Mixed-Precision GPU-Multigrid Solvers with Strong Smoothers and Applications in CFD and CSM

Dominik Göddeke and Robert Strzodka

Institut für Angewandte Mathematik (LS3), TU Dortmund Max Planck Institut Informatik, Saarbrücken

dominik.goeddeke@math.tu-dortmund.de http://www.mathematik.tu-dortmund.de/~goeddeke

ENUMATH 2011 Mini-Symposium Leicester, UK, September 7

Conflicting situations

- Existing methods no longer hardware-compatible
- Neither want less numerical efficiency, nor less hardware efficiency

Challenge: New algorithmic way of thinking

Balance these conflicting goals

Consider short-term hardware details in actual implementations, but long-term hardware trends in the design of numerical schemes

- Locality, locality, locality
- Communication-avoiding (-delaying) algorithms between all flavours of parallelism
- Multilevel methods, hardware-aware preconditioning

Grid and Matrix Structures Flexibility \leftrightarrow **Performance**

General sparse matrices (unstructured grids)

- CSR (and variants): General data structure for arbitrary grids
- Maximum flexibility, but during SpMV
 - Indirect, irregular memory accesses
 - Index overhead reduces already low arithm. intensity further
- Performance depends on nonzero pattern (grid numbering)

Structured sparse matrices

- Example: Structured grids, suitable numbering \Rightarrow band matrices
- Important: No stencils, fully variable coefficients
- Direct regular memory accesses, fast independent of mesh
- 'FEAST patches': Exploitation in the design of strong MG components

Example: Poisson on unstructured mesh

- Nehalem vs. GT200, ≈ 2M bilinear FE, MG-JAC solver
- Unstructured formats highly numbering-dependent
- Multicore 2–3x over singlecore, GPU 8–12x over multicore
- Banded format (here: 8 'blocks') 2–3x faster than best unstructured layout and predictably on par with multicore

Strong Smoothers

Parallelising Inherently Sequential Operations Test case: Generalised Poisson problem with anisotropic diffusion

- $-\nabla \cdot (\mathbf{G} \ \nabla \mathbf{u}) = \mathbf{f}$ on unit square (one FEAST patch)
- $\blacksquare~{\bf G}={\bf I}:$ standard Poisson problem, ${\bf G}\neq {\bf I}:$ arbitrarily challenging
- Example: G introduces anisotropic diffusion along some vector field

Only multigrid with a strong smoother is competitive

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

- Forward elimination, sequential dependencies between matrix rows
- Illustrative: Coupling to the left and bottom

1st idea: Classical wavefront-parallelisation (exact)

- Pro: Always works to resolve *explicit* dependencies
- Con: Irregular parallelism and access patterns, implementable?

2nd idea: Decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) – coupling to left and bottom (yellow)

Analysis

- Parallel efficiency: 4 sweeps with $\approx N/4$ parallel work each
- Regular data access, but checkerboard pattern challenging for SIMD/GPUs due to strided access
- Numerical efficiency: Sequential coupling only in last sweep

3rd idea: Multicolouring = renumbering

- After decoupling: 'Standard' update (left+bottom) is suboptimal
- Does not include all already available results

- Recoupling: Jacobi (red) coupling to left and right (green) top and bottom (blue) – all 8 neighbours (yellow)
- More computations that standard decoupling
- Experiments: Convergence rates of sequential variant recovered (in absence of preferred direction)

Tridiagonal smoother (line relaxation)

Starting point

- Good for 'line-wise' anisotropies
- 'Alternating Direction Implicit (ADI)' technique alternates rows and columns
- CPU implementation: Thomas-Algorithm (inherently sequential)

	0	1	2	3	4	5	6	7	8	9	10	11
0	х	х				х	х					
1	х	х	х			х	х	х				
2		х	х	х			х	х	х			
3			х	х	х			х	х	х		
4				х	х				х	х		
5	х	х				х	х				х	х
6	х	х	х			х	х	х			х	X
7		х	х	х			х	х	х			X
8			х	х	х			х	х	х		÷.
9				х	х				х	х		
10)					х	х				х	X
11						х	х	х			х	x
								S. 1				

Observations

- One independent tridiagonal system per mesh row
- \blacksquare \Rightarrow top-level parallelisation across mesh rows
- Implicit coupling: Wavefront and colouring techniques not applicable

Cyclic reduction for tridiagonal systems

- Exact, stable (w/o pivoting) and cost-efficient
- Problem: Classical formulation parallelises computation but not memory accesses on GPUs (bank conflicts in shared memory)
- Developed a better formulation, 2-4x faster
- Index challenge, general idea: Recursive padding between odd and even indices on all levels

Starting point

- CPU implementation: Shift previous row to RHS and solve remaining tridiagonal system with Thomas-Algorithm
- Combined with ADI, this is the best general smoother (we have) for this matrix structure

	0	1	2	3	4	5	6	7	8	9	10	11
0	х	х				х	х					
1	х	х	х			х	х	х				
2		х	х	х			х	х	х			
3			х	х	х			х	х	х		
4				х	х				х	х		
5	х	х				х	х				х	х
6	х	х	х			х	х	х			х	Χ.,
7		х	х	х			х	х	х			X
8			х	х	х			х	х	х		2
9				х	х				х	х		
10)					х	х				х	×
11						х	х	х			х	X

Observations and implementation

- Difference to tridiagonal solvers: Mesh rows depend sequentially on each other
- Use colouring $(\#c \ge 2)$ to decouple the dependencies between rows (more colours = more similar to sequential variant)

Evaluation: Total efficiency on CPU and GPU

Test problem: Generalised Poisson with anisotropic diffusion

- Total efficiency: (μs per unknown per digit)⁻¹
- Mixed precision iterative refinement multigrid solver
- Intel Westmere vs. NVIDIA Fermi

Summary: Smoother parallelisation

- Factor 10-30 (dep. on precision and smoother selection) speedup over already highly tuned CPU implementation
- Same numerical capabilities on CPU and GPU
- Balancing of numerical and parallel efficiency (hardware-oriented numerics)

CSM and CFD on GPU-Accelerated Clusters

Combination of structured and unstructured advantages

- Global macro-mesh: Unstructured, flexible, complex domains
- Local micro-meshes: Structured (logical TP-structure), fast
- Important: Structured ≠ simple meshes!

Hybrid multilevel domain decomposition method

- Multiplicative between levels, global coarse grid problem (MG-like)
- Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- Local GPU-accelerated MG hides local irregularities

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f}$$

$$\begin{pmatrix} (2\mu+\lambda)\partial_{xx}+\mu\partial_{yy} & (\mu+\lambda)\partial_{xy} \\ (\mu+\lambda)\partial_{yx} & \mu\partial_{xx}+(2\mu+\lambda)\partial_{yy} \end{pmatrix}$$

Speedup

- USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa, Quadro FX5600)
- Problem size 128 M DOF
- Dualcore 1.6x faster than singlecore (memory wall)
- GPU 2.6x faster than singlecore, 1.6x than dualcore

Speedup analysis

Theoretical model of expected speedup

- Integration of GPUs increases resources
- Correct model: Strong scaling within each node
- Acceleration potential of the elasticity solver: $R_{acc} = 2/3$ (remaining time in MPI and the outer solver)

$$\label{eq:max} {\rm I\hspace{-.1cm} S_{max}} = \frac{1}{1-R_{\rm acc}} \qquad \qquad S_{\rm model} = \frac{1}{(1-R_{\rm acc})+(R_{\rm acc}/S_{\rm local})}$$

This example

Weak scalability

Simultaneous doubling of problem size and resources

- Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF
- Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF

Results

- No loss of weak scalability despite local acceleration
- 1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s

Stationary laminar flow (Navier-Stokes)

$$\begin{pmatrix} \mathbf{A_{11}} & \mathbf{A_{12}} & \mathbf{B_1} \\ \mathbf{A_{21}} & \mathbf{A_{22}} & \mathbf{B_2} \\ \mathbf{B}_1^\mathsf{T} & \mathbf{B}_2^\mathsf{T} & \mathbf{C} \end{pmatrix} \begin{pmatrix} \mathbf{u_1} \\ \mathbf{u_2} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f_1} \\ \mathbf{f_2} \\ \mathbf{g} \end{pmatrix}$$

fixed point iteration

assemble linearised subproblems and solve with global BiCGStab (reduce initial residual by 1 digit) Block-Schurcomplement preconditioner

1) approx. solve for velocities with **global MG** (V1+0), additively smoothed by

for all Ω_i : solve for \mathbf{u}_1 with local MG

for all Ω_i : solve for \mathbf{u}_2 with **local MG**

2) update RHS:
$$\mathbf{d}_3 = -\mathbf{d}_3 + \mathbf{B}^{\mathsf{T}}(\mathbf{c}_1, \mathbf{c}_2)^{\mathsf{T}}$$

3) scale $\mathbf{c}_3 = (\mathbf{M}_n^{\mathsf{L}})^{-1}\mathbf{d}_3$

magnitude of velocity + coarse grid

Solver configuration

- Driven cavity: Jacobi smoother sufficient
- Channel flow: ADI-TRIDI smoother required

Speedup analysis

	R_{i}	acc	S_{loc}	ocal	S_{total}	
	L9	L10	L9	L10	L9	L10
DC Re250	52%	62%	9.1x	24.5x	1.63x	2.71x
Channel flow	48%	_	12.5x	-	1.76x	-

FE assembly vs. linear solver, max. problem size

DC F	Re250	Channel				
CPU	GPU	CPU	GPU			
12:88	31:67	38:59	68:28			

Summary

Grid and data layouts

ScaRC approach: locally structured, globally unstructured

GPU computing

- Parallelising numerically strong recursive smoothers
- More than an order of magnitude speedup

Scale-out to larger clusters

- Minimally invasive integration
- Good speedup despite 'Amdahl's Law'
- Excellent weak scalability
- One GPU code to accelerate CSM and CFD applications built on top of ScaRC

Collaborative work with

- FEAST group (TU Dortmund): Ch. Becker, S.H.M. Buijssen, M. Geveler, D. Göddeke, M. Köster, D. Ribbrock, Th. Rohkämper, S. Turek, H. Wobker, P. Zajac
- Robert Strzodka (Max Planck Institut Informatik)
- Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratory)

Supported by

- DFG: TU 102/22-1, TU 102/22-2
- BMBF: HPC Software f
 ür skalierbare Parallelrechner. SKALB project 01IH08003D

Papers

http://www.mathematik.tu-dortmund.de/~goeddeke