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Abstract

FPGAs are becoming more and more attractive for high
precision scientific computations. One of the main problems
in efficient resource utilization is the quadratically grow-
ing resource usage of multipliers depending on the operand
size. Many research efforts have been devoted to the op-
timization of individual arithmetic and linear algebra op-
erations. In this paper we take a higher level approach
and seek to reduce the intermediate computational preci-
sion on the algorithmic level by optimizing the accuracy to-
wards the final result of an algorithm. In our case this is the
accurate solution of partial differential equations (PDEs).
Using the Poisson Problem as a typical PDE example we
show that most intermediate operations can be computed
with floats or even smaller formats and only very few oper-
ations (e.g. 1%) must be performed in double precision to
obtain the same accuracy as a full double precision solver.
Thus the FPGA can be configured with many parallel float
rather than few resource hungry double operations. To
achieve this, we adapt the general concept of mixed pre-
cision iterative refinement methods to FPGAs and develop
a fully pipelined version of the Conjugate Gradient solver.
We combine this solver with different iterative refinement
schemes and precision combinations to obtain resource ef-
ficient mappings of the pipelined algorithm core onto the
FPGA.

1. Introduction

There is a trend towards high precision floating point
computations on FPGAs. The size of FPGAs grows quickly
and allows to implement many parallel arithmetic units
even for large number formats like the IEEE double stan-
dard. Additionally, dedicated hardwired 18x18 multipliers
in some chips allow to reduce the consumption of logic re-

sources for arithmetic operations on large number formats.
Keith Underwood analyzes the resulting floating point per-
formance trends of FPGAs against CPUs [28] and con-
cludes that the peak performance of FPGAs already sur-
passes that of CPUs and even where actual application per-
formance does not, it shall soon due to the much higher per-
formance increases per year. However, not winning over the
CPU, but higher performance in general is the goal, as sci-
entific and commercial applications demand ever increasing
processing power.

Scientific computations also pose high requirements on
the accuracy of the solution which often leads to implemen-
tations using the double float format. When implementing
arithmetic floating point operations on FPGAs one of the
most important facts is the quadratically growing area of a
multiplier in operand size, as opposed to a linear growth
for an adder. Hardwired embedded multipliers alleviate
the problem of logic consumption to some extent, but then
they themselves are consumed quadratically with growing
operand size. So despite the savings this does not solve but
rather shifts the problem.

1.1. Floating Point Numbers on FPGAs

While micro-processors operate on fixed-width formats
and thus usually have dedicated single or double floating
point units, FPGAs can save resources by adapting the num-
ber format to the application. Moreover, multiple tradeoffs
between latency and area can be exploited which has al-
ready been extensively studied for floating point formats
[7, 17, 21]. There exist also parameterized IP cores which
offer particularly efficient implementations for a given ar-
chitecture. Fully parameterizable floating point libraries
[1, 11] allow extensive explorations of different precisions
and methods for automatic optimization of the operand
sizes have been proposed [12, 13]. Another option for
FPGAs is to use logarithmic number systems which avoid



the quadratic complexity of the multiplier but complicate
the adder [18, 23].

Beside the optimizations on the arithmetic level the con-
figurability of logic and data paths allows additional gains
in actual applications. Floating point FIR filters have been
analyzed in detail [29], the Fast-Fourier-Transform has re-
ceived particular attention [8, 19], and Lienhart et al. per-
form an N-body simulation [22] with custom floating point
numbers. In our context vector and matrix operations are
of particular interest. Efficient implementations for the ker-
nels of these operations (BLAS) [25] and both dense [10,31]
and sparse [4] matrices have been studied. All these tech-
niques offer valuable approaches to minimize the resource
usage and maximize the throughput of scientific computa-
tions. These optimizations explore the structural level by
exchanging the order and placement of operations and the
implementational level by balancing the available resources
against area and time constraints.

In this paper we explore the next higher level of algo-
rithmic optimization. By including the semantic knowledge
about the actual goal of the algorithm, we may cut down
the resource usage much more radically, e.g. utilizing less
than half of the original precision in most places, and still
obtain the same accuracy. This is possible because we ex-
ploit the theoretical and empirical knowledge about how er-
rors propagate and contribute to the final result. We apply
this algorithmic optimization to the class of problems con-
cerning the discrete solution of partial differential equations
(PDEs). We describe the theoretical setting and how start-
ing with the PDE we arrive at the problem of solving a lin-
ear equation system. For the solution we employ a Conju-
gate Gradient (CG) iterative solver, which we modify into a
pipelined CG for a better hardware implementation, similar
to CG variants on parallel computers. Then we apply differ-
ent algorithmic precision optimizations to the pipelined CG,
inspired by a technique known as mixed precision iterative
refinement.

1.2. Mixed Precision Iterative Refinement

Iterative refinement techniques have already been intro-
duced in 1966 by Wilkinson et al. [2]. For thorough infor-
mation on these methods we refer to Demmel et al. [6] and
Zielke and Drygalla [32]. The core idea of iterative refine-
ment is to distinguish between different types of iterations
in the iterative solver. Normally the steps are equal, i.e.
in step k the solver would take an input vector vk, perform
some vector and matrix operations and then output the result
vector vk+1 which is used as input in the next step. Now we
split the solution process into a computationally demand-
ing low precision inner iteration loop and a computationally
simple high precision outer correction loop. The computa-
tionally expensive inner loop can be performed with low

precision components in parallel on the FPGA, while the
few high precision operations of the outer loop could run on
a small micro-processor on the FPGA board. The approach
is very flexible as it allows to choose how many iterations
to make in the inner loop depending on the performance ra-
tio of the FPGA and the micro-processor and the bandwidth
between them. Moreover, different iterative solvers can be
employed in the two loops. For numerical examination of
multigrid solvers in this context and an implementation on
graphics processors see [16]. Here we study the pipelined
Conjugate Gradient solver with a focus on an efficient hard-
ware implementation, as multigrid methods generate a com-
plex data-flow which is much harder to map to FPGAs.

FPGAs are ideal candidates for mixed precision methods
as they continuously gain from the reduction of the num-
ber format in the inner loop. However, operating mainly
on floats rather than doubles also benefits CPUs. Li et al.
discuss the extension of the popular BLAS library to mixed
precision algorithms [20]. Turner and Walker [27] acceler-
ate the solution of an elliptic PDE. Geddes and Zheng [14]
solve different problems with a mixed precision Newton
iteration. This paper, in particular, demonstrates that the
algorithmic precision optimization can be successfully ap-
plied to various problems. A joint solver running on a
graphics processor and the CPU [15] shows that diverse
hardware combinations are suitable for mixed precision
computations.

As application performance is often limited by band-
width rather than computational resources due to the so-
called memory wall problem [30], we should point out that
the reduction of the operand size in the inner loop also re-
duces the bandwidth requirements. In linear algebra com-
putations which have a very low computational intensity
(ratio of operations per memory access) this is of particular
importance. Cutting the bandwidth in half for such opera-
tions often delivers almost the theoretical factor of two in
speedup due to the smaller memory transfers alone.

1.3. Paper Overview

Our main contribution is the adaptation of the iterative
refinement techniques to FPGAs, which allow to exploit
the parallel processing power of FPGAs with a multitude
of low precision components, and reduce the need of costly
high precision arithmetic to a minimum. We start our ap-
proach of algorithmic optimization with a continuous PDE
problem and go through the discretization, quantization and
implementation steps all the way down to the synthesis of
the solver core onto the FPGA. Section 2 explains how we
arrive from the PDE formulation at the iterative refinement
method. Drawing on ideas from high performance paral-
lel computing we then develop a pipelined version of the
CG algorithm as the original cannot fully exploit the capa-
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bilities of configurable data paths on FPGAs (Section 3.1).
Based on our results with the mixed precision pipelined CG
(Section 3.2), we are inspired to design a different iterative
refinement technique for the pipelined CG solver (Section
3.3). Then we present a framework for the testing of the
solver variants and precision options and the implementa-
tion of the corresponding functionality in VHDL (Section
4). We compare the different solvers concerning accuracy,
inner and outer iteration count and area usage on the FPGA
(Section 5). We conclude with a summary of the results and
suggestions for future work (Section 6).

2. Iterative Refinement for PDE Problems

Iterative refinement methods are a general tool applica-
ble to the solution of many differential equations. For the
clarity of presentation we choose one very common PDE,
the Poisson Problem, for the derivation of the technique
and the detailed result comparison. The Poisson Problem
is a typical example of an elliptic PDE, also often encoun-
tered in time discretized parabolic and hyperbolic problems.
For instance, projection schemes in Navier-Stokes simula-
tions [26] require the solution of the Poisson Problem to
obtain the pressure. Moreover, the solution of the Poisson
Problem is often the most time consuming step in such sim-
ulations and therefore accelerations thereof are of great in-
terest.

2.1. Poisson Problem

For a given function b : Ω → R on a domain Ω ⊆ Rd,
say a rectangle Ω:= [0, X]× [0, Y ] ⊆ R2, we want to solve
the Poisson equation

−∆u = b

where ∆:=
∑d

i=1
∂2

∂2
xi

is the Laplace operator and d the di-
mension. For simplicity we will fix the dimension to 2D, i.e.
d = 2, but all the reasoning also applies to higher dimen-
sions. For our example we prescribe zero Dirichlet bound-
ary conditions, i.e. u must be zero on the boundary of the
domain, and define the function on the right hand side as
b:= −∆û with û(x, y) = x(X − x)y(Y − y).

For the solution process the domain is discretized with
an equidistant grid. We refer to [16] for the analysis of
anisotropic grids in the context of iterative refinement meth-
ods. The continuous function is represented on the grid with
functions of small support centered around the grid nodes.
We use bilinear functions which form the function space of
Conforming Bilinear Finite Elements (Q1). The rectangle Ω
is divided into 2n, e.g 28 equal parts both horizontally and
vertically, yielding N = (2n + 1)2 nodes and thus Finite
Element (FE) functions. The collection of all coefficients

corresponding to these functions forms a vector of size N .
In form of these vectors the continuous equation from above
can be written as

Au = b

where u,b are FE vectors and A is a symmetric 9-band
matrix, i.e. only the main diagonal and eight sub-diagonals
contain entries other than 0. Although A has a sim-
ple structure it is still difficult to solve the system be-
cause of the size of the matrix. For instance, a discretiza-
tion level of 8 already gives us 66, 049(8) vector ele-
ments, in 3D more than 16 million (we will indicate the
level in parentheses following the number of unknowns).
In the results section we will consider the vector sizes
66, 049(8), 263, 169(9), 1, 050, 625(10), corresponding to
the grid sizes 2572, 5132, 10252.

For problems of this size it is impractical to solve the
linear equation system by direct methods such as Gaussian
elimination. Instead, most often iterative methods are ap-
plied. Thereby, we choose a start vector u0 and then iterate

uk+1 = F (uk)

for k = 0, . . . , kmax, where kmax is either a given positive
integer or the first one which satisfies

‖b−Aukmax‖ < ε‖b−Au0‖, (1)

i.e. the relative error drops below a threshold ε.
There exist very efficient methods for solving such sys-

tems, so-called multigrid solvers. These, however, require
an explicit hierarchy in the discretizing geometry or must
construct such an equivalent hierarchy from the matrix it-
self. In any case the resulting data-flow is much more com-
plex than for methods which operate always in the same
manner on the entire vector. Among the simpler methods
the Conjugate Gradient (CG) algorithm, applicable to pos-
itive definite matrices, is very popular as it often delivers
superlinear convergence [3]. In the setting of Finite Ele-
ments the positive definiteness is usually satisfied and we
may exploit it by using the Conjugate Gradient method. The
algorithm reads:

qk = Apk,

αk =
ρk

pk · qk
,

uk+1 = uk + αkpk,

rk+1 = rk − αkqk, (2)
ρk+1 = rk+1 · rk+1,

βk =
ρk+1

ρk
,

pk+1 = rk+1 + βkpk.

The inner product is denoted with the ’·’ operator, i.e.
a · b:=

∑N
i=1 aibi. For a hardware implementation this

3



poses a problem, as it requires global communication across
all elements of the vectors and, as we know, the vectors can
be very large and have to be stored outside of the FPGA.
On its own the scalar product can be easily implemented
in a streaming fashion. The problem of global communica-
tion comes into play, because, as we see above, we need the
value of ρk+1 to compute pk+1. But to compute ρk+1 the
entire rk+1 must have been processed, which implies that
rk+1 and pk+1 must be computed sequentially. For optimal
performance we would like to pipeline the entire solver, but
this global communication in the middle of the algorithm
prohibits this. Section 3.1 discusses a pipelined CG algo-
rithm which circumvents this problem. But before we turn
to the detailed treatment of this particular solver for FPGAs,
let us explain how the CG solver can be used in the general
context of iterative refinement methods.

2.2. Iterative Refinement

The main idea of the iterative refinement algorithm is to
split the loop of the iterative solver into two loops: an outer
loop l = 0, . . . , lmax which runs as long as the global error
is above εouter, and an inner loop k = 0, . . . , kmax which
runs either for a constant kmax or as long as the inner error
is above εinner. The inner loop does not have to solve the
problem exactly and therefore may utilize a low precision
number format. It should only gain a little bit of accuracy
in comparison to the initial data it was given. If it manages
to gain this local accuracy then the outer loop will try to
translate this into a global accuracy gain and thus advance
the overall solution. In a certain sense the outer loop uses
the inner loop as a black box mechanism to gain a little bit
of accuracy in each step. The two processes are strongly de-
coupled and can therefore easily use different number for-
mats. Another view of this procedure is to interpret the in-
ner loop as a preconditioner to the outer solver. Let

Ahighuhigh = bhigh

be the linear equation system to be solved in high precision.
Superscript high indicates high precision vectors used in the
outer loop, as opposed to the low precision vectors used in
the inner loop. We first note that we need the matrix in
high precision, so we assemble it once in the high precision
format and cast it to the lower precision format(s).

The outer loop is very simple. We start with the initial-
ization where we compute the initial defect

uhigh
0 = initial guess,

dhigh
0 = bhigh −Ahighuhigh

0 ,

dhigh
0 = ||dhigh

0 ||,
ρhigh
0 = dhigh

0 .

Then we start the outer loop with index l = 0, . . . , lmax and
already give the control over to the inner solver, e.g. the CG
solver, and let it solve

Au = b:=
1

ρhigh
l

dhigh
l (3)

approximately in low precision. The outer solver does not
care how this is done, it is only important that the inner
solver gains a little bit of accuracy. After the iterations of
the inner solver we obtain the approximate result ukmax and
the outer loop continues with an update of the current vector

uhigh
l+1 = uhigh

l + ρhigh
l ukmax .

With the new uhigh
l+1 we can compute a new defect and norm

dhigh
l+1 = bhigh −Ahighuhigh

l+1 ,

ρhigh
l+1 = ||dhigh

l+1 ||.

Now we check for global convergence

ρhigh
l+1 < εouterd

high
0

in which case we are done. Otherwise, we continue by start-
ing the inner solver again with the new defect dhigh

l+1 .
The amount of accuracy we gain in one iterative refine-

ment step depends on the condition of the matrix A [6, 32].
This is not surprising as the condition also tells us how dif-
ficult it is to solve the problem directly with a single solver.
The main advantage in the presented procedure is the need
for just one matrix vector product in the outer loop, whereas
the inner solver definitely needs to perform several steps
to gain some precision. Consequently this means that the
workload on the low precision format is much higher than
on the high precision format. In this situation it is advan-
tageous to use a highly parallel architecture for the inner
solver, which does not need to contain high precision arith-
metic. With the FPGA in particular, we can control the in-
ner precision on a bit level and save on resources with every
bit of precision in the inner solution process which is not
needed for the final accuracy.

The iterative refinement can even be cascaded, i.e. we
would have three loops where the middle loop serves as the
inner solver to the most outer loop. As the outer solver does
not care how the inner solver obtains its approximate solu-
tion it does not even know that the middle loop can employ
another iterative refinement strategy to gain its solution.

We finally note that the outer loop as presented above
is just the simplest possibility for the update of the solu-
tion based on the defect correction. The outer loop could
also use far more advanced solvers, e.g. a multigrid solver,
where the inner solver plays the role of a preconditioner that
smoothes the defects.
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3. Variants of the Conjugate Gradient Solver

We have already outlined that the standard CG scheme
(Eq. 2) cannot be fully pipelined because of repeated de-
pendencies on scalar values obtained from global commu-
nication between vector elements. In this section we derive
a pipelined CG variant which circumvents this problem. In
high performance computing this problem has also been ad-
dressed as the global communications incur high latencies
for a parallel computer. Our scheme here is very similar
to the one proposed by Meurant [24]. For an overview of
different CG variants see Dongarra and Eijkhout [9], for a
broader discussion of parallel iterative solvers Demmel et
al. [5].

In Section 3.2 we combine the pipelined CG with the
iterative refinement technique resulting in a mixed precision
pipelined CG. After an analysis of this iteration scheme, we
develop a different iterative refinement strategy specifically
adapted to the CG algorithm to obtain the residual guided
pipelined CG.

3.1. Pipelined CG

We want to perform all vector operations of the CG al-
gorithm (Eq. 2) in parallel and reorder them into:

uk+1 = uk + αkpk,

rk+1 = rk − αkqk, (4)
pk+1 = rk+1 + βkpk,

qk+1 = Apk+1.

At first the parallel computation seems impossible because

ρk+1 = rk+1 · rk+1,

βk =
ρk+1

ρk

and we must finish computing rk+1 to start computing
pk+1. To avoid this problem we compute a σk = ρk+1

without the explicit knowledge of rk+1, namely

σk = αk(αkqk · qk − pk · qk).

Due to the orthogonality relations among the directions p
and residuals r in the CG algorithm it follows that σk is
algebraically exactly ρk+1. The indirect nature of the com-
putation, however, could lead to higher roundoff errors. In
fact, it is crucial that ρk+1 is computed directly from rk+1

after the vector operations. Extensive tests have shown that
with ρk+1 computed like this, the pipelined scheme per-
forms as well as the plain CG algorithm with respect to
convergence behavior and stability, see Section 5.

The computation of all scalar products follows immedi-
ately after the vector operations in Eq. 4:

ρk+1 = rk+1 · rk+1,

αk+1 =
ρk+1

pk+1 · qk+1
, (5)

σk+1 = αk+1(αk+1qk+1 · qk+1 − pk+1 · qk+1),

βk+1 =
σk+1

ρk+1
.

In comparison to the plain CG algorithm we need to com-
pute one more scalar product qk+1 · qk+1. But we gain the
great advantage that now even for very large vectors, which
must be streamed from outside the chip, we can compute
one step of the algorithm in a fully pipelined fashion, as-
suming that the matrix A is sparse and does not enforce
global communication itself, which is true for most Finite
Element discretizations.

3.2. Mixed Precision Pipelined CG

We have applied the iterative refinement scheme pre-
sented in Section 2.2 to our pipelined CG variant from the
previous section and label this combination the mixed preci-
sion pipelined Conjugate Gradient. In fact, we can greatly
reduce the precision in the inner solver and still obtain the
same accuracy as a reference double precision solver. Sec-
tion 5 shows the exact numbers. However, the iterative re-
finement scheme is a general procedure applicable to all
sorts of solver combinations in the same way. Although
this gives a lot of flexibility, the high independence of the
solvers has also a disadvantage: certain information ob-
tained by one solver is not shared with the other one, so the
other one may implicitly be performing more iterations to
recover information which is already present. Concerning
the mixed precision pipelined CG this happens whenever
the CG is restarted from the outer loop. The restarted CG
has no knowledge about the previous iterations.

3.3. Residual Guided Pipelined CG

The CG solver maintains a set of additional vectors
p, r,q which contain information about the solution pro-
cess. In the case of the general iterative refinement this
information cannot be reused from one outer iteration to
the other, because each time a different problem (Eq. 3)
is solved. Moreover, our tests (Section 5) show that CG re-
acts delicately to frequent restarts and performs much bet-
ter when maintaining its set of additional vectors for some
time. On the other hand, CG may not rely on its auxiliary
vectors for a long time, especially when computing in low
precision, as these accumulate rounding errors over time.
Even for a double precision solver it is recommended to re-
compute the defect r directly as b − Au from time to time
to avoid the loss of orthogonality.
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Our new residual guided pipelined CG allows more fre-
quent reinitialization without the complete loss of the gen-
erated auxiliary information. We replace the general outer
loop of the iterative refinement with a new initialization

uhigh
0 = initial guess,

rhigh
0 = bhigh −Ahighuhigh

0 ,

shigh
0 = ||rhigh

0 ||,
u0 = 0,

r0 =
1

shigh
0

rhigh
0 ,

α0 = 0,

β0 = 0.

and a new high precision outer loop

uhigh
l+1 = uhigh

l + shigh
l (uk + αkpk),

rhigh
l+1 = bhigh −Ahighuhigh

l+1 ,

shigh
l+1 = ||rhigh

l+1 ||.

The low precision uk, αk,pk are results from the inner
loop, see Eqs. 4 and 5. The computation of the defect here
is very similar to the general iterative refinement. How-
ever, instead of starting the inner low precision solver with
a new problem we now continue with the same right hand
side and reuse the information from the previous run of the
inner solver by setting

u0 = 0,

r0 =
1

shigh
l+1

rhigh
l+1 ,

p0 = pkmax − (r0 · pkmax) r0,

α0 = 0,

β0 =
shigh

l+1

shigh
l ρkmax

.

With these values the pipelined solver enters in Eq. 4. The
main effect is that we still have an idea about the orthogonal
descend directions p from the previous steps and thus can
continue decreasing the error faster. We do not simply copy
the new direction as the computation of the new defect in
the outer loop introduces a new defect r0 which must fulfill
the orthogonality relations. Thus we correct the old pkmax to
make it orthogonal to r0.

The last improvement we have applied to the scheme is
the evaluation of the accumulation in the scalar products in
a higher precision. This is an addition over a very high num-
ber of elements, therefore it makes sense to reserve a higher
precision for this operation. In terms of resources this is not
too expensive as the multiplications and the final format still
use the low precision. This is a standard technique to avoid

losing too much accuracy due to the very high number of
addends. We use the double float format in these accumula-
tions.

4. Test Framework

For the different solvers we examine four main parame-
ters: accuracy, iteration count until convergence, area cov-
erage and frequency on the FPGA. The first two parameters
are evaluated on the CPU in a framework with the ability to
simulate different number precisions. The two other param-
eters are evaluated within the Xilinx ISE.

4.1. CPU Tests

To emulate different floating point formats, we extend
the half class (available as part of the OpenEXR frame-
work by Industrial Light & Magic). Our version of this
class supports all combinations of mantissa and exponent
bits up to the IEEE floating point standard (s23e8). Addi-
tionally, we can turn off denormalized numbers (denorms)
and rounding to nearest, as they are often not implemented
and even not desired in floating point FPGA libraries.
The half class implements all operations by casting the
operands to float before the operation and back to half after
it. In this manner not only the basic arithmetic operations
but virtually any float accessible function can be evaluated
in the reduced precision.

In our numerical tests we evaluate the defect correc-
tion (Section 3.2) and the residual guided (Section 3.3) ap-
proach to mixed precision with different internal formats,
while keeping the outer high precision format fixed at dou-
ble floating point precision. We tested five different preci-
sion formats for the inner loop:

• double, native CPU 64-bit s52e11 double, with full
compiler optimizations

• float, native CPU 32-bit s23e8 float, with full compiler
optimizations

• s23e8, without denorms and rounding
• s20e8, without denorms and rounding
• s17e8, without denorms and rounding

The test with the inner precision set to double helps us to
distinguish between the effects caused by the iterative re-
finement scheme and those caused by the reduced preci-
sion. Reducing the inner format below s17e8 yields prob-
lems that cannot be solved for large matrices (number of
unknowns, matrix condition) using the mixed precision ap-
proach (cf. [16]). We also consider the choice of the inner
stopping criteria. We tested both possibilities of running
a fixed number of inner iterations and iterating the inner
solver until one to four digits of accuracy are gained locally.
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4.2. FPGA Tests

The evaluation of the required area on a FPGA is per-
formed with the Xilinx ISE 7.1. We use the customizable
floating point library designed by Belanovic and Leeser [1]
to generate fully generic floating point solver kernels in
VHDL. The CG algorithm consists of

• multiply and add operations between vectors,
• a banded matrix vector multiply,
• scalar products between vectors.

Note, that all three operations translate into multiply and
add operations on the components. However, not all of
these multiply and adds are the same, since we want to use
higher precision in the accumulation stage of a scalar prod-
uct. Building the entire CG core based on the generic li-
brary allows us to experiment with different data precisions
in different stages.

Unfortunately, we have no hardware platform available
for actual application performance testing. Such numbers
would be very specific to the device, as for large vectors
which do not fit the block RAM on chip, the data must
be streamed from outside and then the number of user IO
pins and the bandwidth of the connection to the larger RAM
become crucial for the overall performance. But neverthe-
less we plan to run performance tests on actual hardware
to show how the resource savings translate in actual appli-
cation speedup. Thereby, we could also quantify another
advantage of mixed precision methods, namely the reduc-
tion in bandwidth requirements due to the smaller number
formats.

5. Results

We first confirm that in the context of this paper all iter-
ative refinement schemes deliver exactly the same accuracy
as the double precision reference solver, independent of the
involved number formats and refinement strategies. Clearly,
if the inner number format is too small in comparison to
the condition of the matrix, which grows quadratically with
the inverse grid element size, the solvers simply fail to con-
verge. These cases are marked as divergent in all tables.
But if the solver converges then we can always achieve the
accuracy of the reference solution.

Table 1 summarizes the accuracy results exemplary for
three different solvers. Note that the error is reduced by
a factor of four when changing to a higher level. This ex-
pected behavior holds true for all transitions from N = 9(1)
to N = 1, 040, 625(10). In the following we omit the small
problem sizes and equally performing combinations of pre-
cisions.

Concerning the accuracy of the pipelined CG scheme,
we have run extensive tests in comparison to the plain CG

Table 1. Errors against the analytically known
reference solution computed for the double
precision reference solver, our mixed preci-
sion pipelined CG solver using s20e8 as in-
ner number format, and an iterative refine-
ment plain CG solver using the s17e8 inner
format. For the largest problem the smallest
number format fails to converge.

N(n) double s20e8 s17e8

16,641 ( 7) 1.66600e-06 1.66600e-06 1.66600e-06
66,049 ( 8) 4.18105e-07 4.18104e-07 4.18104e-07

263,169 ( 9) 1.04728e-07 1.04727e-07 1.04728e-07
1,050,625 (10) 2.62034e-08 2.62036e-08 divergent

scheme both in the direct setting and the iterative refinement
approach and conclude that the pipelined CG solver shows
almost identical convergence behavior to its classical coun-
terpart. The maximal deviation in the iteration count is less
than 3% and neither solver is a clear winner, both perform
sometimes better than the other.

5.1. Performance Comparison

In the following tables we always show at the top the
performance of the direct reference double precision solver
for comparison. The iterative solvers with the different in-
ner precisions described in Section 4 then follow in separate
blocks. For the iterative solvers we have two performance
numbers [sum of all inner iterations]:[outer iterations]. The
comparison rows at the end of each block show the ratios
[inner+outer iterations]/[direct double iterations] and [outer
iterations]/[inner+outer iterations]. The former shows how
many more iterations overall must be performed due to the
iterative scheme and the reduced precision. The latter then
puts into perspective which part of the overall work load
must be performed in double precision.

5.2. Balance of Inner and Outer Iterations

We run different tests on the mixed precision pipelined
CG solver (cf. Section 2.2). In particular we want to analyze
the dependence of the iteration count on the inner precision
format and the number of inner loops. In all tests the outer
iterations are performed in double float precision and the
scalar products in the CG also use double precision for the
accumulation.

Table 2 summarizes the number of all inner and outer
loop iterations when the inner loop runs a constant 10–500
iterations per outer loop iteration. This means that in princi-
ple we do not check any convergence conditions in the inner
loop. The inner loops executes a constant number of itera-
tions, then the outer loop computes the new defect and its
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norm. Either the norm is small enough and we stop the com-
putation or we execute the inner loop for a constant number
of iterations again. For a fair comparison between the dif-
ferent iteration numbers, we do have to check the global
convergence in the inner loop, however, otherwise the ver-
sions with high iteration numbers would be handicapped, as
for example the i500 mode could only produce overall itera-
tion numbers as multiples of 500. Tests marked as ’n/a’ are
left out, as they are of very little value but pose exorbitant
run-time requirements.

Looking at the rows with small inner iteration numbers
(i25-i50), we see that the Conjugate Gradient algorithm re-
acts very delicately to the frequent restarts. Note, that the
inner loop is given a new problem to solve (Eq. 3) each time
it is started. Thus the CG solver has to rebuild the space of
the orthogonal directions p and residuals r over and over
again. Obviously, even few restarts as in the case of the
i500 row, lead to significant overall iteration increases in
comparison to the direct solver. So the conclusion would be
to run only a minimal number of outer loops.

For reduced precision, however, the situation is not so
clear. On the one hand it is advantageous for the CG solver
to iterate longer, and we see that for the float and s23e8 pre-
cision the i250 and i500 modes perform best. On the other
hand for s20e8 and s17e8 formats we also see the opposite
effect of increasing overall iteration count with higher in-
ner iteration numbers. The problem here is that if the inner
solver is iterated for a long time, the low precision format
cannot represent the relative accuracy gains sufficiently and
optimizes in the wrong direction. Thus, superfluous inner
iterations are performed because the reduction of the resid-
uals in the inner system does no longer translate by the same
amount into a reduction of the error in the original problem
in the outer loop. This means that the lower the inner preci-
sion the more frequent outer loop iterations are necessary.

Based on this reasoning the next subsections choose two
different approaches. The mixed precision pipelined solver
uses a non-constant number of iterations depending on the
locally gained accuracy. The residual guided solver reuses
the orthogonal directions p and residuals r from previous
inner iterations and can thus afford the otherwise problem-
atic small numbers of inner iterations.

5.3. Mixed Precision Pipelined CG

With the mixed precision pipelined CG solver (cf. Sec-
tion 2.2) we perform inner iterations until the inner defect
relative to the initial defect (when we started the loop) drops
below a certain constant, see Eq. 1. In other words, we de-
mand of the inner solver to reduce the inner defect by one
to four digits, see Table 3. We know that the low preci-
sion format cannot gain a lot of accuracy in one loop, so it
will struggle hard for improvement if the solution is already

Table 2. Performance of the mixed precision
pipelined CG with a constant number of in-
ner loop iterations (i25-i500). Section 5.1 ex-
plains the table structure.

N(n) 66,049(8) 263,169(9) 1,050,625(10)
double reference solver
direct 342 676 1357
double
i25 6307 : 253 25462 : 1019 n/a
i50 3278 : 66 12807 : 257 n/a
i100 970 : 10 6588 : 66 26013 : 261
i250 368 : 2 1802 : 8 9470 : 38
i500 341 : 1 743 : 2 3629 : 8
i500/direct 1.00 : 3e-3 1.10 : 3e-3 2.68 : 2e-3
float
i25 6307 : 253 25462 : 1019 n/a
i50 3278 : 66 12807 : 257 n/a
i100 1168 : 12 6589 : 66 26013 : 261
i250 885 : 4 1845 : 8 9468 : 38
i500 1154 : 3 1858 : 4 5256 : 11
i500/direct 3.38 : 3e-3 2.75 : 2e-3 3.88 : 2e-3
s23e8
i25 6307 : 253 25457 : 1019 n/a
i50 3278 : 66 12807 : 257 n/a
i100 1169 : 12 6589 : 66 26013 : 261
i250 855 : 4 1876 : 8 9473 : 38
i500 1163 : 3 1879 : 4 5256 : 11
i500/direct 3.41 : 3e-3 2.79 : 2e-3 3.88 : 2e-3
s20e8
i25 6304 : 253 25436 : 1018 n/a
i50 3295 : 66 12763 : 256 n/a
i100 1309 : 14 4157 : 42 18967 : 190
i250 1307 : 6 2709 : 11 6914 : 28
i500 1551 : 6 4001 : 9 7729 : 16
i250/direct 3.84 : 5e-3 4.02 : 4e-3 5.12 : 4e-3
s17e8
i25 6219 : 249 18524 : 741 n/a
i50 1771 : 36 6349 : 127 n/a
i100 1597 : 16 4476 : 45 divergent
i250 2790 : 12 7501 : 31 divergent
i500 5543 : 12 54001 : 109 divergent
i100/direct 4.72 : 0.01 6.69 : 0.01 divergent
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Table 3. Performance of the mixed precision
pipelined CG with the number of inner loop
iterations depending on a reduction of the in-
ner defect by δ digits. Section 5.1 explains
the table structure.

N(n) 66,049(8) 263,169(9) 1,050,625(10)
double reference solver
direct 342 676 1357
double
δ = 1 859 : 10 1648 : 10 3472 : 10
δ = 2 673 : 5 1363 : 5 2379 : 5
δ = 3 544 : 4 1098 : 4 2233 : 4
δ = 4 459 : 3 915 : 3 1817 : 3
δ4/direct 1.35 : 6e-3 1.36 : 3e-3 1.34 : 2e-3
float
δ = 1 882 : 10 1601 : 10 3425 : 11
δ = 2 677 : 5 1316 : 6 2843 : 6
δ = 3 564 : 4 1155 : 4 2563 : 4
δ = 4 542 : 4 1064 : 4 2191 : 4
δ4/direct 1.60 : 7e-3 1.58 : 4e-3 1.62 : 2e-3
s23e8
δ = 1 1003 : 10 2267 : 10 4070 : 11
δ = 2 777 : 5 1606 : 6 3652 : 6
δ = 3 732 : 4 1673 : 4 3287 : 5
δ = 4 780 : 3 1601 : 4 3685 : 4
δ3/direct 2.15 : 5e-3 2.48 : 2e-3 2.43 : 2e-3
s20e8
δ = 1 1103 : 10 2728 : 11 9889 : 18
δ = 2 1111 : 6 2801 : 9 10508 : 18
δ = 3 1170 : 6 3220 : 9 12578 : 17
δ = 4 1293 : 6 4073 : 8 17732 : 18
δ1/direct 3.25 : 9e-3 4.05 : 4e-3 7.30 : 2e-3
s17e8
δ = 1 1138 : 10 2673 : 11 divergent
δ = 2 1091 : 6 2775 : 9 divergent
δ = 3 1168 : 6 3220 : 9 divergent
δ = 4 1290 : 6 4090 : 9 divergent
δ1/direct 3.36 : 9e-3 3.97 : 4e-3 divergent

fairly accurate. Therefore, we want to abort the loop be-
fore we experience these diminishing returns. But we also
do not want to abort too early, because the CG loses all its
intermediate vectors with each outer loop iteration.

Comparing the solver running with double inner preci-
sion first, we see that each additional outer loop iteration has

a negative effect on the overall number of iterations. The
comparison row δ4/direct shows that the iterative scheme
as such needs approximately 1.35 times more iterations than
the direct solver.

For the lower precision formats this factor grows to 1.62
for float and 2.48 for s23e8. For s20e8 and s17e8 we have
to execute up to 4 times more iterations up to level 9. For
level 10 either the solver diverges or we obtain an exces-
sive number of iterations. Given the high condition of the
matrix, the inner precision is too low to represent the inner
accuracy gains correctly. Either the inner solver thinks it is
gaining inner accuracy, but in reality it drifts in the wrong
global direction, or it is incapable of making any progress at
all. In any case executing more iterations does not help the
goal of improving the global accuracy. For such low preci-
sion more frequent outer loop iterations must be performed.

Looking at the comparison row of the s23e8 format, we
see that the costs of achieving the same accuracy as the dou-
ble precision reference solver are approximately 2.48 times
more iterations. However, most of these iterations happen
on the low precision format and only 1% or even far less for
the larger problems still require double precision. So while
we do have to do more iterations, the FPGA can do this in
parallel on many simple s23e8 arithmetic units, without any
handling of denormalized numbers or rounding, whereas
the reference double precision solver executes on an opti-
mized FPU with potentially higher internal precision. Im-
plementing the arithmetic units of the FPU on the FPGA
would consume a very high number of resources (see Sec-
tion 5.5).

5.4. Residual Guided Pipelined CG

Rather than correcting defects, here we use the high pre-
cision residuals as guidance for the low precision solver, see
Section 3.3.

Table 4 shows that with this scheme we may enter the
outer loop more often without fearing the deteriorating ef-
fects of the CG restarts. Accordingly, the performance of
the rows with low iterations numbers (i10-i50) is much bet-
ter than in Table 2. The stability of the scheme is also em-
phasized by the fact that in general the low precision for-
mats s20e8 and s17e8 can handle large matrices faster than
in Table 2. The performance does not drop so dramatically
against the double precision reference and also does not in-
crease so severely with the growing problem size. However,
the best performance is delivered by the s23e8 format with
10 inner iterations. Approximately 1.8 times more itera-
tions are performed, but only 9% of them use the double
precision format.
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Table 4. Performance of the residual guided
CG with a constant number of inner loop iter-
ations (i10-i50). Section 5.1 explains the table
structure.

N(n) 66,049(8) 263,169(9) 1,050,625(10)
double reference solver
direct 342 676 1357
double
i10 343 : 35 677 : 68 1358 : 136
i25 343 : 14 677 : 28 1358 : 55
i50 343 : 7 677 : 14 1358 : 28
i50/direct 1.00 : 2e-3 1.00 : 2e-3 1.00 : 2e-3
float
i10 536 : 54 1233 : 124 2495 : 250
i25 570 : 23 1178 : 48 2527 : 102
i50 633 : 13 1268 : 26 2522 : 51
i10/direct 1.72 : 0.09 2.01 : 0.09 2.02 : 0.09
s23e8
i10 525 : 53 1154 : 116 2222 : 223
i25 594 : 24 1236 : 50 2480 : 100
i50 595 : 12 1241 : 25 2554 : 52
i10/direct 1.68 : 0.09 1.88 : 0.09 1.80 : 0.09
s20e8
i10 815 : 82 1662 : 169 3849 : 386
i25 881 : 36 1936 : 78 3462 : 140
i50 1021 : 21 2475 : 50 4050 : 82
i10/direct 2.62 : 0.09 2.71 : 0.09 3.12 : 0.09
s17e8
i10 1148 : 116 2609 : 263 4540 : 455
i25 1344 : 55 2589 : 105 divergent
i50 2343 : 48 2573 : 52 6671 : 137
i10/direct 3.70 : 0.09 4.25 : 0.09 3.68 : 0.09

5.5. FPGA Design Space

We list the area consumption and maximum frequency
of the pipelined CG core under different precisions (Table
5). These numbers were obtained with the XST Synthe-
sizer opimitizing for speed, the global timing optimization
set for maximal delay, no IOB register use and automatic
MUL18x18 selection or pipelined LUT multipliers. For a
clearer comparison we want to exclude the much smaller
savings resulting from smaller exponents and therefore use
11 bit exponents in all the formats. For the double precision
core we need a lot of resources in both slices and user IO
and therefore the large xc2v8000 is used for all designs.

Table 5. Estimated area consumption and
maximum frequency of the pipelined CG core
on the xc2v8000ff1517-5.

precision slices MUL18x18s IOBs frequency
PipeLUT multiplier
s17e11 4517 0 498 71 MHz
s20e11 5102 0 549 67 MHz
s23e11 5812 0 600 66 MHz
s28e11 6976 0 685 64 MHz
s36e11 9391 0 821 53 MHz
s44e11 11458 0 957 51 MHz
s52e11 14545 0 1093 49 MHz
MUL18x18 multiplier
s17e11 4449 12 498 134 MHz
s20e11 4902 48 549 87 MHz
s23e11 5412 57 600 85 MHz
s28e11 6257 60 685 82 MHz
s36e11 7611 60 821 65 MHz
s44e11 8946 135 957 61 MHz
s52e11 10271 135 1093 59 MHz

We synthesize the core of the algorithm. It computes the
vector operations and scalar products but does not perform
the further combinations of the scalar values nor anything
else in the outer loop. We think that a micro-processor on
the FPGA board would be a good candidate to take over this
task. The outer loop can in principle also be implemented
on the FPGA, but since it is executed only infrequently and
requires a high precision matrix vector product it is doubt-
ful if these resources were wisely spend, after all the idea of
mixed precision methods is to replace the expensive cores
with many parallel simple ones. An interesting solution
would be to use parameter controlled arithmetic units which
could be used as either one high precision or many low pre-
cision multipliers.

If the entire core is implemented in logic the area con-
sumption is quadratic in the size of the number format as
expected (Table 5). Utilization of the hardwired multipliers
reduces the growth to linear, but then the multipliers them-
selves are consumed rapidly. Moreover, we see a significant
drop in the frequency and very high IO requirements for the
high precision core.

Figures 1 and 2 visualize the data from Table 5 and addi-
tional associated information. If the multipliers are config-
ured with logic resources then Figure 1a clearly shows the
resulting quadratic area consumption. The quadratic coeffi-
cient of the growth of the number of slices is smaller than
for the number of 4 input LUTs because the number of flip
flops grows only linearly. In Figure 2a we see the effect of
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the automatic utilization of the block MUL18x18 multipli-
ers for the area consumption. The growth of the number of
slices is reduced to linear at the cost of many MUL18x18
multipliers. The graph of the number of MUL18x18s is less
smooth because of granularity effects, e.g. even where a 12
bit multiplier would suffice a MUL18x18 is consumed. This
explains the comparably low number of MUL18x18s for the
s36e11 format, where 36 = 2∗18 splits very well under the
given granularity and allows optimal utilization of the hard-
wired resources.

Figures 1b and 2b show the IO requirements and achiev-
able frequencies. In the logic based design the frequency
drops fairly smoothly, while the MUL18x18 design reveals
a more volatile behavior, that can again be attributed to
the granularity of the hardwired multipliers. In any case
the smaller cores are clearly in advantage. The number of
required user IO obviously grows linearly, but the overall
costs for production of a board connecting the FPGA with
such wide buses to on-board memory supersede the linear
growth. Therefore, the reduction from the 1093 IO pins nec-
essary for a double precision core, to the 600 of a s23e11
core are a greater relief than the ratio of the number sug-
gests.

Similar reasoning applies also to the required area, as
prices of high-end devices do not scale linearly with their
capacity. So the overall cost savings scale superlinearly on
top of the quadratic area savings from the design. One pos-
sibility that opens up with the smaller low precision cores
is to implement them on small FPGAs and employ several
of them in parallel on the board rather than using an equiv-
alently large single FPGA.

Let us pick an example to summarize the results. By go-
ing from a direct double to a double-s23e8 residual guided
solver in case of a large Poisson Problem (Section 2) with
1, 040, 625(10) elements per vector, we can obtain exactly
the same accuracy in the final result by executing 9% of
the matrix vector products in double precision and all other
2222 in s23e8 precision (Table 4). We will perform 1.80
times more iterations than the double solver, but will also
have 2.5 times more logic resources available, 1.44 times
higher clock frequency and 0.55 times less IO requirements.
So one possiblity would be to use the xc2v1500 (xc2v2000
for full IO) instead of the xc2v4000 (xc2v6000 for full IO)
and suffer just a 1.80/1.44 = 1.25 slowdown (plus the costs
of the outer loop). Obviously, we can easily gain speedups
by using the large devices and implementing the low pre-
cision core in parallel, but the actual speedup is more diffi-
cult to estimate as it depends on the final frequency of the
parallel design. If we want to reduce the double precision
computations in the outer loop to a minimum, we may, alter-
natively, use the mixed precision pipelined CG and perform
just five double precision matrix vector products and 2.43
times more iterations on the low precision format (Table 3)
to arrive at the double precision solution.
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Figure 1. Resource consumption and fre-
quency of the pipelined CG core on the
xc2v8000ff1517-5 with PipeLUT multipliers,
cf. Table 5.

6. Conclusions and Future Work

We have examined how mixed precision iterative refine-
ment methods offer a tradeoff between computation and
the usually more restricted resources of off-chip data band-
width, latency and resource utilization. Although the num-
ber precision is reduced dramatically in most computations
no loss of accuracy in the final result is encountered, which
is the guiding idea behind the algorithmic resource opti-
mization. In detail, we have studied the Conjugate Gradient
solver which is often employed in the solution process of
PDEs. Based on ideas from high performance computing
our pipelined CG variant is much better suited for an effi-
cient FPGA implementation than the plain CG algorithm.
Both the standard defect correction and our new residual
guided iterative refinement work well with the pipelined CG
and offer different performance characteristics. The generic
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Figure 2. Resource consumption and fre-
quency of the pipelined CG core on the
xc2v8000ff1517-5 with MUL18x18 multipliers,
cf. Table 5.

core of the algorithm written in VHDL allows to estimate
the resource savings in advance and our CPU test suite can
report on the accuracy and performance of the chosen solver
and precision combination.

The mixed precision scheme requires additional compu-
tational resources inside or outside of the FPGA for the ef-
ficient execution of the outer loop in high precision. But de-
pending on the processing power the workload of this com-
ponent may be easily varied between 1%-10% or even lower
for large problems. In future, we will consider efficient im-
plementations of the outer loop within the same device or a
combination of different devices.

Although FPGAs are very well suited for such gradual
number format changes, the mixed precision approach can
be applied to several hardware and software platforms. In
particular, for coarse grained reconfigurable architectures a
decision must be made before fabrication which parts will

be hardwired and which configurable. This decision typi-
cally implies preferred data formats for which the process-
ing elements are optimized. Iterative refinement methods
can efficiently exploit the preferred number format, e.g. sin-
gle float, without losing the ability to obtain fast and ac-
curate results in a higher precision format, such as double
float. In future we want to further examine these possibili-
ties.
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