Mixed-Precision GPU-Multigrid Solvers

with Strong Smoothers
and Applications in CFD and CSM

Dominik Goddeke and Robert Strzodka
Institut fiir Angewandte Mathematik (LS3), TU Dortmund
Max Planck Institut Informatik, Saarbriicken

dominik.goeddeke@math.tu-dortmund.de
http://www.mathematik.tu-dortmund.de/~goeddeke

ENUMATH 2011 Mini-Symposium
Leicester, UK, September 7

technische universitat 5833 fakultat fur s Planck cener
dortmund R mathematik I I l! —

dominik.goeddeke@math.tu-dortmund.de
http://www.mathematik.tu-dortmund.de/~goeddeke

Reprise: Hardware-oriented numerics

Conflicting situations
Existing methods no longer hardware-compatible
Neither want less numerical efficiency, nor less hardware efficiency

Challenge: New algorithmic way of thinking
Balance these conflicting goals

Consider short-term hardware details in actual implementations,
but long-term hardware trends in the design of numerical schemes

Locality, locality, locality

Commmunication-avoiding (-delaying) algorithms between all
flavours of parallelism

Multilevel methods, hardware-aware preconditioning

Grid and Matrix Structures

Flexibility <+ Performance

Grid and matrix structures

General sparse matrices (unstructured grids)
CSR (and variants): General data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (grid numbering)

Structured sparse matrices
Example: Structured grids, suitable numbering = band matrices
Important: No stencils, fully variable coefficients
Direct regular memory accesses, fast independent of mesh

‘FEAST patches': Exploitation in the design of strong MG
components

Example: Poisson on unstructured mesh

1 Thread ===
35 4 Threads |+
PU m—
30 MPI (4x) E=mm |4

smaller is better <:
linear solver (sec)

P

2LVL CM XYZ HIER BAND

m Nehalem vs. GT200, ~ 2M bilinear FE, MG-JAC solver
m Unstructured formats highly numbering-dependent

Multicore 2—3x over singlecore, GPU 8-12x over multicore

Banded format (here: 8 ‘blocks’) 2—-3x faster than best unstructured
layout and predictably on par with multicore

Strong Smoothers

Parallelising Inherently
Sequential Operations

Motivation: Why strong smoothers?

Test case: Generalised Poisson problem with anisotropic diffusion
—V - (G Vu) = f on unit square (one FEAST patch)
G = I: standard Poisson problem, G # I: arbitrarily challenging
Example: G introduces anisotropic diffusion along some vector field

100
S
=)
08
M g 10
5]
=0
a0
28 1
25
g5
o8 4 BICGSTAB(JAC) ——
| o MG(JAC) —%—
vE BICGSTAB(ADITRIGS) —6—
= MG(ADITRIGS) —&—
0.01
332 652 129° 2572 5132 10257

L=5 L=6 L=7 L=8 L=9 L=10
CPU, double precision

Only multigrid with a strong smoother is competitive

GauB-Seidel smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm
Forward elimination, sequential dependencies between matrix rows

[llustrative: Coupling to the left and bottom

1st idea: Classical wavefront-parallelisation (exact)

7 8 9 1011

FRPOBNOU A WNR O

= o
x
% x
x
x

Pro: Always works to resolve explicit dependencies

Con: Irregular parallelism and access patterns, implementable?

GauB-Seidel smoother

2nd idea: Decouple dependencies via multicolouring (inexact)

Jacobi (red) — coupling to left (green) — coupling to bottom (blue) —
coupling to left and bottom (yellow)

Analysis
Parallel efficiency: 4 sweeps with = N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical efficiency: Sequential coupling only in last sweep

GauB-Seidel smoother

3rd idea: Multicolouring = renumbering
After decoupling: ‘Standard’ update (left+bottom) is suboptimal
Does not include all already available results

Recoupling: Jacobi (red) — coupling to left and right (green) — top
and bottom (blue) — all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: Convergence rates of sequential variant recovered (in
absence of preferred direction)

Tridiagonal smoother (line relaxation)

Starting point

X X

0
T) . . 1 X X X X
Good for ‘line-wise' anisotropies 2oxxx XXX
‘ B 4 X X X X
‘Alternating Direction Implicit (ADI) 5 x x x x x x
. 6 X X X X X X X X
technique alternates rows and columns 7oxxx xxx X
8 X X X X X X N
CPU implementation: Thomas-Algorithm o ek ek
11 X X X X X

(inherently sequential)

Observations
One independent tridiagonal system per mesh row
= top-level parallelisation across mesh rows

Implicit coupling: Wavefront and colouring techniques not applicable

Tridiagonal smoother (line relaxation)

Cyclic reduction for tridiagonal systems
Exact, stable (w/o pivoting) and cost-efficient

Problem: Classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index challenge, general idea: Recursive padding between odd and
even indices on all levels

B CNONCOJCJCNCRONCRCNTRCATRTRTRTNT]
mrQQOOO0O00 | V00000

P00ee00e8 L $60000uD

tmem @ @ OO @O OO (OSNCNONCYCYCHT)

e ORO NN ORORONONCNCR T RCRCNC AT TRT]

Combined GS and TRIDI

Starting point

CPU implementation: Shift previous row to :
RHS and solve remaining tridiagonal system 3
with Thomas-Algorithm :

Combined with ADI, this is the best general
smoother (we have) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: Mesh rows depend sequentially on
each other

Use colouring (#c > 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)

Evaluation: Total efficiency on CPU and GPU

Test problem: Generalised Poisson with anisotropic diffusion
Total efficiency: (us per unknown per digit) ™!
Mixed precision iterative refinement multigrid solver
Intel Westmere vs. NVIDIA Fermi

5 GSROW(1.0),CPU —+— s
D 10 ADITRIDI(0.8),CPU A 10 l//
'8 ADITRIGS(1.0).CPU —%— '8 /
=2 — S
g3 — e 83 —
09 ‘\; °9
K] 3
ﬂg \ ﬂg /
5o 1 5o 1
<} <15
s= s=
s s
N3 \ A3
2 = MC-GSROW(1.0),GPU —+—
£ ‘g ADITRIDI(0.8).GPU
S = MCVADITRIGS(J. 0).GPU —%—
0.1 0.1
33 65 129 257 513 1025 33 65 129 257 513 1025
L=5 L=6 L=7 L=8 L=9 L=10 L=5 L=6 L=7 L=8 L=9 L=10

Problem size Problem size

Speedup GPU vs. CPU

GSROW —+—
10 ADITRIDI

ADITRIGS —%— /l

-

> larger is better
Speedup (log10)

0.1

33 65 129 257 513 1025
L=5 L=6 L=7 L=8 L=9 L=10

Problem size

Summary: Smoother parallelisation

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same numerical capabilities on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)

CSM and CFD on
GPU-Accelerated Clusters

ScaRC Solvers in FEAST

Combination of structured and unstructured advantages
Global macro-mesh: Unstructured, flexible, complex domains
Local micro-meshes: Structured (logical TP-structure), fast

Important: Structured # simple meshes!

unstructured mesh ‘window” for
matrix-vector
multiplication,
per macro

Q
hierarchically
refined subdomain
(= "macro”),
rowwise numbered

Hybrid multilevel domain decomposition method
Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
Local GPU-accelerated MG hides local irregularities

Linearised elasticity

[

A Az
Az Axp

(26 + X)Oza + pOyy
(14 X)0yz

) ()=

102z + (21 + A)Dyy

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by
for all ©;: solve Aj1c1 = di
by
local scalar multigrid
update RHS: do = d2 — Asjcy
for all ©;: solve Asscy = do
by
local scalar multigrid
coarse grid solver: UMFPACK

Speedup

300

Singlecore ===
Dualcore s
250 | GPU

n=n rf’g\
o-loe [e

smaller is better <
linear solver (sec)

P—

BLOCK PIPE CRACK FRAME

m USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

m Problem size 128 M DOF
m Dualcore 1.6x faster than singlecore (memory wall)

m GPU 2.6x faster than singlecore, 1.6x than dualcore

Speedup analysis

Theoretical model of expected speedup
Integration of GPUs increases resources
Correct model: Strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

— 1 _ 1
Smax - 1_Racc SmOdel - (I_Racc)+(Racc/S\ocal)

This example

Accelerable fraction R,ee 66%
Local speedup Siocal O9x
Modeled speedup Smodel 2.5x
Measured speedup Siotal 2.6x
Upper bound Smax 3x 1 5 10 15 20 25 30 35

Stocal

----> larger is better ---->
Smodel

BN WA OO N ® ©

Weak scalability

Simultaneous doubling of problem size and resources
Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3B DOF
Right: Linearised elasticity, 64 nodes, max. 0.5B DOF

80 160
o ——— | 150
Yo 60 v 140 — |
g 59
£3 £8
g2 s0 28 130
22 40 Py
by 38 2 R
SE 30 TE 110
22 £
20 1= 100
v 2 CPUs —+— v
10 »* 90 2 CPUs —+—
GPU GPU —%—
o o < @ 80
B3 29 28 23 38 = so sq So s3
© Sz &z "z au Sz 3z {0 | i
S & by g 3 g 2 S
=Z —-Z Nz nZ

Results
No loss of weak scalability despite local acceleration
1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50s

Stationary laminar flow (Navier-Stokes)

Ay
B,

Ao
I~
B,

B

u;
uz

f1
fo

fixed point iteration
assemble linearised subproblems and solve with
global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with
global MG (V 14-0), additively smoothed by

for all 2;: solve for u; with
local MG
for all 2;: solve for us with
local MG
2) update RHS: ds = —ds + B (c1,¢2)"
3) scale ¢3 = (M'I;)’ldg,

pressure + isolines
(elevation plot)

‘magnitude of velocity + coarse grid

Stationary laminar flow (Navier-Stokes)

Solver configuration
Driven cavity: Jacobi smoother sufficient
Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10

DC Re250 52% 62% 9.1x 245x 1.63x 2.71x
Channel flow 48% - 12.5x - 1.76x -

FE assembly vs. linear solver, max. problem size

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28

Summary

Summary

Grid and data layouts
ScaRC approach: locally structured, globally unstructured

GPU computing
Parallelising numerically strong recursive smoothers

More than an order of magnitude speedup

Scale-out to larger clusters
Minimally invasive integration
Good speedup despite ‘Amdahl’'s Law’
Excellent weak scalability

One GPU code to accelerate CSM and CFD applications built on
top of ScaRC

Acknowledgements

Collaborative work with

FEAST group (TU Dortmund): Ch. Becker, S.H.M. Buijssen, M.
Geveler, D. Goddeke, M. Koster, D. Ribbrock, Th. Rohkamper, S.
Turek, H. Wobker, P. Zajac

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

Supported by
DFG: TU 102/22-1, TU 102/22-2

BMBF: HPC Software fiir skalierbare Parallelrechner. SKALB
project 011H08003D

Papers

http://www.mathematik.tu-dortmund.de/~goeddeke

http://www.mathematik.tu-dortmund.de/~goeddeke

	Grid and Matrix Structures
	Strong Smoothers: Parallelising Inherently Sequential Operations
	CSM and CFD on GPU-Accelerated Clusters
	Summary

