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Abstract We implement a high-order finite-element appli-
cation, which performs the numerical simulation of seismic
wave propagation resulting for instance from earthquakes at
the scale of a continent or from active seismic acquisition
experiments in the oil industry, on a large GPU-enhanced
cluster. Mesh coloring enables an efficient accumulation of
degrees of freedom in the assembly process over an un-
structured mesh. We use non-blocking MPI and show that
computations and communications over the network and be-
tween the CPUs and the GPUs are almost fully overlapped.
The GPU solver scales excellently up to 192 GPUs and achie-
ves significant speedup over a carefully tuned equivalent
CPU code.
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1 Introduction

Over the past several years, graphics processors (GPUs) have
rapidly gained interest as a viable architecture for general
purpose computations. Current GPUs can be seen as wide-
SIMD many-core designs, with a hardware scheduler that
keeps thousands of threads ‘in flight’ simultaneously by effi-
ciently suspending threads stalled for memory transactions.
GPUs thus maximize computational and memory through-
put of an entire ‘compute kernel’ (a sequence of compu-
tations that does not need synchronization in DRAM), in
contrast to CPU (cores) that minimize the latency of indi-
vidual operations and alleviate the memory wall problem
by ever larger hierarchies of on-chip cache memory. We re-
fer to a recent article by Fatahalian and Houston (2008) for
an overview of GPU architecture and a comparison to mul-
tithreaded CPU designs. Significant speedups in the range
of five to fifty have been reported for many application do-
mains, see for instance recent surveys on the field by Owens
et al (2008), Garland et al (2008) and Che et al (2008).
Furthermore, GPUs are beneficial in terms of energy effi-
ciency and other costs related to operating large-scale HPC
installations, a topic that is becoming increasingly important
(‘green computing’).

Related work on GPU clusters: Fan et al (2004) described,
for the first time, how an existing cluster (and an associated
MPI-based distributed memory application) could be im-
proved significantly by adding GPUs, not for visualization,
but for computation. More recently, G̈oddeke et al (2007)
used a 160-node GPU cluster and a code based on OpenGL
to analyze the scalability, price/performance, power consump-
tion, and compute density of low-order finite-element based
multigrid solvers for the prototypical Poisson problem. A
molecular dynamics framework on GPU clusters has been
presented by Phillips et al (2008), and Phillips et al (2009)
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have accelerated an Euler solver on a 16-node GPU cluster.
Finally, Kindratenko et al (2009) discuss many issues related
to installing and operating large GPU clusters.

Seismic modeling and geosciences on GPUs: Micikevicius
(2009) and Abdelkhalek et al (2009) have recently calcu-
lated seismic reverse time migration for the oil and gas in-
dustry on GPUs. They implemented a finite-difference method
in the case of an acoustic medium with either constant or
variable density running on a cluster of GPUs with MPI
message passing. In previous work, we have used finite-
difference and finite-element algorithms to model forward
seismic wave propagation (Komatitsch et al (2009), Michéa
and Komatitsch (2010)).

1.1 Article contribution and overview

Despite all advances and achievements, it must be kept in
mind that GPUs are co-processors in the traditional sense.
Several GPUs within one cluster node have to be coordi-
nated by the CPU(s); and for parallel computations on clus-
ters, the CPU retains full control of the interconnect. Data
must be moved from device memory to host memory prior
to its transmission over the network, and vice versa. Addi-
tionally, the bus to the host can be shared by several GPUs.
Given the high speedups that have been reported for the se-
rial case and on small clusters of GPUs, a satisfactory scal-
ing is not an automatic consequence. The ratio of compu-
tation to communication changes unfavorably, and sequen-
tial and communication-intensive stages of the code may be-
come dominant. Efficiency also decreases (for a given serial
component) when the time taken by the parallel component
decreases, which is the case when it is accelerated via effi-
cient GPU implementation. This effect can only be avoided
by reducing the serial cost of CPU to CPU and CPU to GPU
communication to a negligible value.

In this article, we report on our experiences in extending
the geophysics software SPECFEM3D to execute on GPU
clusters. We demonstrate how to overlap all additional bus
transfers and the interconnect communication with compu-
tations on the device via techniques that are applicable also
in other application domains, and demonstrate almost per-
fect weak scalability on a 192-GPU cluster.

2 Background

2.1 The spectral element method and solution algorithm

We resort to the Spectral Element Method (SEM) to simu-
late numerically the propagation of seismic waves resulting
from earthquakes or from active seismic acquisition experi-
ments in the oil industry (Chaljub et al (2007); Tromp et al

(2008)). Another use is to simulate ultrasonic laboratory ex-
periments (van Wijk et al (2004)). The SEM solves the vari-
ational form of the elastic wave equation in the time domain
on a non-structured mesh of elements, called spectral ele-
ments, in order to compute the displacement vector of any
point of the medium under study. It is more flexible than tra-
ditional global pseudospectral techniques (Komatitsch etal
(1996)).

We consider a linear anisotropic elastic rheology for a
heterogeneous solid part of the Earth, and therefore the seis-
mic wave equation can be written in the strong, i.e., differ-
ential, form

ρü = ∇ ·σ + f ,

σ = C : ε ,

ε = 1
2[∇u+(∇u)T ] ,

(1)

whereu is the displacement vector,σ the symmetric, second-
order stress tensor,ε the symmetric, second-order strain ten-
sor,C the fourth-order stiffness tensor,ρ the density, andf
an external force representing the seismic source. A colon
denotes the double tensor contraction operator, a superscript
T denotes the transpose, and a dot over a symbol indicates
time differentiation. The material parameters of the solid, C
andρ , can be spatially heterogeneous and are given quan-
tities that define the geological medium. Let us denote the
physical domain of the model and its boundary byΩ andΓ
respectively. We can rewrite the system (1) in a weak, i.e.,
variational, form by dotting it with an arbitrary test function
w and integrating by parts over the whole domain,∫

Ω
ρ w · üdΩ +

∫
Ω

∇w : C : ∇udΩ (2)

=

∫
Ω

w · f dΩ +

∫
Γ
(σ · n̂) ·wdΓ .

The last term, i.e., the contour integral, vanishes becauseof
the free surface boundary condition, i.e., the fact that the
traction vectorτ = σ · n̂ must be zero at the surface.

In a SEM, the physical domain is subdivided into mesh
cells within which variables are approximated by high order
interpolants. For better accuracy, the edges of the elements
honor the topography of the model and its main internal
discontinuities, i.e., the geological layers and faults. AJa-
cobian transform then defines the mapping between Carte-
sian pointsx = (x,y,z) within a deformed, hexahedral ele-
mentΩe and the reference cube.

To represent the displacement field in an element, the
SEM uses Lagrange polynomials of degree 4 to 10, typ-
ically, for the interpolation of functions (Seriani and Pri-
olo, 1994; De Basabe and Sen, 2007). Chaljub et al (2007)
and De Basabe and Sen (2007) find that choosing the de-
green = 4 gives a good compromise between accuracy and
time step duration. The control pointsξα are chosen to be
the n + 1 Gauss-Lobatto-Legendre (GLL) points. The rea-
son for this choice is that the combination of Lagrange in-
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terpolants with GLL quadrature greatly simplifies the algo-
rithm because the mass matrix becomes diagonal and there-
fore permits the use of fully explicit time schemes (Chaljub
et al, 2007; Tromp et al, 2008), which can be implemented
efficiently on large parallel machines (e.g., Carrington etal,
2008). Functionsf that represent the physical unknowns on
an element are then interpolated in terms of triple products
of Lagrange polynomials of degreen.

Solving the weak form of the equations of motion (2)
requires numerical integrations over the elements. A GLL
integration rule is used for that purpose, and therefore in
our case each spectral element contains(n+1)3 = 125 GLL
points. We can then rewrite the system (2) in matrix form as

MÜ+KU = F , (3)

where U is the displacement vector we want to compute, M
is the diagonal mass matrix, K is the stiffness matrix, F is
the source term, and a double dot over a symbol denotes the
second derivative with respect to time. For detailed expres-
sions of these matrices, see for instance Chaljub et al (2007).
Time integration of this system is usually performed based
on a second-order centered finite-difference Newmark time
scheme (e.g., Hughes (1987); Chaljub et al (2007); Tromp
et al (2008)), although higher-order time schemes can be
used if necessary (Nissen-Meyer et al (2008)).

In the SEM algorithm, the serial time loop dominates
the total cost because in almost all wave propagation appli-
cations a large number of time steps is performed, typically
between 5,000 and 100,000. All the time steps have identi-
cal cost because the mesh is static and the algorithm is fully
explicit, which greatly facilitates optimization.

2.2 Our simulation software: SPECFEM3D

In the last decade, in collaboration with several colleagues,
we developed SPECFEM3D, a software package that per-
forms the three-dimensional numerical simulation of seis-
mic wave propagation resulting from earthquakes or from
active seismic experiments in the oil industry, based on the
spectral-element method (SEM, Komatitsch et al (2003); Liu
et al (2004); Chaljub et al (2007); Tromp et al (2008)). In or-
der to study seismic wave propagation in the Earth at very
high resolution (i.e., up to very high seismic frequencies)
the number of mesh elements required is very large. Typi-
cal runs require a few hundred processors and a few hours
of elapsed wall-clock time. Large simulations run on a few
thousand processors, typically 2,000 to 4,000, and take two
to five days of elapsed wall-clock time to complete (Ko-
matitsch et al (2003, 2008)). The largest run that we have
performed ran on close to 150,000 processor cores with a
sustained performance level of 0.20 petaflops (Carrington
et al (2008)).

In this article we extend SPECFEM3D to a cluster of
GPUs to further speed up calculations by more than an or-
der of magnitude, or alternatively, to perform much longer
physical simulations at the same cost. The two key issues
to address are 1) the minimization of the serial components
of the code to avoid the effects of Amdahl’s law and 2) the
overlap of MPI communications with calculations.

3 Porting SPECFEM3D to GPU clusters

3.1 Meshing, partitioning and load balancing

In a preprocessing step, we mesh the region of the Earth in
which the earthquake occurred with hexahedra. Because the
computational costs associated with this stage are amortized
over many time steps in the course of the simulation, a CPU
implementation is justified, rather than also porting it to the
GPU. Next, we split the mesh into slices, i.e., cone-shaped
sections of the Earth from its surface to the outer core. The
model of the Earth that we use is that of Dziewoński and An-
derson (1981), which is classical in the seismological com-
munity. We identify slices with MPI ranks, and schedule one
slice per processor core, or per processor core orchestrat-
ing a GPU. The mesh in each slice is unstructured in the
finite-element sense so that regions of interest, e.g., certain
depths in the Earth where the earthquake occurred, are cov-
ered with more elements than other regions. The mesh as a
whole is block-structured, i.e., each mesh slice is composed
of an unstructured mesh, but all the mesh slices are topolog-
ically identical.

The resulting decomposition is topologically a regular
grid and all the mesh slices and the cut planes, at which MPI
neighborhood communication occurs, have the same num-
ber of elements and points. This implies that perfect load
balancing is ensured between all the MPI processes.

3.2 Serial implementation

We use NVIDIA CUDA for our implementation, and refer
to the CUDA documentation (NVIDIA Corporation (2009))
and conference tutorials (http://gpgpu.org/developer)
for further information. In a CUDA program, the execution
of a ‘kernel’ is manually partitioned into a so-called grid
of thread blocks. Blocks within the grid cannot communi-
cate with each other, while the threads in each block can
synchronize via a small on-chip shared memory. The thread
blocks are virtualized multiprocessors (‘cores’), and arefur-
ther partitioned automatically into ‘warps’ of 32, which ex-
ecute in lockstep with a shared instruction pointer, i.e., in a
single instruction multiple thread (superset of SIMD) fash-
ion. If threads within a warp diverge in their execution path,
the branches are serialized. Special care must be taken that
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the threads within a (half-) warp access contiguous regions
in off-chip DRAM, to maximize the effective memory band-
width because the hardware coalesces memory accesses into
one transaction per half-warp under certain conditions.

The implementation of the serial case follows the algo-
rithm outlined in Sect. 2.1 by mapping each of the following
three steps into separate CUDA kernels. The first step up-
dates the global displacement vector based on the previous
time step, the second step performs the finite-element as-
sembly, and the last step computes the global acceleration
vector. The first and last steps are trivially parallel as they
only affect the uniquely numbered data, and are mapped to
CUDA in a straightforward fashion to automatically max-
imize multiprocessor occupancy and coalesce memory ac-
cesses into more efficient block transactions. In the follow-
ing, we concentrate on the second step, as benchmarking
reveals that it consumes more than 85 % of the time per time
step (Komatitsch et al (2009)). We identify an element with a
block of 128 threads (4 warps), and use one thread per cuba-
ture point. 125 out of 128 threads thus do useful work, and
we avoid conditionals by zero padding. We first copy the
global displacement vector corresponding to each element
into shared memory using the global-to-local mapping. The
derivative matrix of the Lagrange polynomials is stored in
the so-called constant memory, and the kernel then multi-
plies it with the local coefficients of the displacement at the
GLL points. Constant memory is cached, and it is as fast
as registers if all threads access the same item simultane-
ously. The third stage performs numerical integration with
the discrete Jacobian to obtain the local gradient of the dis-
placement vector. In the final step, the elementwise contri-
butions need to be assembled at each global point. Each such
point receives contributions from a varying number of ele-
ments due to the non-structured mesh, which calls for an
atomic summation, i.e., an order-independent sequential ac-
cumulation. We decouple these dependencies, which do not
parallelize in a straightforward manner, by using a coloring
scheme, resulting in one kernel call per color. Accordingly,
we pre-compute maximally independent sets of mesh ele-
ments during the meshing step (see Sect. 3.1).

To maximize efficiency, we apply a number of CUDA-
specific optimizations: Data is arranged so that accesses to
local data stored in global memory (off-chip DRAM) can
be coalesced into large memory transactions, and bank con-
flicts in shared memory are avoided. Accesses to arrays cor-
responding to global data cannot be fully coalesced due to
the indirect addressing implied by the unstructured mesh,
and we route these accesses through the texture cache to
improve performance, although the improvement is rather
small, as expected. A trade-off is required between the re-
quirements of each block (due to the solution scheme) and
the available resources, as shared memory and the register
file in each multiprocessor are shared by resident blocks. We

carefully tune the implementation so that at any given time,
two blocks (8 warps) are concurrently active. This enables
the hardware scheduler to switch threads when stalled at off-
chip memory accesses, and results in better throughput. The
final kernel is a result of repeated optimization and resource
balancing every time new features have been added, because
splitting the computation into two kernels and paging out
all data to off-chip memory in-between is very expensive
and should be avoided if at all possible. We refer to a previ-
ous publication for the technical details of the implementa-
tion omitted here due to page constraints (Komatitsch et al
(2009)).

3.3 Parallel implementation

There are several challenges to address in mapping this com-
putation to a GPU cluster. The elements that compose the
mesh slices are in contact through a common face, edge or
point. To allow for overlap of communication between clus-
ter nodes with calculations on the GPUs, we create – inside
each slice – a list of all these ‘outer’ elements, and an analo-
gous list of the ‘inner’ elements. We compute the outer ele-
ments first, as it is done classically. Once these computations
have been completed, we copy the associated data to the
respective MPI buffers and issue a non-blocking MPI call,
which initiates the communication and returns immediately.
While the messages are traveling across the interconnect, we
compute the inner elements. Achieving effective overlap re-
quires that the ratio of the number of inner to outer elements
be sufficiently large, which is the case for large enough mesh
slices. Under these conditions, the MPI data transfer will
likely complete before the completion of the computation of
the inner elements. We note that to achieve effective over-
lap on a cluster of GPUs, this ratio must be larger than for
classical CPU clusters, due to the speedup obtained by the
GPUs.

The PCIe bus between the CPUs and the GPUs exhibits
bandwidth and latency similar to an Infiniband interconnect.
To alleviate this bottleneck, we insert two additional kernels
before and after the loop over the element colors in the as-
sembly process. The first one packs the contributions of the
outer elements in the current slice into an auxiliary buffer.
This buffer is transferred to the host, as PCIe transfers are
much faster when performed in one large batch rather than in
many small batches. The CPU unpacks the data, distributes
it to the MPI buffers associated with the four neighboring
slices and issues the non-blocking MPI call. A second auxil-
iary kernel performs the other way round, i.e., the unpacking
of a PCIe transfer and the indirect writes to device memory.
In our experiments, we found that this approach is faster
overall than performing several PCIe transfers, despite the
implied indirect reads and writes in device memory. CUDA
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allows for two alternative implementations to achieve over-
lap of PCIe communication and device computation. A fea-
ture called ‘streams’ is used in a way similar to our ap-
proach, where we decouple the outer from the inner ele-
ments at the MPI level (e.g., by overlapping computation
of the elements sharing data in one direction with transfer
of data for the other directions). This feature can be com-
bined with ‘zero copy’, which maps a buffer on the CPU
into device memory space. As the mesh is unstructured, the
additional bookkeeping overhead is sufficient to nullify any
performance improvements and thus we do not use these
features.

4 Results

4.1 Test configurations

The machine we use is a cluster of 48 Teslas S1070 at CCRT/
CEA/GENCI in Paris, France; each Tesla S1070 has four
GT200 GPUs and two PCI Express-2 buses (i.e., two GPUs
share a PCI Express-2 bus). The GT200 cards have 4 GB
of memory, and the memory bandwidth is 102 gigabytes per
second with a memory bus width of 512 bits. The Teslas
are connected to BULL Novascale R422 E1 nodes with two
quad-core Intel Xeon Nehalem processors operating at 2.93
GHz. Each node has 24 GB of RAM and runs Linux kernel
2.6.18. The network is Infiniband.

For the scalability tests, we use slices of 446,080 spec-
tral elements each, out of which 122,068 are ‘outer’ ele-
ments, i.e., elements in contact with MPI cut planes by at
least one mesh point, and 324,012 elements are ‘inner’ el-
ements. The ratio between outer and inner elements is thus
approximately 27.5% to 72.5 %. Each slice contains approx-
imately 29.6 million unique grid points, i.e., 88.8 million
degrees of freedom, corresponding to 3.6 GB (out of 4 GB)
memory footprint per GPU. The largest possible problem
size, using all 192 GPUs in the cluster, is thus 17 billion
unknowns. All our measurements correspond to the dura-
tion (i.e., elapsed time) of 1,000 time steps, keeping in mind
that each time step consists of the exact same numerical op-
erations (see Sect. 2.1). To get accurate measurements, not
subject to outside interference, the nodes that participate in
a particular run are not shared with other users. Each run
is executed three times to ensure that the timings are reli-
able, and to determine whether there are any fluctuations.
The CPU reference code is heavily optimized (Komatitsch
et al (2003, 2008)) using the ParaVer performance analysis
tool, in particular to minimize cache misses.
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Fig. 1 We compare the result of our single-precision GPU + MPI code
(solid line) and our reference existing single-precision CPU + MPI
code (dashed line) for the time variation of the vertical component of
the displacement vector at a given point in the mesh. The two curves
are almost perfectly superimposed and the absolute difference ampli-
fied by a factor of 3,000 (dotted line) is very small.

4.2 Numerical validation

Spectral-element codes for linear seismic wave propagation
modeling are always sufficiently accurate in single preci-
sion, as demonstrated, e.g., in Chaljub et al (2007), Tromp
et al (2008) and Komatitsch et al (2009). It is therefore un-
necessary to resort to double precision calculations to solve
this problem, which is an advantage on current GPUs be-
cause single precision calculations are significantly faster,
although the situation of double precision operations will
improve, in particular on the FERMI architecture. In the re-
mainder of this article, we thus use single precision on both
the CPUs and the GPUs. Before we proceed with perfor-
mance analysis of the GPU implementation, let us present
a validation test that we performed for the GPU-accelerated
code on 64 GPUs. Figure 1 shows a comparison of our single-
precision GPU + MPI code and our reference existing single-
precision CPU + MPI code for the time variation of the ver-
tical component of the displacement vector at a given point
in the mesh. Calculation of the absolute difference between
both curves shows that the differences are negligible. Thisis
the expected behavior because single precision is sufficient
on CPUs and the different order of computation on the GPU
does not lead to different results as the solution method is
stable.

4.3 Weak scalability

Fig. 2 shows the average elapsed time per time step of the
SEM algorithm for simulations on 4 to 192 GPUs (i.e., the
whole machine), in steps of four GPUs. Weak scaling is
close to perfect; the small fluctuations we observe are on
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Fig. 2 Weak scalability using GPUs, with and without bus sharing.

the order of 2–3 %. We repeat this experiment using only
one GPU per node, and consequently, we can only go up to
96 GPUs when keeping the load per GPU fixed. The fluctua-
tions are now entirely removed, which shows that all fluctu-
ations are caused by the shared PCIe bus in each half-Tesla
S1070. Furthermore, the entire run is on average only 3 %
faster when the PCIe buses are not shared, i.e., the PCIe
sharing implied by the design of the S1070 Tesla is not a
dominant bottleneck. This demonstrates convincingly that
the overlap of non-blocking MPI communication, PCIe trans-
fers and computation on the devices is excellent.

We now examine in more detail the extent to which com-
munications and computations overlap each other. Fig. 3
compares four sets of measurements (averaged over three
runs in each case): the two curves of the last experiment, a
calculation in which we completely turn off both the MPI
communications and the creation and processing of the MPI
buffers (magenta), and a calculation in which we create and
process the MPI buffers but replace the MPI send/receives
with zeroing of the buffers (blue). The last two configura-
tions are used for this analysis only; they give incorrect re-
sults, but execute the same number of computations per time
step. A comparison between the full calculation for the real
problem with sharing of the PCIe bus (red tics) and the mod-
ified calculation, in which the MPI buffers are built and thus
the communication costs between GPU and CPU are taken
into account but the MPI send/receives are disabled (blue
stars), provides a good estimate of the time spent waiting
for communications (an upper bound of 3% of the time),
i.e., this experiment is a good illustration of how effectively
communications and calculations overlap. We also observe
that the full calculation for the real problem without sharing
of the PCIe bus (green crosses) constitutes a lower bound
for the runtime, and several runs of the experiment depicted
with blue stars fortuitously reach this bound. We can there-
fore conclude that all communications are perfectly over-
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lapped with computations, and observed differences are due
to PCIe bus sharing. A comparison with the modified cal-
culation in which the MPI buffers are not built and MPI is
completely turned off (magenta squares) gives an estimate of
the total cost of running the problem on a cluster rather than
a single core, i.e., building MPI buffers, sending/receiving
them with MPI, and processing them once they are received.
We measure that this total cost is of the order of 0.325 / 0.291
= 1.117 = 11.7%. We emphasize that this cost does not affect
the efficiency (speedup) of the code, as it is not serialized.
We did not try to estimate the cost of running the code with-
out overlap between communication and computation since
this would imply using blocked MPI, which creates a bot-
tleneck when there is in excess of 2,000 cores, a situation
anticipated on future large GPU clusters.

4.4 Speedup

To measure the speedup, we repeat the weak scaling experi-
ment with two different CPU configurations. In the first one,
we assign each slice of 3.6 GB to a CPU core, and to bal-
ance resource sharing with idle resources, we schedule two
slices to each CPU. In the second one, we cut each slice in
half and assign four of these smaller slices to the four cores
in each CPU. We use process pinning to make sure that each
MPI process uses its desired core exclusively. These exper-
iments thus only require half the amount of cluster nodes,
because more memory is available to each CPU than in each
GPU board. Fig. 4 depicts the weak scaling measurements
we obtain. The fluctuations are larger than in the CPU case
(because the elapsed time is longer), but the relative amount
of noise in the measurements is the same as in the pure GPU
run. We currently cannot explain the repeatable peak in one
of the configurations. The configuration that uses four cores
per node to compute four half-sized slices is 1.6 times faster
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than using only two cores for the full slices. We do not ob-
serve the ideal factor of two due to resource sharing.

When combining the measurements in Fig. 2 and Fig. 4,
we can derive an average speedup of one GPU in a Tesla
S1070 over four cores in a Nehalem CPU by a factor of 12.9,
and of 20.6 over using only two CPU cores. Both factors are
equally meaningful, because we need to halve the size of
each slice for the eight-core run, which changes the ratio
between inner and outer elements, and the communication
pattern, size and amount of the MPI messages. In these types
of experiments in geophysics, one is usually interested in
running the largest problem size possible. We have therefore
based our experiments as to fill up the device memory to
90 %.

5 Conclusions and future work

We have demonstrated excellent weak scalability of a high-
order finite-element code to simulate seismic wave propa-
gation on a cluster of 192 GPUs, and obtained speedup fac-
tors of more than an order of magnitude against a highly
tuned CPU reference code, which performs the same num-
ber of arithmetic operations in the same precision, and com-
putes an equally accurate result. To achieve full overlap of
computation and communication (via MPI and between the
host and the device via PCIe), non-blocking MPI in com-
bination with a sufficiently large amount of device mem-
ory is necessary. The amount of communication that is not
currently overlapped in our implementation is slightly more
than 10 %, which is negligible in terms of weak scaling given
the order-of-magnitude overall speedup that we obtain.

We deliberately did not evaluate hybrid CPU-GPU con-
figurations, i.e., scheduling small batches of work to six CPU
cores and using the remaining two to drive the GPUs which

perform the majority of the calculations. Such a configura-
tion would be imbalanced on this cluster because we can-
not easily vary the size of the mesh slices, and more impor-
tantly because the speedup of one GPU over one CPU core
is much higher than that obtained by the remaining CPU
cores, even assuming perfect strong scaling. A hybrid par-
allelization that uses pThreads within each node and MPI
only in between nodes would require a lot of coding effort,
but in our opinion would yield only small returns in terms of
overall efficiency.

In future work, we plan to re-implement our approach
using OpenCL to expand the range of hardware on which the
accelerated code will run, in particular to include AMD. We
will also perform these experiments on the Lincoln machine
in the Teragrid, which has CPUs from an older technology
generation and a total of 384 of the same GPUs, which are
connected via shared PCIe x8 (i.e., half the lanes compared
to the machine used in these tests). We expect identical scal-
ability results, but it would be interesting to evaluate howthe
different factors (PCIe lanes, PCIe sharing, NUMA effects
etc.) influence performance and speedup. The new features
of FERMI (NVIDIA’s upcoming new GPU generation) are
also worth further investigation: This chip almost quadru-
ples the amount of shared memory per multiprocessor, and
we expect the tuning effort when adding new features to our
kernels to be significantly reduced. This is particularly im-
portant for more challenging and realistic physical simula-
tions that would require anisotropic or viscoelastic geolog-
ical media. Our current multi-GPU code is limited to the –
still relevant in many problems of interest – case of isotropic
elastic rheology (while our classical multi-CPU code has
full support for anisotropy and viscoelasticity). Finally, we
would like to assess the energy efficiency of the accelerated
solver, i.e., measuring electrical energy consumption; weare
discussing this possibility with BULL engineers.
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