Die Vorlesung behandelt Themen aus dem Gebiet der Nichtlinearen Analysis, oft auch als "Nichtlineare Funktionalanalysis" bezeichnet. In einem ersten Teil der Vorlesung wird der Satz über implizite Funktionen in (eventuell unendlichdimensionalen) Banachräumen bewiesen. Der Satz hat ein breites Anwendungsspektrum, insbesondere in gewöhnlichen und in partiellen Differentialgleichungen. Anwendungen wie Existenz, Eindeutigkeit, Stetige Abhängigkeit und Periodische Lösungen werden zunächst besprochen. Die Ljapunov-Schmidt Reduktion erlaubt eine Dimensionsreduktion in Anwendungsproblemen. In einem zweiten Teil der Vorlesung werden Verzweigungsresultate diskutiert, sie erlauben das Studium der Lösungsmengen von Gleichungen in Abhängigkeit von einem Parameter. Im einzelnen wird diskutiert: Stationäre Verzweigung, Hopf Verzweigung, Globale Verzweigung. In einem Beispiel wird auch der Abbildungsgrad eingesetzt.
Link zum Modulhandbuch Mathematik