

Robert Strzodka, Stanford University Dominik Göddeke, Universität Dortmund

Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations

Collaboration

- Dominik Göddeke, Stefan Turek, FEAST Group (Dortmund)
- Patrick McCormick, Advanced Computing Lab (LANL)
- Robert Strzodka, Max Planck Center (Stanford)

Hardware Oriented?

- GPU: 249 GFLOPS single precision 160 GB/s internal bandwidth 54 GB/s external bandwidth
- FPGA: 192 mad25x18 at 550MHz + logic almost unrestricted internal bandwidth 120.0 GB/s external bandwidth (for all IO pins)
- Clearspeed: 50 GFLOPS double precision 200.0 GB/s internal bandwidth 6.4 GB/s external bandwidth
- Cell BE: 230 GFLOPS single, 21 GFLOPS double precision 204.8 GB/s internal bandwidth 25.6 GB/s external bandwidth
- Buses: PCI-X 1GB/s; PCIe 4GB/s

Overview

- Precision and Accuracy
- Hardware Resources
- Mixed Precision Iterative Refinement
- Large Range Scaling

Roundoff examples for the float s23e8 format

additive roundoff multiplicative roundoff cancellation c=a,b $\begin{array}{ll} a=1 + 0.0000004 & =_{fl} 1 \\ b=1.0002 \, ^* \, 0.9998 & =_{fl} 1 \\ (c\text{-}1) \, ^* \, 10^8 & =_{fl} 0 \end{array}$

Cancellation promotes the small error 0.0000004 to the absolute error 4 and a relative error 1.

Order of operations can be crucial:

- $1 + 0.0000004 1 =_{fl} 0$
- $1 1 + 0.0000004 =_{fl} 0.0000004$

More Precision

Evaluating (with powers as multiplications) [S.M. Rump, 1988]

 $f(x, y) = (333.75 - x^2) y^6 + x^2 (11x^2y^2 - 121y^4 - 2) + 5.5y^8 + x/(2y)$

for $x_0 = 77617$, $y_0 = 33096$ gives

float s23e81.1726double s52e111.17260394005318long double s63e151.172603940053178631

This is all wrong, even the sign is wrong!! The correct result is -0.82739605994682136814116509547981629... Lesson learnt: Computational Precision ≠ Accuracy of Result

The Erratic Roundoff Error

Precision and Accuracy

- There is no monotonic relation between the computational precision and the accuracy of the final result.
- Increasing precision can decrease accuracy !
- The increase or decrease of precision in different parts of a computation can have very different impact on the accuracy.
- The above can be exploited to significantly reduce the precision in parts of a computation without a loss in accuracy.
- We obtain a mixed precision method.

PDE Example: Poisson Problem

- Unit square
- Bilinear conforming FEs (Q1)
- Zero Dirichlet BCs
- Regular refinement

- FEM theory: pure discretization error
- Expected error reduction of 4 (i.e. h^2) in each level
- Solved using MG until norms of residuals *indicate* three digit relative reduction
- Comparison of integral L2 error against analytically known reference solution in double precision

PDE Example: Poisson Problem

• Error reduction: single and double precision

NEQs	SINGLE	REDUCTION	DOUBLE	REDUCTION
3^2	5.208e-3		5.208e-3	
5^2	1.440e-3	3.62	1.440e-3	3.62
9^2	3.869e-4	3.72	3.869e-4	3.72
17^2	1.015e-4	3.81	1.015e-4	3.81
33^2	2.611e-5	3.89	2.607e-5	3.89
65^2	6.464e-6	4.04	6.612e-6	3.94
129^2	1.656e-6	3.90	1.666e-6	3.97
257^2	5.927e-7	2.79	4.181e-7	3.98
513^2	2.803e-5	0.02	1.047e-7	3.99
1025^2	7.708e-5	0.36	2.620e-8	4.00

Overview

- Precision and Accuracy
- Hardware Resources
- Mixed Precision Iterative Refinement
- Large Range Scaling

Resource Consumption for Integer Operations

Operation	Area	Latency
min(r,0) max(r,0)	b+1	2
add(r ₁ ,r ₂) sub(r ₁ ,r ₂)	2 b	b
add(r_1, r_2, r_3) \rightarrow add(r_4, r_5)	2b	1
mult(r ₁ ,r ₂) sqr(r)	b(b-2)	b log(b)
sqrt(r)	2c(c-5)	c(c+3)

b: bitlength of argument, c: bitlength of result

Reconfigurable Logic Consumption on a FPGA

High Precision Emulation

- Combine two native floating point values
 - Effectively doubles mantissa (but < double float mantissa)
 - Common exponent used to align mantissas
 - Normalisation required after each operation
 - Dynamic range slightly smaller than native range
 - Increases op count by 11x (ADD) and 18-32x (MUL)
 - Doubles bandwidth requirements

• Example

- Two s23e8 yield a quasi s46e8 float with same storage requirements as a full s52e11 double
- For large scale problems, we will need quad precision.

Example: Addition c=a+b

- Compute high-order sum and error
 - t1 = a.hi + b.hi
 - e = t1 a.hi
- Compute low order term including error and overflows

t2 = ((b.hi - e) + (a.hi - (t1 - e))) + a.lo + b.lo

• Normalise to get final result

c.hi = t1 + t2c.lo = t2 - (c.hi - t1)

Precision – Performance: Rule of Thumb

- Reconfigurable device, e.g. FPGA
 - $\frac{1}{2}$ precision (native format) \rightarrow 4x performance
 - 2x precision (emulated format) \rightarrow 1/4 performance
 - Emulated formats are (almost) identical to native formats

- Hardwired device, e.g CPU, GPU
 - $-\frac{1}{2}$ precision (native format) $\rightarrow 2x$ performance
 - 2x precision (emulated format) \rightarrow < 1/10 performance
 - Emulated formats are different from native formats

Overview

- Precision and Accuracy
- Hardware Resources
- Mixed Precision Iterative Refinement
- Large Range Scaling

Mixed Precision Iterative Refinement

- Exploit the speed of low precision and obtain a result of high accuracy
 - d_k =b-Ax_kCompute in high precision (cheap)Ac_k=d_kSolve in low precision (fast)x_{k+1}=x_k+c_kCorrect in high precision (cheap)k=k+1Iterate until convergence in high precision
- Low precision solution is used as a preconditioner in a high precision iterative method
 - A is small and dense: Solve Ac_k=d_k directly
 - A is large and sparse: Solve (approximately) Ac_k=d_k with an iterative method itself

18

Direct Scheme for Small, Dense A

Algorithm

- Compute PA=LU once in single precision
- Use LU decomposition to solve $Ly=Pd_k$, $Uc_k=y$ in each step
- Included in the next release of LAPACK

Main reasons for speedup

- Computation of LU decomposition is O(n^3)
- Computation of LU is much faster in single than in double
- Solution using LU for several RHS is only O(n^2)

Upper bound for iteration count

- $ceil(t_d/(t_s-K))$, where K, t_d, t_s are log10 of matrix condition and double and single precision (e.g. t_d approx 16)

Iterative Refinement: First and Second Step

CPU Results: LU Solver

[Langou et al. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems), SC 2006]

Cell Results: LU Solver

[Langou et al. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems), SC 2006]

Iterative Scheme for Large, Sparse A

Algorithm

- Inner solver: CG, Multigrid
- Terminate inner solver after fixed number of iterations, fixed error reduction or convergence

Main reason for speedup

- Inner solver can run on the GPU close to peak bandwidth
- To obtain speedups on CPUs one would need a SIMD optimized sparse matrix vector product

Result comparison

- 4-5x against double, 2-3x against double emulation
- Memory requirements cut in half

Iterative Convergence: First Correction

$$U^{k+1} \coloneqq U^k + G(U^k), \quad \left(U^k\right)_k \xrightarrow{k \to \infty} U^*, \quad \left(G(U^k)\right)_k \xrightarrow{k \to \infty} 0$$

Low precision path through coarse nodes

Iterative Convergence: Second Correction

25

GPU Results: Conjugate Gradient (CG) and Multigrid (MG)

FPGA Results: Conjugate Gradient with MUL18x18

Testing Grid Anisotropies

- Test iterative refinement with common FEM grids
- Uniform anisotropy, e.g. principal direction
- Anisotropic refinement, e.g. boundary layer

Overview

- Precision and Accuracy
- Hardware Resources
- Mixed Precision Iterative Refinement
- Large Range Scaling

FEAST: Generalized Tensor-Product Grids

Sufficient flexibility in domain discretization

- Global unstructured macro mesh, domain decomposition
- (an)isotropic refinement into local tensor-product grids

• Efficient computation

- High data locality, large problems map well to clusters
- Problem specific solvers depending on anisotropy level
- Hardware accelerated solvers on regular sub-problems

FEAST and ScaRC

- Find and exploit locally structured parts
 - Regular data structures are key to good performance
 - High GFLOP/s rates
 - Offloading to hardware co-processors possible
- Find and hide locally anisotropic parts
 - Robust solver with good convergence rates
 - Local anisotropies do not impact global multigrid
- Combine advantages of parallel MG and DD
 - ScaRC = Scalable Recursive Clustering

FEAST: Deformation Adaptivity

- This grid is a tensor-product !
- Easier to accelerate in hardware than resolution adaptive grids
- Anisotropy level determines optimal solver

FEASTGPU

Minimally invasive integration

- Do not reinvent the wheel, do not rewrite FEAST fully
- Offload time-critical parts to the GPU

CPU and GPU both execute what they are best at

- CPU: global high precision MG
- CPU: communication
- GPU: local smoothing
- (CPU: complex local smoothers)
- Mixed precision MG-MG

FEAST: Ad-hoc GPU Cluster Performance

Conclusions

- The relation between computational precision and final accuracy is not monotonic
- Iterative refinement allows to reduce the precision of many operations without a loss of final accuracy
- In multiplier dominated designs the resulting savings grow quadratically (area or time)
- Area or time improvements are particularly large for parallel architectures: FPGA, CPU, GPU, Cell, etc.
- Minimally invasive hardware integration enables portable code with hardware performance

Robert Strzodka, Stanford University Dominik Göddeke, Universität Dortmund

Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations

www.stanford.edu/~strzodka/

www.mathematik.uni-dortmund.de/~goeddeke/