
UCHPC – UnConventional High Performance Computing

for Finite Element Simulations

Stefan Turek, Dominik Göddeke, Christian Becker, Sven H.M. Buijssen, Hilmar Wobker

Applied Mathematics, Dortmund University of Technology, Germany

ture@featflow.de, dominik.goeddeke@math.tu-dortmund.de

Processor technology is still dramatically advancing and promises enormous improvements in processing
data for the next decade. These improvements are driven by parallelisation and specialisation of resources,
and ‘unconventional hardware’ like GPUs or the Cell processor can be seen as forerunners of this devel-
opment. At the same time, much smaller advances are expected in moving data; this means that the
efficiency of many simulation tools – particularly based on Finite Elements which often lead to huge,
but very sparse linear systems – is restricted by the cost of memory access. We explain our approach
to combine efficient data structures and multigrid solver concepts, and discuss the influence of proces-
sor technology on numerical and algorithmic developments. Concepts of ‘hardware-oriented numerics’ are
described and their numerical and computational characteristics is examined based on implementations
in Feast, a high performance solver toolbox for Finite Elements which is able to exploit unconventional
hardware components as ‘FEM co-processors’, on sequential as well as on massively parallel computers.
Finally, we demonstrate prototypically how these algorithmic and computational concepts can be applied
to solid mechanics problems, and we present simulations on heterogeneous parallel computers with more
than one billion unknowns.

1 Introduction and Motivation

Software development for FEM problems has traditionally focused on improving the numerical method-
ology. Hardware aspects played only a minor role, since codes automatically ran faster with each new
generation of processors. This trend has come to an end, as physical limitations (heat, leaking voltage,
pin limits) have led to a paradigm change: Performance improvements are no longer driven by fre-
quency scaling, but by parallelism and specialisation. Soon, CPUs will have tens of parallel cores, with
hundreds to follow. Future massively parallel chip designs will likely be heterogeneous and contain
general and specialised cores with non-uniform memory access (NUMA) to local storage/caches on
the same chip. Both Intel and AMD have announced such chip projects, and current designs exhibit
NUMA features already.

Specialised co-processors such as the accelerator boards offered by ClearSpeed, or Hypertransport
couplings of CPUs with FPGAs (e. g. Cray’s XD1 blades) are forerunners of this development and a
good test environment for future systems. Similarly, multimedia processors such as the Cell BE or
graphics processor units (GPUs) are of particular interest as they are optimised for high-bandwidth
access to reasonably large local memories.

The parallelisation and specialisation of compute resources results in a major challenge for the pro-
gramming model, in particular for clusters and supercomputers, where the coarse-grained parallelism
(handled by message passing among distributed memories via MPI) must interact with the fine-grained
on-chip parallelism and heterogeneity on the nodes. This task is particularly difficult for the sparse
(linear) equation systems resulting from Finite Element discretisations of partial differential equations
(PDEs). In contrast to the well-established BLAS and LAPACK libraries, different data formats and
computation schemes with little standardisation co-exist, and performance is limited by the memory
bandwidth and not by the raw compute power. This well-known ‘memory wall problem’ is further
aggravated, as memory performance improves at a much slower pace than (peak) CPU performance.



Analogously to the coarse grained parallelism on the cluster level, compilers for standard languages are
not expected to be able to locally parallelise existing data intensive codes efficiently in a fully automated
way: This task requires explicit knowledge of the data flow and data reuse patterns and is particularly
hard in the presence of heterogeneous memory hierarchies. New languages and frameworks with data
and task parallel intrinsics (e. g. HPF, co-array Fortran, or, in particular for memory intensive tasks,
Sequoia [9]) can perform better in this situation. New languages, however, imply the reimplementation
of significant portions of an application, which is prohibitive for established and actively used codes.

Our hypothesis is that in the area of high performance Finite Element simulations, further performance
improvement can only be achieved by ‘hardware-oriented numerics’. This means that numerical and
algorithmic foundation research must involve long-term technology trends. Data locality techniques
with both spatial and temporal blocking are widely considered a very important design principle in this
context. Similar in spirit is the work of Rüde et al. on patchwise multigrid smoothers and hierarchical
hybrid grids [3]. Douglas and Thorne, and Douglas, Rüde et al. present cache-oriented multigrid
solver components [6–8]. Butarri, Dongarra et al. discuss the impact of multicore architectures on
mathematical software, in particular for (dense) BLAS and LAPACK-based applications [4]. Finally,
Keyes and Colella et al. survey trends towards petascale computing for FEM [5,13].

The above observations have led to the development of Feast (Finite Element Analysis & Solution
Tools), a software toolbox providing Finite Element discretisations and corresponding optimised par-
allel solvers for PDE problems [1,16]. Feast combines modern numerical techniques with a hardware-
efficient implementation for a wide range of HPC architectures. In particular, Feast contains mecha-
nisms to include unconventional hardware – like GPUs and forthcomingly Cell BE processors – as ‘FEM
co-processors’ in such a way that complex simulations can directly benefit from hardware acceleration
without having to change application code.

2 FEAST - Finite Element Analysis & Solution Tools

The core features of Feast in the context of this paper are as follows:

Separation of Structured and Unstructured Data Feast covers the computational domain with
a collection of quadrilateral subdomains. The subdomains form an unstructured coarse mesh (cf.
figure 1), and each subdomain is independently refined in a generalised tensor product fashion, possibly
combined with r/h/rh-adaptivity and anisotropic refinement. The resulting mesh is used to discretise
the domain with Finite Elements. This approach caters to the contradictory needs of flexibility in the
discretisation and efficient implementation: Instead of keeping all data in one general, homogeneous
data structure, Feast stores only local FE matrices and vectors (corresponding to subdomains) and
thus maintains a clear separation of structured and unstructured parts of the domain. The nonzero
pattern of the local matrices is known a priori, which is exploited to optimise data structures and linear
algebra routines (Sparse Banded BLAS ). In view of the memory wall problem, it is worth mentioning
that optimised linear algebra operations acting locally on the subdomains can be implemented with
direct block memory transfers and without any pointer chasing, thus maintaining both spatial and
temporal locality. On the other hand, the flexibility of the unstructured coarse mesh allows to resolve
even complex geometries.

Parallel Multigrid Solvers In the parallelisation of Finite Element codes, numerical robustness, nu-
merical efficiency and (weak) scalability are often contradictory properties. For the problems we are
concerned with in the (wider) context of this paper, multigrid methods are obligatory from a numer-
ical point of view. In parallel, the strong recursive character of ‘optimal’ serial multigrid smoothers
(e. g. ILU) is usually relaxed to a block-Jacobi approach to decouple the subdomains, as strong recur-
sion between the subdomains leads to poor weak scalability due to high communication requirements.



Figure 1: Exemplary Tux geometry. Important features of Feast’s discretisation approach are high-
lighted: Globally unstructured, locally structured grids; anisotropic refinement and regular
refinement to generalised tensorproduct grids.

Block-Jacobi smoothers, on the other hand, lead to poor convergence in the presence of (even local)
anisotropies, and hence dramatically reduce the numerical efficiency of the parallel solver [15, 16].

To address these contradictory needs, Feast employs a generalised multigrid / domain decomposition
concept called ScaRC [14]. The basic idea is to apply a global multigrid algorithm which is smoothed
in an additive manner by local multigrid iterations acting on each subdomain independently. This
cascaded multigrid scheme is very robust as local irregularities are ‘hidden’ from the outer solver. The
global multigrid provides strong global coupling (as it acts on all levels of refinement), and it exhibits
good parallel efficiency by design, both in the traditional and in the numerical sense.

From an implementational point of view, global matrix-vector operations are performed by a series
of local operations on matrices representing the restriction of the ‘virtual’ global matrix on each
subdomain. Local information is exchanged only over boundaries of neighbouring subdomains. There
is only an implicit overlap, the domain decomposition is implemented via special boundary conditions
in the local matrices. Several subdomains can be grouped together and treated within one MPI
process.

Scalar and Vector-Valued Problems The guiding idea to treating vector-valued problems with
Feast is to rely on the modular, highly optimised and fully tested core routines for the scalar case
in order to formulate robust schemes for a wide range of applications, rather than using the best
suited numerical scheme for each application and go through the optimisation process over and over
again. Vector-valued PDEs as they arise in Computational Solid Mechanics and Computational Fluid
Dynamics can be rearranged and discretised in such a way that the resulting discrete equation systems
consist of blocks that correspond to scalar subequations. Due to this special block-structure, all opera-
tions required to solve the systems can be implemented as a series of operations for scalar systems (e. g.
matrix-vector operations, dot products and grid transfer operations in multigrid), taking advantage
of the highly tuned linear algebra components in Feast. Moreover, entire (scalar) subsystems can be
treated with core Feast scalar solvers.



Co-processor acceleration In Feast, co-processors are not integrated on the kernel level, but on the
level of local solvers for local subproblems in the global, parallel solver scheme: Instead of accelerating
individual linear algebra operations, we accelerate entire multigrid solvers for local subproblems [11].
This concentrates sufficient fine-grained parallelism in a separate task and minimises the overhead of
repeated co-processor configuration and data transfer in case of co-processors that are integrated in
the system via a bandwidth bottleneck, for instance the PCIe bus for GPUs. The abstraction layer of
the suggested ‘minimally invasive’ integration encapsulates heterogeneities of the system on the node
level, so that MPI sees a globally homogeneous system, while the local solver components cleverly
encapsulate the heterogeneity within the node. To benefit from co-processor acceleration, application
code does not need to be changed at all. The reduced precision of several co-processor architectures
is addressed by a mixed precision iterative refinement scheme. The current implementation supports
GPUs [11], and a Cell backend is being developed.

Applications Two important classes of applications have recently been built on top of Feast: The
fluid dynamics code FEASTflow solves the transient incompressible Stokes and Navier-Stokes equa-
tions. It computes velocity fields and pressure distributions for Newtonian fluids like gases, water and
many other liquids in a fully stabilised, implicit way. The solid mechanics code FEASTsolid solves
static and transient elasticity problems for small and finite deformations. Beside linear constitutive re-
lations (Hooke, St. Venant-Kirchhoff), the nonlinear Neo-Hooke law is supported. Incompressible and
nearly incompressible materials are handled by a mixed displacement/pressure formulation. Other ap-
plications, e. g. Fluid-Solid-Interaction (FSI) and different methods, e. g. Lattice Boltzmann methods
(LBM), are actively being developed.

3 Results

In this section, we present some (prototypical) Feast results which demonstrate the promising po-
tential of our approach for future challenging problems.

Table 1 presents some performance data for solving the Poisson problem on the Tux geometry (see
figure 1). The coarse grid is refined 8, 9 and 10 times yielding a maximum problem size of 1.4 billion
unknowns, and either 63 or 127 compute processes are used (we do not count the master process which
synchronises the parallel computations). The data illustrates several important observations: Feast

runs on three important classes of HPC architectures [2]: Supercomputers (IBM p690, JUMP, Jülich,
Germany), vector machines (NEC SX8, HLRS, Stuttgart, Germany) and commodity based clusters
(Opteron-based, Infiniband interconnects, LiDO, ITMC TU Dortmund, Germany). On the vector and

63p 127p
#DOF Arch.

sec MFlop/s sec MFlop/s
Power4 170.4 5,252 116.4 7,698

90,317,056 NEC 156.7 5,376 91.9 9,167
Opteron 65.2 13,412 40.5 21,586
Power4 - - 269.6 11,912

361,120,256 NEC 222.8 13,511 128.0 23,519
Opteron 192.6 16,299 104.7 29,974
Power4 - - - -

1,444,185,088 NEC 595.0 22,328 364.9 36,415
Opteron - - 615.6 25,637

Table 1: Performance results for solving the Poisson problem on the Tux geometry, due to insufficient
local node memory some configurations could not be computed on all systems.



Figure 2: Displacements and von Mises stresses for four prototype configurations (STEELFRAME,
BLOCK, PIPE and CRACK), computed with the GPU-accelerated solid mechanics appli-
cation FEASTsolid.

commodity architectures, Feast exhibits good strong scalability and the local CPU efficiency for the
commodity based architecture is close to the peak memory bandwidth. Performance on the JUMP
system is disappointing due to the lack of time to profile the code for bottlenecks. The vector machine
achieves the best local performance, even better results can be expected with the pursued further
adaption to this special architecture.

Figure 2 shows examples of linearised elasticity computations, obtained by the application code
FEASTsolid. The four bodies consist of compressible material and are exposed to static exter-
nal loads. The figure depicts the resulting displacements and the von Mises stresses. All four con-
figurations were computed on a 16 node Opteron cluster, with a dualcore Santa Rosa CPU and a
NVIDIA Quadro 5600 GPU per node. Speed-up is illustrated in the left plot in figure 3. Overall, we
achieve a speed-up of 2.6 comparing the GPU-accelerated solver with a single core, and 1.6 against
two cores. Detailed analysis [12] reveals that the two cores are much faster than expected based on
pure bandwidth considerations, because the concurrency in the node helps overlapping data transfer
and computation. We are currently investigating hybrid communication models for this three-way
parallelism; i. e. many nodes via MPI, several heterogeneous resources within the node, and many
multiprocessors in the GPU. The second important observation is that the achieved speed-up by a
factor of 2.6 is driven by a local speed-up of 9 for the parts of the application (the local solvers per
subdomain) that can benefit from hardware acceleration. In case of the linearised elasticity solver,
2/3 of all operations can be accelerated, so this factor limits the achievable performance gain of the
entire solver to a factor of 3 (Amdahl’s Law). The factor of 2.6 is thus already a very good number,
especially in our ‘minimally invasive’ approach for which no application code needs to be changed.
Consequently, ‘hardware-oriented numerics’ means that improved numerical techniques that increase
the accelerable portion of the solution process need to be investigated.

Figure 3 (right) demonstrates good weak scalability for the linearised elasticity solver on up to 64
GPU-accelerated nodes. We execute the solver either on two CPUs per node, or on one GPU per
node [12].1 Previous work on other clusters showed that Feast scales very well in the weak sense on
up to 256 nodes [1] (see also section 2), both without and with GPU acceleration [10].

1As we do not have access to enough nodes with up-to-date hardware, the experiments were performed on NVIDIA
Quadro 1400 GPUs, which are four hardware generations old. The CPUs in the cluster however are only one
generation behind, which explains the comparatively weak speed-up.



 0

 50

 100

 150

 200

 250

BLOCK CRACK PIPE STEELFRAME

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

tim
e 

(s
ec

)

CPU-single
CPU-dual

GPU-single

 80

 90

 100

 110

 120

 130

 140

 150

32Mi DOF
4 nodes

64Mi DOF
8 nodes

128Mi DOF
16 nodes

256Mi DOF
32 nodes

512Mi DOF
64 nodes

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

tim
e 

(s
ec

)

CPU(L10)
GPU(L10)

Figure 3: Timings for a singlecore, a dualcore and a GPU solver (left), weak scalability results (right).
All computations were performed with the GPU-accelerated solid mechanics application
FEASTsolid.

4 Conclusions

Looking at current trends in numerical simulation methods and high performance computing tech-
niques, dedicated hardware-oriented numerics seems to be a key tool to significantly improve FEM
software packages for highly challenging problems from engineering disciplines and life sciences. Oth-
erwise, the general expectation that with better hardware the simulation of more complex problems
comes automatically into reach cannot be met any more due to the increasing gap between sustained
and peak performance. In our contribution, we have outlined the usage of GPUs as representative
‘FEM coprocessors’: We presented prototypical simulations of elliptic model problems with more than
one billion unknowns and examples from solid mechanics. These results demonstrate how highly
sophisticated hardware-oriented numerics can be realised on heterogeneous parallel systems.

Acknowledgements

Parts of this work are based on a joint collaboration with Robert Strzodka (Max Planck Center, Max
Planck Institut Informatik) and Patrick McCormick and Jamaludin Mohd-Yusof (Los Alamos National
Laboratory).

We would like to thank NVIDIA for donating development hardware.



References

[1] C. Becker. Strategien und Methoden zur Ausnutzung der High-Performance-Computing-Ressourcen moderner
Rechnerarchitekturen für Finite Element Simulationen und ihre Realisierung in FEAST (Finite Element Analysis
& Solution Tools). PhD thesis, Universität Dortmund, Fachbereich Mathematik, Logos Verlag, Berlin, 2007.

[2] C. Becker, S. H. Buijssen, and S. Turek. FEAST: development of HPC technologies for FEM applications. In
W. Nagel, D. Kröner, and M. Resch, editors, High Performance Computing in Science and Engineering ‘07, pages
503–516. Springer, Berlin, 2007.

[3] B. Bergen, F. Hülsemann, and U. Ulrich Rüde. Is 1.7× 1010 unknowns the largest finite element system that can
be solved today? In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, 2005.

[4] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. The impact of multicore on math
software. In Proceedings of PARA 2006, Umea Sweden, 2006.

[5] P. Colella, T. H. Dunning, W. D. Gropp, and D. E. Keyes. A science–based case for large–scale simulation. Technical
report, DOE Office of Science, 2003. http://www.pnl.gov/scales.

[6] C. C. Douglas, J. Hu, W. Karl, M. Kowarschik, U. Rüde, and C. Weiß. Fixed and adaptive cache aware algorithms
for multigrid methods. In E. Dick, K. Riemslagh, and J. Vierendeels, editors, Multigrid Methods VI, volume 14,
pages 87–93. Springer, 2000.

[7] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache optimization for structured and unstructured
grid multigrid. Electronic Transactions on Numerical Analysis, 10:21–40, 2000.

[8] C. C. Douglas and D. T. Thorne. A note on cache memory methods for multigrid in three dimensions. Contemporary
Mathematics, 306:167–177, 2002.

[9] K. Fatahalian, T. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally,
and P. Hanrahan. Sequoia: Programming the memory hierarchy. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, 2006.

[10] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. H. Buijssen, M. Grajewski, and S. Turek. Exploring
weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Computing, 33(10–11):685–699, 2007.

[11] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker, and S. Turek. Using GPUs
to improve multigrid solver performance on a cluster. accepted for publication in the International Journal of
Computational Science and Engineering, Special Issue on Implementational Aspects in Scientific Computing, 2008.

[12] D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and S. Turek. Co-processor acceleration of an
unmodified parallel solid mechanics code with FEASTGPU. accepted for publication in the International Journal
of Computational Science and Engineering, 2008.

[13] D. E. Keyes. Terascale implicit methods for partial differential equations. Contemporary Mathematics, 306:29–84,
2002.

[14] S. Kilian. ScaRC: Ein verallgemeinertes Gebietszerlegungs-/Mehrgitterkonzept auf Parallelrechnern. PhD thesis,
Universität Dortmund, Fachbereich Mathematik, 2001.

[15] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, 1996.

[16] S. Turek, C. Becker, and S. Kilian. Hardware–oriented numerics and concepts for PDE software. Future Generation
Computer Systems, 22(1-2):217–238, 2003.


