memory. Figure 4 depicts
the data placement in this implementation. Because of
the special treatment of the coarsest level the additional
storage requirements are M · (1/4 + 1/8 + . . .) = M/2.

With 16 kB on-chip memory on current CUDA-capable
GPUs we can thus solve a tridiagonal system with M =
513 (refinement level L = 9), as the storage requirement
for all four vectors in single precision is 4 · 3

2 · 513 · 4 B =
12, 312 B plus few bytes of padding and local variables.
We note that for the in-place algorithm L = 9 is also
the maximum size, with shared memory requirements
of 8,208 B. Accordingly, in double precision M = 257
(L = 8) is the current maximum. This underlines that
the mixed precision approach discussed in this paper not
only benefits faster transfers and computations, but very
importantly enables fast on-chip solvers for larger prob-
lem sizes. Clearly, we could implement an algorithm for
large M when all data does not fit into on-chip memory
and we perform multiple transfers to global memory,
but this variant would be significantly slower. Zhang et
al. [18] report at least a 3x performance improvement
when all updates are performed in shared memory
instead of global memory. Our current implementation
does not support larger problem sizes, as we focused
on the improvements inside shared memory. However,
the announced new Fermi GPU more than doubles the
shared memory per multiprocessor, of which there will
be fewer, however [27]. At most 48 kB of shared memory
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Fig. 4. Data placement in our implementation of cyclic reduction, hats stand for updated equations. Circles in the same
column occupy the same memory address, i.e. in-place updates are performed. The data flow (arrow connections) is
exactly the same as in Figure 3, but we have omitted most arrows to improve clarity.

is available, so we will be able to also solve the next
problem size on level L = 10.

We compare the performance of our CR implementa-
tion with the best algorithm from the work by Zhang
et al. [18] which clearly outperforms previous GPU
implementations. Both Zhang et al. and we deal with the
simultaneous solution of M tridiagonal systems with M
unknowns each. In our case (due to the finite element
discretization), M is always a power of two plus one,
whereas Zhang et al. support powers of two, but the
additional plus one does not make the code much more
difficult. Zhang et al. report that the standard, in-place
CR implementation on a GeForce GTX 280 GPU for 512
systems of 512 unknowns executes in 1.066 ms. Their
fastest solver, a hybrid combination of CR and parallel
cyclic reduction, which alleviates the disadvantages of
the standard CR, needs less than half the time: 0.422 ms.
In comparison our memory friendly CR implementation
executes in 0.445 ms for 513 systems of 513-unknowns
on the same GPU.

3.5 Alternating Direction Implicit Method
Section 3.3 described only solves along the lines of the
mesh with the update operator FXTRIDI (Eq. 1). In this
case the dependencies within each line are implicit but
other dependencies are explicit. The same idea can be
formulated for the columns of the domain obtaining the
update operator FYTRIDI, where the dependencies along
the columns are implicit. If we alternate which of the
directions is treated implicitely we obtain the alternating
direction implicit (ADI, [34]) variant of the scheme. The
complete ADI-TRIDI iteration then reads

xn+1 = FXTRIDI(x
n),

xn+2 = FYTRIDI(x
n+1).

In other words, the ADI-TRIDI smoother is able to
capture anisotropies in both the horizontal and vertical
direction.

Our implementation directly permutes the matrix
bands after the assembly, and stores both row- and
column oriented coefficients. Consequently, both sets
of matrix bands are passed to the device. During the
solution phase, the entries in the right hand side vector
and the resulting solution vector need to be permuted
from a row-based indexing to a column-based indexing
and vice versa. This memory copy can be efficiently
implemented analogously to a matrix transpose because
of the underlying 2D mesh structure, and our imple-
mentation builds upon the corresponding example in the
CUDA SDK (transposeNew).

4 TEST ENVIRONMENT

All our tests are performed on a high-end worksta-
tion comprising an Intel Core2Duo E6750 CPU (Con-
roe, 4 096 kB level-2 cache, 2.66 GHz), and fast DDR2-
800 memory in a dual-channel configuration (10.6 GB/s
peak bandwidth). We execute our tests on only one core
because a single subdomain is not parallelized across
multiple cores in FEAST. For large problems FEAST
schedules multiple subdomains as individual MPI jobs
onto each cluster node until all cores are automatically
occupied. We are convinced that a hybrid thread and
MPI parallelization would not be of much benefit here,
because on such coarse tasks the relative overhead of
MPI processes is small and their intra-node communica-
tion already takes advantage of shared memory buffers
in state-of-art MPI implementations, e.g. OpenMPI.

The GPU is an NVIDIA GeForce GTX 280 (GT200
chip), with 1 024 MB of GDDR3 memory connected via
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a 512 bit bus for a theoretical peak memory bandwidth
of 141.7 GB/s. The GPU features 30 multiprocessors,
supports double precision, and is connected to the host
system via PCIe x16 Gen2. The test system runs Open-
SuSE 11.1 and the NVIDIA driver 190.18. All codes are
compiled with the Intel C compiler (version 10.1), and
we use the CUDA toolkit version 2.3.

We restrict ourselves to the 2D case because this is the
configuration currently supported by FEAST. In general,
the same techniques can be applied in the 3D case.
The main difference for the 3D-ADI scheme is that now
we alternate between three different 2D ‘slice’ variants,
and each variant is again an alternation between the
remaining two spatial directions.

4.1 Test Configurations

All experiments are performed for the same set of test
cases as in our previous paper [9]. In addition to the
dimensions of the domain, we also list the maximum
aspect ratio on the finest level of refinement (ARmax)
and the smallest mesh width hmin. Furthermore, we
compute the condition numbers of the system matrix
for refinement levels L ≤ 6 by brute force, using GNU
Octave. This allows us to estimate the condition numbers
for the larger problems, because they are proportional
to the square of the mesh width. This estimate is not
exact for the anisotropically refined test cases, but the
computed values for smaller problem sizes give suffi-
cient evidence that indeed hmin dominates the factor by
which the condition number increases depending on the
anisotropy factor ν.

U1 No anisotropies: Ω = [0, 1]2, uniform refine-
ment, ARmax = 1.0, hmin = 9.77e-4 (L = 10).
Condition numbers: 1.33e4 (L = 8), 5.31e4
(L = 9) and 2.12e5 (L = 10).

U2 Weak uniform anisotropy: Ω = [0, 0.25] × [0, 1],
uniform refinement, ARmax = 4.0, hmin =
2.44e-4 (L = 10). Condition numbers: 2.50e4
(L = 8), 1.00e5 (L = 9) and 4.00e5 (L = 10).

U3 Medium uniform anisotropy: Ω = [0, 0.0625] ×
[0, 1], uniform refinement, ARmax = 16.0, hmin =
6.10e-5 (L = 10). Condition numbers: 2.70e4
(L = 8), 1.08e5 (L = 9) and 4.31e5 (L = 10).

A1 Weak anisotropic refinement: Ω = [0, 1]2, ν =
0.75, ARmax = 22.20, hmin = 5.50e-5 (L = 10).
Condition numbers: 7.20e4 (L = 8), 3.84e5 (L =
9) and 2.05e6 (L = 10).

A2 Medium anisotropic refinement: Ω = [0, 1]2, ν =
0.5, ARmax = 1.54e3, hmin = 9.54e-7 (L = 10).
Condition numbers: 1.25e6 (L = 8), 1.00e7 (L =
9) and 8.00e7 (L = 10).

A3 Hard anisotropic refinement: Ω = [0, 1]2, ν =
0.25, ARmax = 1.84e6, hmin = 9.31e-10 (L = 10).
Condition numbers: 2.11e8 (L = 8), 3.38e9 (L =
9) and 5.41e10 (L = 10). This test case yields a
problem which cannot be assembled in single
precision, because the Jacobi determinant of the

mapping from the real, long and thin elements
to the reference element evaluates to zero.

A4 Hard anisotropic refinement: Ω = [0, 1]2, ν =
0.0625, ARmax = 2.13e12, hmin = 8.88e-16
(L = 10). Condition numbers: 1.07e13 (L = 8),
6.83e14 (L = 9) and 4.37e16 (L = 10). This
test case also yields a problem which cannot
be assembled in single precision.

A5 Extremely hard anisotropic refinement: Ω =
[0, 1]2, ν = 0.03125, ARmax = 2.08e15, hmin =
9.24e-19 (L = 10). Condition numbers: 2.57e15
(L = 8), 3.29e17 (L = 9) and 4.21e19 (L = 10).
This test case can barely be assembled in double
precision for refinement level 9, cannot be as-
sembled for refinement level 10 in double preci-
sion, and is therefore extremely challenging for
our mixed precision solver.

4.2 Solver Details

We use a multigrid solver for our tests, configured to
perform four pre- and postsmoothing steps, and travers-
ing the grid hierarchy in a V -cycle. We count one ap-
plication of the ADI-TRIDI smoother as two elementary
smoothing steps. All smoothers from Section 3 are used.
A preconditioned conjugate gradient solver treats the
coarse grid problems, its preconditioner is either Jacobi
or ADI-TRIDI. The stopping criterion for the solver is set
to reduce the initial residual by eight digits.

Two solvers execute entirely in double precision, either
on the CPU or on the GPU. For the mixed precision
solvers, the outer double precision correction loop now
runs on the GPU, in contrast to our previous publica-
tion [9] when the CPU had to perform this task. The
inner multigrid is configured to either perform one, two
or three iterations, or to reduce the residual by one, two
or three digits (in at most 32 cycles) before an outer
update step is performed. Since the mixed precision
scheme is beneficial on CPUs as well, we include it in
the comparisons.

5 RESULTS

5.1 Accuracy Studies

We perform all tests in this paragraph with the ADI-
TRIDI smoother (preconditioner), as Jacobi- or Gauß-
Seidel are not powerful enough for the challenging prob-
lems, or would require an impractically high number of
smoothing steps (see also Section 5.4). We tabulate only
levels 8 and 9 (N = 2572 and N = 5132 unknowns)
to improve clarity of the presentation. As explained in
Section 3.4, the double precision variant on the GPU
requires too much shared memory to execute the larger
N = 5132 (L=9) problem size.

The l2 errors (cf. Section 2.3) in Table 2 clearly show
that neither the parallel solution on the GPU nor the
application of a mixed precision scheme influence the
accuracy of the final results. The final results of the six
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different configurations of the mixed precision solver
are also identical, so we only present one set of values.
The same holds true for small differences between the
mixed precision variant on the CPU, and the native
double precision configuration on the GPU. The relative
differences between the double and the mixed precision
solvers are always below 1e-4, absolutely the solutions
start to differ in the eighth decimal digit after the comma.

TABLE 2
l2 errors for native and mixed precision solvers.

Test Level CPU-double GPU-mixed
U1 8 1.7344895e-5 1.7344902e-5
U1 9 4.3362264e-6 4.3362292e-6
U2 8 1.6946217e-5 1.6946281e-5
U2 9 4.2365330e-6 4.2363011e-6
U3 8 1.6603963e-5 1.6603650e-5
U3 9 4.1508011e-6 4.1504573e-6

A1 8 2.2559231e-5 2.2559230e-5
A1 9 5.6398002e-6 5.6397099e-6
A2 8 3.3671244e-5 3.3671243e-5
A2 9 8.4177915e-6 8.4177905e-6
A3 8 4.9063089e-5 4.9063092e-5
A3 9 1.2265724e-5 1.2265727e-5
A4 8 6.3654794e-5 6.3654654e-5
A4 9 1.5913491e-5 1.5913506e-5
A5 8 6.6448219e-5 6.6447308e-5
A5 9 1.6612151e-5 1.6612856e-5

5.2 Performance of Mixed Precision Variants

Next, we examine the performance of the six mixed
precision variants, both in terms of numerical efficiency,
i.e., the relation between the number of inner and outer
iterations depending on the stopping criterion of the
inner solver, and in terms of absolute runtime. Timings
are given in seconds, and we restrict ourselves again
to the ADI-TRIDI smoother. The systems are assembled
in double precision on the CPU, and are then solved
either on the CPU or on the GPU. All timings include
the initial transfer of the right hand side to the device,
and the readback of the solution vector to the CPU, but
do not include the transfer of the matrix, as this is the
relevant situation for our CSM and CFD applications (cf.
Section 2.2): The cost of the matrix transfer is typically
amortized in practice because the systems are solved for
many right hand sides.

A number of important conclusions can be drawn
from the results in Tables 3 and 4. Overall, the timings
are consistent: The more outer loop iterations / update
steps are performed, the less do the total iteration num-
bers deviate from the reference values of the CPU double
precision solver. On the other hand, many outer loop it-
erations tend to increase the fraction of the slower double
precision computations, slightly deteriorating runtime
performance. We observe a general trend in the results
from Table 3 and Table 4: The two configurations that
perform exactly one multigrid cycle or gain one digit in
each outer loop iteration are slower than the variants that

TABLE 3
Performance of mixed precision variants on the GPU:

Fixed number of iterations (Notation ‘a:b’: ‘a’ equals the
number of outer iterations, ‘b’ equals the total sum of

inner iterations).

double 1 iter 2 iter 3 iter
ID L #it #it time #it time #it time
U1 8 5 5:5 0.0345 3:6 0.0400 3:9 0.0586
U1 9 5 5:5 0.0659 3:6 0.0765 3:9 0.1131
U2 8 5 6:6 0.0434 3:6 0.0379 3:9 0.0577
U2 9 6 6:6 0.0809 3:6 0.0763 3:9 0.1124
U3 8 5 5:5 0.0038 3:6 0.0390 3:9 0.0577
U3 9 4 5:5 0.0658 3:6 0.0760 3:9 0.1147

A1 8 6 5:5 0.0354 3:6 0.0458 3:9 0.0674
A1 9 6 6:6 0.0790 3:6 0.0778 3:9 0.1136
A2 8 6 6:6 0.0434 3:6 0.0401 2:6 0.0396
A2 9 6 6:6 0.0790 3:6 0.0766 3:9 0.1189
A3 8 6 6:6 0.0411 3:6 0.0403 3:9 0.0587
A3 9 6 6:6 0.0787 3:6 0.0765 3:9 0.1129
A4 8 8 8:8 0.0554 4:8 0.0527 3:9 0.0586
A4 9 9 8:8 0.1055 5:10 0.1273 3:9 0.1128
A5 8 10 11:11 0.0754 6:12 0.0792 4:12 0.0782
A5 9 11 11:11 0.1449 6:12 0.1524 4:12 0.1505

TABLE 4
Performance of mixed precision variants on the GPU:
Gaining digits (Notation ‘a:b’: ‘a’ equals the number of

outer iterations, ‘b’ equals the total sum of inner
iterations).

double 1 digit 2 digits 3 digits
ID L #it #it time #it time #it time
U1 8 5 5:5 0.0363 3:6 0.0406 3:6 0.0513
U1 9 5 5:5 0.0665 4:7 0.0901 3:36 0.4500
U2 8 5 6:6 0.0433 4:7 0.0472 3:7 0.0461
U2 9 6 6:6 0.0816 4:7 0.0906 3:37 0.4551
U3 8 5 5:5 0.0344 3:5 0.0333 3:7 0.0458
U3 9 4 5:5 0.0664 3:5 0.0649 3:37 0.4657

A1 8 6 5:5 0.0352 3:6 0.0418 3:7 0.0407
A1 9 6 6:6 0.0802 3:6 0.0792 3:36 0.4509
A2 8 6 6:6 0.0418 3:6 0.0408 2:7 0.0466
A2 9 6 6:6 0.0796 3:6 0.0772 3:37 0.4614
A3 8 6 6:6 0.0416 3:6 0.0412 3:7 0.0469
A3 9 6 6:6 0.0799 3:6 0.0768 3:9 0.1142
A4 8 8 5:8 0.0543 3:8 0.0528 3:11 0.0717
A4 9 9 5:8 0.1034 4:11 0.1392 3:11 0.1378
A5 8 10 6:11 0.0737 4:13 0.0986 3:15 0.0972
A5 9 11 6:11 0.1420 4:13 0.1636 3:14 0.1743

perform two steps or gain two digits. Finally, performing
too much work in the inner solver is not always benefi-
cial. The fixed iteration variant does not suffer, because
the same total number of inner iterations are spread over
less global updates, resulting in slightly faster perfor-
mance. Gaining three digits by the inner solver however
leads to a significant increase in the iteration numbers, in
particular for the less ill-conditioned test cases: The inner
solver occasionally stalls, the concrete numbers are a
consequence of setting the maximum admissible number
of inner multigrid cycles per solver call to 32. While
the number of update steps goes down as expected,
the additional inner work outweighs this advantage.



PREPRINT OF AN ARTICLE ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

This is not a big surprise, because single precision is
insufficient to solve these problems, and reducing the
residual by three digits constitutes almost 40% of the
solution process that requires eight digits total accuracy.

We note that switching from refinement level 8 to 9,
i.e. quadrupling the problem size, increases runtime
to solution much more favorably, see Section 2.4 for
associated microbenchmarks highlighting the saturation
of the device, and also Section 5.4 for computations on
level 10.

5.3 Speedup Measurements

On the CPU, tridiagonal solves are implemented using
the Thomas algorithm, which is essentially Gaussian
elimination and requires 6M operations for a system
with M unknowns. Cyclic reduction is also linear in the
number of unknowns, but more expensive and performs
approximately 23M arithmetic operations. Our speedup
comparisons are fair in the sense that we do not compare
against an algorithmically suboptimal CPU implementa-
tion but rather against a carefully tuned more efficient
variant, and in particular because we continue to include
the bus transfers of the right hand side and the solution
into our measurements.

TABLE 5
Speedup of mixed precision variants over double

precision solvers on the CPU and the GPU.
Abbreviations: ‘C(d)’ denotes double precision on the

CPU, ‘G(m)’ mixed precision on the GPU, etc.

L C(d)/G(d) C(m)/G(m) C(d)/G(m) G(d)/G(m)
U1 8 3.25 3.89 5.41 1.66
U1 9 9.69 12.21
U2 8 3.10 3.77 5.49 1.77
U2 9 9.66 14.72
U3 8 3.15 3.78 5.28 1.67
U3 9 9.64 17.04

A1 8 3.26 3.75 5.27 1.62
A1 9 9.48 16.66
A2 8 3.26 3.64 6.49 1.99
A2 9 9.60 17.21
A3 8 3.25 3.76 6.38 1.96
A3 9 9.82 17.58
A4 8 3.18 3.67 6.56 2.06
A4 9 8.76 12.62
A5 8 2.91 3.17 4.39 1.51
A5 9 9.58 14.77

Table 5 exemplarily presents four different speedup
factors, and we restrict the discussion to the mixed
precision variant that gains two digits in the inner loop,
because this configuration performs on average best for
the entire set of test problems. We first compare execut-
ing entirely in double precision on the CPU and the GPU.
Then, we make the same comparison for the respective
mixed precision solvers. As the typical situation in many
legacy CPU codes is to use double precision exclusively,
we also compute the speedup of the mixed precision
GPU solver over this configuration. Finally, we quantify

the advantage of the mixed precision scheme on the GPU
alone. To avoid granularity effects (one additional itera-
tion reduces the residuals by more than the prescribed
eight digits), we normalize all timings to the time per
unknown to gain exactly one digit, T/(N · #iters · ρ), ρ
denotes the convergence rate of the solver. Table 6 lists
the speedup factors computed from these normalized
timings. Such normalization is always beneficial, because
now the timings are independent of the problem size and
the problem at hand.

TABLE 6
Speedup of mixed precision variants over double

precision solvers on the CPU and the GPU. The data is
the same as in Table 5, but the speedups are calculated
from normalized time per unknown for gaining one digit.

L C’(d)/G’(d) C’(m)/G’(m) C’(d)/G’(m) G’(d)/G’(m)
U1 8 3.25 3.92 6.38 1.96
U1 9 9.71 16.43
U2 8 3.10 3.77 6.26 2.02
U2 9 9.72 16.94
U3 8 3.13 3.72 5.59 1.78
U3 9 9.36 15.09

A1 8 3.26 3.76 6.17 1.89
A1 9 9.36 15.94
A2 8 3.26 3.64 6.45 1.98
A2 9 9.62 16.95
A3 8 3.24 3.74 6.25 1.93
A3 9 9.79 16.78
A4 8 3.17 3.60 6.44 2.03
A4 9 8.93 15.22
A5 8 3.03 3.11 5.16 1.70
A5 9 9.56 16.97

In double precision, the speedups are consistently
larger than a factor of three, on the GPU, double
precision computations are limited to refinement level
L = 8, where the device is not entirely saturated. For
this problem size, only one thread block is concurrently
active per multiprocessor due to the limited size of the
shared memory, and thus, the ability to hide stalls due
to off-chip memory accesses by switching to other warps
is not fully exploited. In fact, the larger problem size
can currently only be treated efficiently with a mixed
precision approach. When comparing the conventional
double precision CPU implementation with the mixed
precision GPU solver, we observe speedups of more
than a factor of 15 for the largest admissible problem
size. The CPU becomes less efficient when moving from
refinement level L = 8 to refinement level L = 9 as more
data has to be moved in and out of the limited level-2
cache more frequently. On the GPU, it is the other way
round, which is underlined by the significantly better
speedups on the larger problem sizes. With the new
Fermi chip, we can fit an even larger cyclic reduction into
shared memory, and expect even better speedups on this
GPU, see Section 3.4. The speedup factors are smaller in
the fairer comparison of the two mixed precision solvers,
but still reach almost an order of magnitude, which
clearly highlights the advantages of the GPU. Finally,
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at least a 70% speedup is achieved on the device alone
by the mixed precision scheme, often reaching a factor
of two.

5.4 Smoother Comparison

In this experiment, we want to demonstrate that different
problems require different smoothers for optimal perfor-
mance. We evaluate the performance of all smoothers
presented in Section 3, first for the purely isotropic U1
test case, and then for the anisotropic A2 one. We employ
the mixed precision solver that gains two digits in the
inner loop, and execute it on the CPU and on the GPU.
All measurements are normalized to time per unknown
per digit, so smaller values are better.
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Fig. 5. Comparison of multigrid performance with different
smoothers, U1 configuration, logarithmic scale on the y-
axis.

Figure 5 depicts the results for the purely isotropic test
domain (U1). The simple Jacobi smoother (damped with
ω = 0.7) is always the most efficient one. For the two
refinement levels, the GPU solver is 10.9 and 21.2 times
faster than the CPU variant, respectively. It is important
to note that in this metric, which is independent of the
problem size, the importance of device saturation can
be seen clearly, the GPU is faster on the larger problem
size than on the smaller one. In absolute numbers, the
GPU solver executes in 0.1 seconds for L = 10. The
Gauß-Seidel smoother yields slightly larger timings, but
the speedups are still 12.5 and 19.5. The ADI-TRIDI
smoother is the least efficient one, and takes approxi-
mately 2.3 times longer for this simple test problem.

For the harder, anisotropic test problem however
(see Figure 6), the ADI-TRIDI smoother is obligatory,
and leads to the shortest time to solution. The Jacobi
smoother (strong damping of ω = 0.6 is required to
ensure convergence) is not applicable for all practical
purposes, and takes more than 14 times longer to solve
the problem than multigrid equipped with the stronger
smoother. Gauß-Seidel performs slightly better than Ja-
cobi, but remains clearly inferior to ADI-TRIDI.

 0.01

 0.1

 1

 10

CPU L9 GPU L9 CPU L10 GPU L10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

N
or

m
al

iz
ed

 T
im

e 
to

 S
ol

ut
io

n 
(lo

g1
0)

JACOBI
GAUSS-SEIDEL

ADI-TRIDI

Fig. 6. Comparison of multigrid performance with different
smoothers, A2 configuration, logarithmic scale on the y-
axis.

6 CONCLUSIONS

Our goal has been to design an efficient and robust
GPU-multigrid solver that can solve large, sparse linear
equation systems stemming from PDE discretizations on
highly anisotropic grids. This is a crucial component
in our framework for large scale simulations on GPU
clusters, but also highly relevant for other standalone
applications. For this purpose we have developed a
high performance cyclic reduction implementation that
exhibits much better memory access patterns than the
standard implementation. Accordingly, it performs sig-
nificantly better, on a par with the best hybrid tridiagonal
GPU solvers published so far. We use this solver as a
smoother in a multigrid cycle, and as a preconditioner
in a Krylov subspace scheme, and are thus able to solve
linear equation systems on grids with high anisotropies.
A comparison of multigrid performance with differ-
ent smoothers shows that our multi-color Gauß-Seidel
scheme is a faster choice for almost-isotropic grids, but
only the new ADI-TRIDI powered multigrid can deal
with the more difficult and realistic test cases. Finally, we
obtain further acceleration of 70% and more for the entire
solution process by running our previously developed
mixed-precision iterative refinement now completely on
the GPU. In comparison to the CPU the speedups are
close to an order of magnitude, and consistenty above
15 when comparing against double precision on the CPU
alone.
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