In Proceedings of the 2006 Workshop on Edge Computing Using New Commodity Architectures, May 2006

Mixed Precision Methods for Convergent lterative Schemes

Robert Strzodka
Stanford University, Max Planck Center

strzodka@stanford.edu

1. INTRODUCTION

Most error estimates of numerical schemes are derived in the field
of real or complex numbers. From a computational point of view
this assumes infinite precision. For the implementation on a com-
puter, the infinite number fields are quantized into a finite set of
values. Numerical stability analysis of the schemes then reveals
how sensitive they react to distortions of the data, introduced by
the data quantization and rounding. However, precise quantita-
tive analysis of complex schemes with a clear dependence on the
quantization parameters is very difficult. In particular, for iterative
schemes which feed the results of one iterative step as input into
the next step, and possibly execute hundreds or even thousands of
iterations, there is no easy way to obtain reliable error bounds in
the long run.

These difficulties often lead to the demand for high precision arith-
metic in hardware processors, in the hope that the finer quantiza-
tion will result in higher accuracy of the final result. While this is
true in many cases, in general, there is no monotonic relation be-
tween the precision of the quantization and the final accuracy, i.e.
increasing the computational precision can lower the accuracy of
the result. In practice, however, increasing the precision often is
successful, so that implementations tend to favor the highest pre-
cision format supported by hardware, without much consideration
if it is really necessary. Accordingly, high precision formats are
used extensively even in the most performance critical pieces of
code, where several parallel low precision computations could lead
to significant speedup instead. We suggest to use mixed precision
methods to overcome this problem.

2. CONVERGENT ITERATIVE SCHEMES
Given the series of vectors x* € RY* p* ¢ RNr we define the
corresponding series of matrices X* € RV=>xk+1 pk ¢ RNpxk+1
containing the vectors from 0 to k. With multi-dimensional func-
tions Fy, F), we may write down the general iterative scheme:

(xo, pO) := initial values,
X = R (X5 PY),
karl — Fp(Xk+1,Pk).

We assume that the series (x*)x converges to a unknown limit x*.
However, we continue the iterations only for kmax steps, which de-
pends upon some error estimator. Thus, we obtain the approximate
solution x*m=_ The p* are auxiliary vectors used by F}, and F,.

* can be re-written as

With a new function G, the iteration over x
<= x4 gxE PY), (1)

GX"Pr) = F(X",PF) —x"

Dominik Goddeke

University of Dortmund
dominik.goeddeke @math.uni-dortmund.de

Then the approximate solution can be expressed explicitly:

kﬂlﬂX71
Xm0 4 Z G(X* P,
k=0

Since (x*), converges, (G(X", Pk))k must converge to 0. Thus,

the approximate solution x"™ is obtained by summing up addends
that are decreasing in magnitude (in the limit). We cannot change
the order of the summation because we need the results x* in the
given order to compute the next addend G(X*, P*). So our prob-
lem here is that we start with large addends and add up smaller and
smaller contributions (in terms of absolute values) to the sum.

Summations of the above form are fairly inaccurate on the standard
floating point representation, because once the exponent of the sum
has reached a high value, the small addends contribute with only
very few digits to the mantissa of the sum, and at a certain stage do
not contribute at all. Therefore, we should accumulate the results
in a high precision format, possibly even higher than the final ac-
curacy we aim for. But since we target parallel hardware, we want
to compute G itself and multiple iterations of the scheme in low
precision. For this purpose we split the sum along some indexes
KO = 0, kLo, ..., kL = Kmax into several parts

1+1
L-1 km:; -1

kaax — XO+Z Z G’(Xk,Pk))

=0 k=k!

‘max

The computation in the inner sum uses low precision, whereas the
accumulation in the outer sum happens in high precision. To ex-
ploit the full range of the low precision format, the inner iterations
execute on differences rather than absolute values, i.e. instead of
Eq. 1, fork = kb, ..., kbt — 1 we use

(ka - xk‘]ﬁ“) = (Xk - xk‘l““‘) + G(XkaPk)- 3

Now, we must also compute G(X*, P*) accurately in low preci-
sion. There are two scenarios.

G depends on X", In this case we express G(X*, P*) in terms
of G(X* — X* P*), where the matrix X* has the same size as

X* and contains in columns k = kb, ..., k5L — 1 the vector
k

Lo . .
x"“max j.e. the result from the beginning of the corresponding par-

tial sum. Then the corresponding columns x* and xkm are of
similar magnitude, their difference can be easily represented in the
low precision format, and the computation of G(X* — X* P*) is
quite accurate. However, the required reformulation can be tricky
in general, especially for non-linear G. Let us give an example for
the simple case when G' depends only on x* and is affine in this

argument. Then we can replace G(X*, P*) in Eq. 3 with
G(xF, PF) = G(xF — xbme, PFY & (G(xkfnax,Pk) — (o, P’“)) 7

where (G(xkflmm P*) — G(o, P’“)) is computed once for the en-
tire partial sum in high precision and down-casted to low precision.

The above case already covers many of the iterative solvers used
for linear equation systems Ax = b. For example, for a stationary
iterative method (e.g. Jacobi, Gauss-Seidel, SOR) we have

x" = Bx"+ec, G(x"):= B-1Dx" +c,

Gx") = B-1)E"- Xk’lﬁm) tec+ (B-]l)xk,l‘m’

and this reformulation is equivalent to the solution of the residual
L L
system Ax’ = b’ with x’ = x — x"mx and b’ = b — Ax*mx,

G does not depend on X*. Some schemes are already constructed
in such a way that they only accumulate the results as in Eq. 1 and
do not use X" in other computations, e.g. the Conjugate Gradient
solver. In this case the auxiliary variables P* implicitly contain the
information about the global descent direction towards the limit.
Because they accumulate errors over time while being computed
in low precision, we use the transition from one partial sum to the
other in Eq. 2 to recompute them in high precision and thus ensure
that the following evaluations of G are more accurate again. In case
of the Conjugate Gradient solver, the residual (r) can be computed
directly form the current high precision solution and the descent
direction (p) can be orthogonalized against it [2].

Above we have discussed how to handle the accumulation of the
low precision results from G. We may also ask how the less pre-
cise computation of G itself effects the overall convergence rate.
In general, the additional rounding errors incurred by the use of
a lower precision format are still very small in comparison to the
magnitude of G, because floating point numbers are designed to
minimize the relative error. However, even these small effects will
have a large impact if the exact scheme converges very quickly. In
the other extreme of a very slowly converging scheme we may also
run into problems, because the additional error due to the low pre-
cision can then make the difference between slow convergence and
divergence. Often the flexibility of the sum splitting in Eq. 2 can
alleviate convergence problems by simply producing a finer divi-
sion and thus more computation in high precision, i.e. we may take
advantage of the mixed precision method for all but very extreme
cases. However, we cannot reduce the precision for the computa-
tion of GG arbitrarily, because below a certain threshold the resulting
vector will not point in the direction of the limit anymore.

3. PARALLEL CO-PROCESSORS

Mixed precision methods offer two main advantages on the hard-
ware level.

Computation. The number of transistors needed for a multiplier
grows quadratically with the operand size. Thus, if we half the
operand size we can implement four low precision instead of one
high precision multiplier. This point is less relevant for architec-
tures which spend most of their transistors on caches and control
logic, because then the enlarging of the ALUs has only a small im-
pact on the overall transistor count. But for co-processors with a
high number of parallel ALUs, doubling the operand size would
quadruple the number of required transistors.

Table 1: Speedup of the CPU-GPU mixed precision solver over
a CPU double precision solver.

domain size (I) | Conjugate Gradient | Multigrid
66,049(8) 24 2.2
263,169(9) 3.7 29
1,050, 625(10) 4.2 3.7

Bandwidth. Many computations are limited by the bandwidth
rather than processing requirements. By reducing the required band-
width for most operations of a mixed precision algorithm we can
also gain speedup for these memory bound algorithms. This point
applies to all architectures as data movement has become much
more expensive than computation, even within the same processor.

Several parallel architectures have evolved in recent years that are
particularly suitable for mixed precision iterative schemes. Some
of them do not offer double precision computations, like GPUs and
allegedly the AGEIA PhysX processor. With these schemes they
can deliver double precision results while executing in parallel on
the single float format and having the CPU do very few double
precision corrections. Others, like FPGAs and the Cell processor,
can compute in double arithmetic but lose a factor of four or more
in performance. This loss can be recovered by executing most of
the computations in single and only very few corrections in double
precision.

4. RESULTS

We have examined the applicability of mixed precision methods
for Finite Element simulations on GPUs and FPGAs with different
variants of plain Conjugate Gradient (CG) and sophisticated Multi-
grid (MG__MG) solvers [1, 2]. Although actual implementations
have to exploit different functionality of the underlying processing
elements and interconnects, the general mixed precision method as
outlined above applies to both architectures. In summary, we can
always obtain the same accuracy as a full double precision solver
(compared against an analytically given reference solution), com-
pute less than 1% of the operations in double precision and 99% in
parallel in single precision, and gain overall a factor of 3-5 speedup
for sufficiently large domains, compared to a highly optimized di-
rect CPU double precision solver. For small problem sizes that fit
into the L2 cache, the CPU can outperform even highly parallel
architectures because of the enormous bandwidth to the cache.

Table 1 shows exemplary acceleration factors for combined CPU-
GPU mixed precision solvers. The CPU performs the few double
precision corrections, while the GPU executes the inner CG or MG
solver as a low precision preconditioner. In this test we solve the
Poisson problem on a regular discretization of the unit square with
(2" +1)%,1 = 8,9,10 grid points (4x more for the MG__MG),
using conforming bilinear Finite Elements. Timings include the
data transfers to and from the GPU over the PCle bus.

5. REFERENCES

[1] D. Goddeke, R. Strzodka, and S. Turek. Accelerating double
precision FEM simulations with GPUs. In Proceedings of
ASIM 2005 - 18th Symposium on Simulation Technique, 2005.

[2] R. Strzodka and D. Goddeke. Pipelined mixed precision
algorithms on FPGAs for fast and accurate PDE solvers from
low precision components. In I[EEE Proceedings on
Field-Programmable Custom Computing Machines, 2006.

