
Performance and Accuracy of Lattice-Boltzmann Kernels on
Multi- and Manycore Architectures

Dirk Ribbrock, Markus Geveler, Dominik Göddeke, Stefan Turek

Institut für Angewandte Mathematik und Numerik (LS3), TU Dortmund,
Vogelpothsweg 87, D-44227 Dortmund, Germany

Abstract

We present different kernels based on Lattice-Boltzmann methods for the solution of the two-
dimensional Shallow Water and Navier-Stokes equations on fully structured lattices. The func-
tionality ranges from simple scenarios like open-channel flows with planar beds to simulations
with complex scene geometries like solid obstacles and non-planar bed topography with dry-
states and even interaction of the fluid with floating objects. The kernels are integrated into a
hardware-oriented collection of libraries targeting multiple fundamentally different parallel hard-
ware architectures like commodity multicore CPUs, the Cell BE, NVIDIA GPUs and clusters.
We provide an algorithmic study which compares the different solvers in terms of performance
and numerical accuracy in view of their capabilities and their specific implementation and op-
timisation on the different architectures. We show that an eightfold speedup over optimised
multithreaded CPU code can be obtained with the GPU using basic methods and that even very
complex flow phenomena can be simulated with significant speedups without loss of accuracy.

Keywords: High performance computing, Lattice-Boltzmann methods, shallow water
equations, fluid-structure interaction, GPU computing, CUDA, Cell BE, multithreading
PACS: 02.70.-c, 07.05.Bx, 89.20.Ff, 47.11-j
2010 MSC: 35Q68, 74F10, 35Q35

1. Introduction and Motivation

The accurate and interactive simulation of fluid flow is very challenging, in particular in
terms of computational resources. The (two-dimensional) shallow water equations (SWE) are a
well known formulation to approximating a three-dimensional fluid by its surface using a depth-
averaged quantity for the vertical velocity. They are used to reduce computational complexity,
and are applicable for instance in dam-break- and open-channel flows. In the inhomogeneous
case, source terms are used to represent external forces such as wind shear stress or slope and
friction induced by the bed topography.

The Lattice-Boltzmann method (LBM) is a modern numerical technique that starts with a
fully discrete model rather than discretising a set of partial differential equations and solving

Email address: dirk.ribbrock@math.tu-dortmund.de (Dirk Ribbrock)

Preprint submitted to Elsevier March 4, 2010

them directly. One of the key features of the LBM with fully structured lattices is that an imple-
mentation in parallel is comparably easy, which makes it a promising method, especially in view
of modern computational hardware, which evolves towards massive fine-grained parallelism:

During the past few years, computer architecture has reached a turning point. Together, the
memory, power and ILP (Instruction Level Parallelism) wall form a ‘brick wall’ [1], and per-
formance is no longer increased by frequency scaling, but by parallelisation and specialisation.
Commodity CPUs have up to six cores, the Cell processor is heterogeneous, and throughput-
oriented fine-grained parallel designs like GPUs are transitioning towards becoming viable gen-
eral purpose compute resources. On the software side, programming models for fine-grained
parallelism are subject to active discussion and are rapidly evolving. Programmers have to adapt
to this inevitable trend, because compiler support is on the far horizon if at all, in particular
for computations with low arithmetic intensity (ratio of arithmetic operations per memory trans-
fer). Established parallelisation strategies for both shared and distributed memory architectures
have to be revisited, and different strategies are necessary for different architectures. Various
optimisation techniques may lead to numerical deviations and it is no longer granted that the
same asymptotically very efficient algorithm is optimal in terms of runtime efficiency on all
these architectures. In addition, recent publications show that any sophisticated extension like,
for example fluid-structure interaction (FSI) often leads to a significant loss of performance on
non-commodity hardware.

1.1. Related Work

Fan et al. [2] were the first to implement a Lattice-Boltzmann solver on a cluster of GPUs.
Advanced Lattice-Boltzmann solvers on CPUs and GPUs have been implemented by Tölke and
Krafczyk [3], Thürey [4] and Pohl [5]. Stürmer et al. [6] have implemented a Lattice-Boltzmann
solver using the Cell BE simmulating a three dimensional blood flow. Closest in spirit are the
publications by Williams et al. [7] and Peng et al. [8], who have developed and benchmarked
the performance of Lattice-Boltzmann solver libraries supporting different emerging and lead-
ing multicore platforms. Hübner et al. [9] provide numerical studies for a sophisticated solver
for the two-dimensional Navier-Stokes equations using a fully implicit approach to the Lattice-
Boltzmann equation as a PDE.

1.2. Paper Contribution and Paper Overview

In section 2.1 and section 2.2 we briefly review the shallow water equations and their so-
lution using the Lattice-Boltzmann method with support for internal boundaries. In section 2.3
we summarise some modifications to the LBM to incorporate more realistic simulation scenarios
with nontrivial bed topologies, in particular the dynamic flooding and drying of areas. Further-
more, this section describes our approach to couple the simulation of fluids with moving solid
objects that influence the behaviour of the fluid. Section 3 is dedicated to parallelisation and
vectorisation techniques for the LBM-SWE solvers. We present efficient algorithms for all levels
of parallelism encountered in modern computer architectures. In section 4 we measure the nu-
merical accuracy and performance of our solvers for several prototypical benchmark problems.
Performance is evaluated on a cluster of conventional CPUs communicating via MPI, on multi-
socket multi-core systems, on a Cell blade, and on modern fully programmable GPUs. We are
convinced that such algorithmic studies with respect to exploiting parallelism on various levels
for a given application are necessary at this point, in particular in view of the challenges outlined
in this section. We conclude with a summary and a discussion in section 5.

2

2. Mathematical Background

2.1. Shallow Water Equations
Using the Einstein summation convention (subscripts i and j are spatial indices) the two-

dimensional shallow water equations in tensor form read

∂h
∂t
+
∂(hu j)
∂x j

= 0 and
∂hui

∂t
+
∂(huiu j)
∂x j

+ g
∂

∂xi
(
h2

2
) = −g

(
h
∂b
∂xi
+ n2

bh−
1
3 ui
√

u ju j

)
, (1)

where h is the fluid depth, u = (u1, u2)T its velocity in x- and y-direction, and g denotes the
gravitational acceleration. In addition, we apply a source term which internalises forces acting
on the fluid due to the slope of the bed and material-dependent friction: The slope term is defined
by the sum of the partial derivatives of the bed topography, weighted by gravitational acceleration
and fluid depth (b denoting the bed elevation), and we define the friction term using the Manning
equation, where nb denotes a material-specific roughness coefficient.

2.2. Lattice Boltzmann Method
In order to solve problem (1) with some initial conditions h(x, t = 0), u(x, t = 0) and a

constant bed topography, b(x), we apply the Lattice-Boltzmann method (LBM) with a suitable
equilibrium distribution to recover the SWE. In the LBM, the fluid behaviour is determined by
particle populations residing at the sites of a regular grid (the lattice). The particles’ movement
(streaming) is restricted to fixed trajectories eα (lattice-velocities) defined by a local neighbour-
hood on the lattice. We use the D2Q9 lattice, which defines the lattice-velocities in the direction
of the eight spatial neighbours as e0 = (0, 0), eα = e(cos (α−1)π

4 , sin (α−1)π
4) for α ∈ {1, 3, 5, 7} and

eα =
√

2e(cos (α−1)π
4 , sin (α−1)π

4) for α ∈ {2, 4, 6, 8} with e = ∆x
∆t being the ratio of lattice spacing

and timestep. Particle behaviour is defined by the Lattice-Boltzmann equation and a correspond-
ing collision operator. Here, the Lattice-Bhatnagar-Gross-Krook (LBGK) collision operator [10]
is used, which is a linearisation of the collision-integral around its equilibrium state with a single
uniform relaxation time τ. Using this relaxation, the Lattice-Boltzmann equation can be written
as

fα(x+eα∆t, t+∆t) = fα(x, t)−
1
τ

(fα− f eq
α)+

∆t
6e2 eαi(−g

(
h
∂b
∂xi
+ n2

bh−
1
3 ui
√

u ju j

)
), α = 0, . . . , 8, (2)

where fα is the particle distribution corresponding with lattice-velocity eα and f eq
α a local equi-

librium distribution, which defines the actual equations that are solved. In order to recover the
SWE, a suitable f eq

α has to be defined for every lattice-velocity. Zhou [11] has shown that the
equilibria can be written as

f eq
α =

h(1 − 5gh

6e2 −
2

3e2 uiui) α = 0
h(gh

6e2 +
eαiui
3e2 +

eα juiu j

2e4 −
uiui
6e2) α = 1, 3, 5, 7

h(gh
24e2 +

eαiui
12e2 +

eα juiu j

8e4 −
uiui
24e2) α = 2, 4, 6, 8

(3)

and that the SWE can be recovered by applying Chapman-Enskog expansion on the LBGK ap-
proximation (2). Finally, macroscopic mass (fluid depth) and velocity are obtained by

h(x, t) =
∑
α

fα(x, t) and ui(x, t) =
1

h(x, t)

∑
α

eαi fα, α = 0, . . . , 8 (4)

respectively. We use the popular bounce-back rule as boundary conditions, where particles are
reflected using opposite outgoing directions.

3

2.3. Extended methods

Using the LBM introduced above as a starting point for advanced solvers, we present two
general extensions to the basic LBGK method.

The LBM for the shallow water equations presented above can interact with the bed surface
and therefore is not restricted to simple scenarios (as it would be if an equilibrium distribution
function corresponding to the two-dimensional Navier-Stokes equations had been used). How-
ever, it is restricted to subcritical flows, i. e., the fluid depth is significantly greater than zero. The
first extension to the method aims at allowing so-called dry-states, since the dynamic drying and
wetting of the bed topography is a feature desired by many applications. In our approach, we
define a fluid depth lower than a specified small threshold parameter as dry and set the macro-
scopic velocity at dry sites to zero, to avoid the division by zero in the extraction phase of the
original algorithm (the evaluation of equation (4)). Additionally, local oscillations caused by
critical non-zero fluid depths are confined with an adaptive limiter approach.

In order to simulate rigid bodies moving within the fluid (fluid structure interaction, FSI), the
method described so far is extended by three major algorithmic steps: In the first step, the forces
acting on the fluid due to a moving boundary have to be determined. We use the so called BFL-
rule [12], which interpolates the momentum values for the consistency with non-zero Dirichlet
boundary conditions induced by a moving boundary. The interpolation is achieved by taking
values in opposite direction of the solid movement similar to the bounce-back rule.

The second major step in performing FSI is the extrapolation of missing macroscopic quan-
tities. Moving solids imply that the lattice is in general not invariant over time: Lattice sites that
belong to a solid region at time t may become fluid sites at time t + ∆t. In this case, the miss-
ing quantities have to be reconstructed. We use an indirect so-called equilibrium refill method
proposed for example by Caiazzo [13], which uses a three point-backward approximation af-
ter calculating the opposite direction of the solid’s movement in order to use one-dimensional
extrapolation only.

Finally, the force acting on the solid due to fluid movement is determined by the Momentum-
Exchange algorithm (MEA) [14].The MEA uses special distribution functions to compute the
moments resulting from incoming particles and outgoing particles corresponding to a single
lattice-velocity at a specific solid (boundary) point.

3. Implementation and Parallelisation

3.1. LBM Solvers

We have implemented a modular ‘construction kit’ for Lattice-Boltzmann based solvers for
the SWE and concentrate our analysis on five configurations: Our basic solver (LBMSWE) is de-
signed for simple simulations and does not support source terms. Hence, it is suitable for the
uniform SWE (equations (1) with its right hand side set to zero) and for flow problems involv-
ing only a planar bed. To enable a numerical comparison with other CFD solvers, the equilib-
rium distribution functions (3) can be replaced by those for the Navier-Stokes equations (solver
LBMNAVSTO), see for example Caiazzo for the exact equations [13]. Including the source term
(right hand side of equation (1)) for the bed’s slope and friction and the techniques described
in section 2.3 to incorporate dry-states into our first solver leads to a method for the inhomoge-
neous SWE (LBMSWE+). Adding all functionality associated with moving self-propelled solids
results in a FSI capable solver (LBMFSI). Finally, the same configuration as LBMSWE+ using the
Navier-Stokes module instead of the SWE module is labelled LBMNAVSTO+. As reference we use

4

a FEM discretisation for the two-dimensional Navier-Stokes equations (FEMNAVSTO) provided
by the FEATFLOW project [15] for our numerical validation, see section 4.

3.2. Efficient Parallelisation and Vectorisation
In all solvers presented in the previous section, parallelism is trivially abundant: All work

performed for each lattice site is independent of all other sites. However, this general obser-
vation does not lead in a straightforward manner to an efficient parallelisation and in particular
vectorisation, especially for the more complex solvers. Our implementation supports coarse-
grained parallelism for distributed memory systems, medium-grained parallelism on multicore
shared memory machines, and fine-grained parallelism corresponding to the SIMD paradigm.
The latter is important not only in the SSE units of conventional CPUs, but also on graphics
processors. For instance, the SIMD width is 32 on current NVIDIA CUDA-capable GPUs. Only
the actual implementation of the algorithms varies for different architectures, see section 3.3.

The SIMD processing implies that branches should be avoided in the innermost loops, be-
cause otherwise serialisation of the branches occurs. In the context of our FSI-LMB solver, sites
can be fluid, solid, dry or moving boundary, and each type has to be treated differently. Further-
more, different computations are performed in the collision steps for the nine lattice velocities of
the D2Q9 model. For an efficient vectorisation, we want to store all data contiguously in mem-
ory. A special packing algorithm is used to determine the largest connected areas in the given
domain: For the basic solver without source terms and FSI, all obstacle sites can be eliminated a
priori, as they contain no fluid throughout the entire calculation. In a second step, all remaining
sites are classified with respect to their neighbours in all nine directions. For example, if the
northern neighbours of two adjacent lattice-sites are also adjacent and have the same boundary
conditions, the solver can process these sites in a vectorised manner without branches. However,
for the advanced algorithms, this lattice-compression technique is not suitable since the lattice
is dynamically altered by e.g. the movement of the solids. In this case, the packing algorithm
is only run once in the preprocessing phase, packing only stationary obstacles as in the original
algorithm. Dynamic lattice transformation in the actual simulation is achieved by tagging lat-
tice sites either as fluid, solid or fluid-boundary, etc. In all cases, the packed data is stored in
one-dimensional arrays that contain ranges of lattice-sites with related neighbours and similar
boundary conditions. In addition to vectorisation, the approach also ensures good spatial and
temporal locality of the computations.

Figure 1 exemplarily depicts the data layout stemming from the packing- and domain de-
composition algorithms for a situation with one stationary obstacle (top) and one object moving
to the right (bottom right). Hence, the vectors only contain data for fluid sites. The classification
step generates index vectors containing intervals that guide the computation for each lattice ve-
locity (illustrated by the differently colored arrows in figure 1): All fluid sites in an interval can
be treated equally by the LBM algorithms. This approach is very similar to the one proposed by
Krafczyk et al. [16]. Since moving objects alter the lattice in each timestep, the computationally
intense preprocessing is avoided by using dynamic marking of the lattice sites geometrically en-
closed by the moving solid’s boundary (e.g. solid (gold), solid-boundary (tan) and sites that need
to be initialised (red) in figure). Note, that the ratio of fluid and (stationary) solid sites is usually
much greater than in our small example and the (integer) index vectors are only as long as needed
for the specific lattice-velocity to keep the additional memory imprint as small as possible.

To be able to distribute the solver calculation across various cores and calculate the solution
in parallel, the domain (the packed data vectors) is partitioned into different nearly independent
parts. We pad local arrays with a few ghost entries (white sites in figure 1), allowing it to

5

patch 0 patch 1

Figure 1: Data layout after preprocessing: Left: Full distribution function. Right: Data- and index vectors after partition-
ing. The colored arrows visualise index limits that define the intervals for homogeneous computations: The black arrows
represent integer values associated with distribution function f1, the green ones with f2 and so on. For instance, in the
first part of the domain (denoted with patch 0), the first black arrow indicates that streaming into direction (1, 0)T is no
longer valid, since the index reaches the right boundary. Hence, any streaming can be processed in a branch-free way. In
addition, note that in patch 0, all non-fluid sites are not represented in the packed data and index vectors, because they
represent a stationary solid obstacle whereas patch 1 contains the moving solid and therefore no packing applies.

synchronise with its predecessor and successor. As we use a one-dimensional data layout, each
part has only two direct neighbour subdomains to interact with. After each time step every
part sends its own results corresponding to subdomain boundaries to the ghost sites of its direct
neighbours. As soon as every part has finished these independent, non-blocking transfers, the
next time step calculation can begin. On shared memory architectures, the synchronisation phase
does not involve message passing, but can be realised via locks on shared data, and thus the
procedure is conceptually the same. Consequently, the communication between the different
parts is very efficient, because it involves no serialisation.

3.3. Hardware-Oriented Implementation

The solver is built on top of the HONEI libraries [17] to be able to use the different target
hardware plattforms efficiently. HONEI provides a wide range of software backends to access
different hardware via a unified interface. Its generic backend approach enables the programmer
to develop code without having to care about specific hardware details, and applications built on
top of the libraries are written only once and can directly benefit from hardware acceleration by
simply designating them with a hardware tag. Furthermore, the backend specific infrastructure
eases the development of application-specific functionality, because hardware specific optimi-
sation has not to be done from scratch: The CPU backend is built around SSE intrinsics. The
multicore backend uses PThreads to provide an abstract thread type and tools to execute and syn-
chronise these threads. The GPU backend is based on NVIDIA CUDA and provides simplified
access to any CUDA enabled GPU. In addition, all memory transfers between main memory and
the GPU device memory are done automatically and executed only if necessary. The Cell back-
end enables support for the IBM Cell BE and grants a comfortable way to create custom SPE
programs on top of the IBM SPE libraries. Finally, the MPI backend encapsulates the common
message passing interface.

4. Results

4.1. Validation

Since all backend-specific implementations compute the same numerical results (within a
very small limit) as the CPU-implementation, the following numerical tests concentrate on a
comparison with an external CFD code as well as with comparisons between the different solvers.
We first set up two test scenarios for each LBM-SWE solver described in section 3.1 and compare

6

their ability to conserve macroscopic mass (i. e., fluid depth in the SWE case). The basic LBM
solver LBMSWE is tested with a full dam-break simulation with a cuboidal fluid body collapsing
over the initially planar surface (scenario FCuDB). In addition, we introduce some stationary
obstacles to simulate a partial dam-break situation (scenario PCuDB). For the solver configura-
tion that makes use of the source terms, we modify the first scenario by employing a non-planar
bed topography given by bγ(x, y) = γ(x2 + y2) for subcritical values of γ and label this scenario
with FCuDBslope. Critical fluid depths are simulated using the partial dam-break situation with
an initially dry lower basin (scenario PCuDBdry). Finally, the solver with full functionality is set
up to simulate a single box moving through the fluid in non-cartesian direction with planar bed
topography (scenario BoxFSI) as well as with the bottom defined by the function bγ (scenario
BoxFSIslope).

We measure the relative error in volume (which is the error in macroscopic mass in the
SWE case) as Evol =

∣∣∣∣Vana−Vres
Vana

∣∣∣∣, where Vana is the analytical volume. Table 1 displays the resulting
relative errors after convergence for the three LBM-SWE solvers and the corresponding scenarios
for different levels of discretisation (level d implies a lattice resolution of (50 · 2d−1)2). We
emphasise, that these numbers do not vary significantly when using different architectures. The
results presented are produced by using the CUDA backend with a NVIDIA GeForce GTX 285
in single precision.

LBMSWE LBMSWE+ LBMFSI
d FCuDB PCuDB FCuDBslope PCuDBdry BoxFSI BoxFSIslope
1 1.83E-04 9.33E-04 2.75E-02 1.11E-01 1.74E-02 1.66E-02
2 6.37E-05 5.56E-04 2.74E-02 5.05E-02 3.41E-03 1.94E-02
3 7.96E-06 4.45E-06 2.74E-02 5.70E-03 9.98E-04 1.50E-02
4 1.11E-06 1.48E-06 1.01E-02 5.01E-03 2.58E-06 3.00E-03
5 7.97E-07 7.40E-06 8.96E-03 5.00E-03 4.00E-07 2.60E-03
6 7.96E-07 0.96 E-06 4.70E-04 4.98E-03 2.01E-07 1.01E-04

Table 1: Relative error in volume Evol for different solvers and simulations.

As it is common with the LBGK approximation for the SWE, we verify, that single versus
double precsion is not an issue here as well and double precision results are usually not signifi-
cantly better than single precision ones. Secondly, all error values decrease as expected at higher
lattice-resolution. At the largest problem sizes, the relative errors range from 0.000005 % using
the basic solver, to 0.05 %with a more complex bed topography. The same holds true for our
LBMFSI solver which implies that the added FSI functionality does not lead to a significant mass
loss. With dry-states present, our experimental approach reaches an error of approximately 0.5 %
at higher lattice sizes.

EFEM EFEM #iters #iters
(∆x,∆t, τ) LBMNAVSTO LBMNAVSTO+ reduction LBMNAVSTO LBMNAVSTO+
(1, 1, 1) 2.00E-03 1.55E-03 22.5% 26250 26120
(1, 1, 1.5) 2.12E00 8.90E-01 58% 17369 17119
(1, 1, 0.6) 1.57E00 1.02E00 35% 74665 64434
(1, 1, 0.9) 5.0E-01 8.50E-02 83% 30031 29257
(1, 1, 1.1) 2.52E-01 1.08E-01 57% 23654 23580
(1, 0.9, 1) 1.95E-03 1.55E-03 20.5% 26700 26347
(1, 1.1, 1) 1.95E-03 1.55E-03 20.5% 26025 25894
(0.9, 1, 1) 1.95E-03 1.55E-03 20.5% 26024 25669

Table 2: Relative error EFEM and numbers of iterations until steady-state for the driven-cavity test.

In a second test series, we compare our Navier-Stokes based solver configurations to the
results computed by the corresponding FD solver provided by Hübner [9] as well as with the
corresponding solver within the FEATFLOW project [15]. Besides the comparison with exter-
nal codes, this test aims at showing that our most sophisticated solver, LBMFSI, may produce

7

quantitatively more accurate results than the basic solver. In order to do so, we use a lid-driven
cavity scenario with the Reynolds number set to 100 and represent the moving wall by a moving
solid in order to apply the microscopic moving-boundary conditions instead of resetting only
macroscopic velocity in each timestep. Table 2 shows the error EFEM = ||uFEM − ures|| and the
total numbers of iterations until a steady state is reached, where uFEM is the x-component of the
macroscopic velocity at a vertical testline through the center of the domain computed by the
solver FEMNAVSTO and ures the corresponding result using LBMNAVSTO or LBMNAVSTO+ respec-
tively. The results are shown for several different solver parameterisations labelled with the cor-
responding values of (∆x,∆t, τ). It can be seen that the LBM solvers can be parameterised so that
they are competitive to the FEM solvers: Error norms around 0.2 % imply component-wise dif-
ferences in the macroscopic velocity at the fourth or fifth digit in average, although, as expected,
they can of course not compete against them when more accuracy is required. Furthermore,
our moving boundary-capable solver enhances numerical accuracy by 20 to 80 % compared to
the basic solver and slightly reduces the needed numbers of iterations until the steady-state is
reached. Again, these results are independent of the evaluated hardware architectures.

4.2. Performance Benchmarks

We first assess the performance of the basic solver without its source term and FSI mod-
ules. Figure 2 shows the mega lattice updates per second (MLUP/s) for increasing lattice size,
simulating a partial dam-break scenario.

 0

 50

 100

 150

 200

 250

 300

2502 5002 10002 15002 20002 24002 28002

M
LU

P
/s

Number of lattice sites

SWE GTX 285
SWE 8800 GTX

SWE Core i7, 4 thread
SWE Opteron, 3 threads

SWE QS22 Blade
FSI GTX 285

SWE+ GTX 285

(a) Performance benchmark

 0

 5

 10

 15

 20

 25

 30

 35

 40

2502 5002 10002 15002 20002 24002 28002

M
LU

P
/s

Number of lattice sites

1 process, 1 node
2 processes, 2 nodes
3 processes, 3 nodes
4 processes, 4 nodes
8 processes, 4 nodes

(b) Strong scalability with MPI

Figure 2: Left: Partial dam-break benchmark on different architectures (solver LBMSWE); with non-planar bed (solver
LBMSWE*); with moving solids (solver LBMFSI). Right: Strong scaling with MPI on an Opteron cluster with infiniband
interconnect.

The CPU SSE/multicore backend is evaluated on a dual-socket dual-core AMD Opteron
2214 system and an Intel Core i7 quad-core workstation. The Cell backend is tested with an
IBM QS22 Cell blade with two Cell BE processors. The GPU-based solver is executed on a
NVIDIA GeForce 8800 GTX and a GeForce GTX 285. The QS22 blade executes twice as fast
as the Opteron system, but is outperformed by a factor of two by the Core i7 system. Even the
older 8800 GTX outperforms all CPU systems but is restricted to small lattice sizes due to its
comparatively small amount of on-chip memory. Finally, the GTX 285 reaches eight times the
performance of the fastest CPU system. These speedup factors are proportional to the bandwidth

8

to off-chip memory of the various architectures, ranging from 6.4 GB/s per socket (Opteron),
25 GB/s (Cell) and 33 GB/s (i7) to 89 GB/s and 160 GB/s for the two GPUs. We emphasise that
the speedup of the GPU over other architectures is in line with the measurements for the basic
LBM solver, even with full FSI functionality. The timing measurements for the more complex
solvers demonstrate that all solver configurations can cope with high resolutions in reasonable
time. For example, even the full algorithm running at 50 MLUP/s can compute a single timestep
on a lattice with approximately 1.7 million lattice-sites in less than 0.04 seconds, corresponding
to 30 timesteps per second. The more advanced solvers do not benefit from the static lattice
compaction (cf. section 3.2) to the same extent as the basic solver, because the domain changes in
the course of the simulation. Besides the additional computational effort, the loss in performance
compared to the basic solver is therefore certainly due to the increase in conditional branches in
the code.

EquilibriumDistribution CollideStream Extraction Boundaries

Opteron 3 threads 61 24 15 0
Core i7 4 threads 48 35 17 0
QS22 blade 7 72 16 5
GeForce 8800 GTX 19 52 19 10
GeForce GTX 285 32 37 24 7

Table 3: Breakdown of the different kernels in one solver step (solver LBMSWE): Fraction of total runtime for the kernel
computing equations (3) (EquilibriumDistribution), a fused collisions and streaming kernel (CollideStream) and
a single kernel for determining the macroscopic quantities (equations (4), labeled Extraction) and finally, a module
responsible for applying boundary conditions (Boundaries).

Detailed measurements of the LBMSWE solver reveal, that only the kernel responsible for
computing the equilibrium distribution functions is compute-bound, all other operations are lim-
ited in performance by the memory bandwidth. Table 3 shows that the equilibrium distribution
kernel consumes only a small percentage of execution time on the devices with a high floating
point throughput. In contrast these architectures spend much more relative time in the collide
and stream kernels, which requires many additional memory transfers.

Figure 2(b) finally shows almost perfect strong scaling of the MPI backend using the LBMSWE
solver on a small cluster of Opteron 2214 nodes.

5. Conclusions and Future Work

A hardware oriented approach to two-dimensional flow problems based on different govern-
ing equations has been presented. Performance critical kernels have been implemented as ‘build-
ing blocks’ for Lattice-Boltzmann based solvers. Besides a wide applicability, the approach aims
at targeting multiple floating point hardware architectures under a unified interface. It has been
shown that our approach can cope with complex flow problems with reasonable performance and
accuracy on all architectures under consideration.

In future work, we will explore heterogeneous systems, e.g., the simultaneous use of the
CPU cores and GPUs in cluster nodes, to maximise the computational efficiency. In addition,
performance comparison with different state of the art approaches to solving the SWE are in
progress.

Acknowledgements

We would like to thank Danny van Dyk, Sven Mallach and all contributors to HONEI.
This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under the grant TU

9

102/22-2, and by BMBF (call: HPC Software für skalierbare Parallelrechner) in the SKALB
project (01IH08003D / SKALB). Thanks to NVIDIA for generous hardware donations, and to
IBM Germany for access to QS22 blades.

References

[1] M. V. Wilkes, The memory gap (keynote), in: Workshop on Solving the Memory Wall Problem, ISCA-2000, 2000,
http://www.ece.neu.edu/conf/wall2k/wilkes1.pdf.

[2] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, GPU cluster for high performance computing, in: SC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, 2004, p. 47. doi:10.1109/SC.2004.26.

[3] J. Tölke, M. Krafczyk, TeraFLOP computing on a desktop PC with GPUs for 3D CFD, International Journal of
Computational Fluid Dynamics 22 (7) (2008) 443–456. doi:10.1080/10618560802238275.

[4] N. Thürey, K. Iglberger, U. Rüde, Free surface flows with moving and deforming objects for LBM, Proceedings of
Vision, Modeling and Visualization 2006 (2006) 193–200.

[5] T. Pohl, High Performance Simulation of Free Surface Flows Using the Lattice Boltzmann Method, Ph.D. thesis,
Universität Erlangen-Nürnberg (2008).

[6] M. Stürmer, J. Götz, G. Richter, U. Rüde, Blood flow simulation on the Cell Broadband Engine using the Lattice
Boltzmann Method, Tech. Rep. 07-9, Lehrstuhl für Systemsimulation, Universität Erlangen-Nürnberg (2007).

[7] S. Williams, J. Carter, L. Oliker, J. Shalf, K. A. Yelick, Lattice Boltzmann simulation optimization on leading
multicore platforms, in: IEEE International Symposium on Parallel and Distributed Processing, IEEE, 2008, pp.
1–14. doi:10.1109/IPDPS.2008.4536295.

[8] L. Peng, K. Nomura, T. Oyakawa, R. Kalia, A. Nakano, P. Vashishta, Parallel Lattice Boltzmann Flow Simulation
on Emerging Multi-core Platforms, Springer-Verlag, Berlin, Heidelberg, 2008.

[9] T. Hübner, S. Turek, Efficient monolithic simulation techniques for the stationary Lattice Boltzmann equa-
tion on general meshes, Computing and Visualization in Science 13 (3) (2010) 129–143. doi:1007/

s00791-009-0132-6.
[10] F. J. Higuera, J. Jimenez, Boltzmann approach to lattice gas simulations, EPL (Europhysics Letters) 9 (7) (1989)

663–668. doi:10.1209/0295-5075/9/7/009.
[11] J. G. Zhou, Lattice Boltzmann methods for shallow water flows, Springer, 2004.
[12] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics

of Fluids 13 (11) (2001) 3452–3459. doi:10.1063/1.1399290.
[13] A. Caiazzo, Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure interaction problems, Ph.D.

thesis, Technische Universität Kaiserslautern, Scuola Normale Superiore Pisa (Feb. 2007).
[14] A. Caiazzo, M. Junk, Boundary forces in lattice Boltzmann: Analysis of momentum exchange algorithm, Comput-

ers & Mathematics with Applications 55 (7) (2008) 1415–1423.
[15] C. Becker, S. Turek, Featflow – finite element software for the incompressible Navier-Stokes equations, User

manual, Universität Dortmund (1999).
[16] M. Krafczyk, P. Lehmann, O. Philippova, D. Hänel, U. Lantermann, Lattice Boltzmann Simulations of complex

Multi-Phase Flows, Springer, 2000.
[17] D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, C. Gutwenger, HONEI: A collection of libraries for

numerical computations targeting multiple processor architectures, Computer Physics Communications 180 (12)
(2009) 2534–2543. doi:10.1016/j.cpc.2009.04.018.

10

http://www.ece.neu.edu/conf/wall2k/wilkes1.pdf
http://dx.doi.org/10.1109/SC.2004.26
http://dx.doi.org/10.1080/10618560802238275
http://dx.doi.org/10.1109/IPDPS.2008.4536295
http://dx.doi.org/1007/s00791-009-0132-6
http://dx.doi.org/1007/s00791-009-0132-6
http://dx.doi.org/10.1209/0295-5075/9/7/009
http://dx.doi.org/10.1063/1.1399290
http://dx.doi.org/10.1016/j.cpc.2009.04.018

	Introduction and Motivation
	Related Work
	Paper Contribution and Paper Overview

	Mathematical Background
	Shallow Water Equations
	Lattice Boltzmann Method
	Extended methods

	Implementation and Parallelisation
	LBM Solvers
	Efficient Parallelisation and Vectorisation
	Hardware-Oriented Implementation

	Results
	Validation
	Performance Benchmarks

	Conclusions and Future Work

