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1 Background and Rationale

In modeling multimaterial flows, materials in each computational cell c are represented by set
of non-overlapping pure-material polygons !

c
m (m is material index) such that [m!

c
m = c. The

standard requirement is that the volume of the reconstructed material polygon is equal to the
corresponding target material volume, V

c
m - |!c

m| = V

c
m. Target material volumes are obtained

as a result of volume tracking. In this abstract we will assume that target material volumes
are given and

P
m V

c
m = Vc, where Vc is the volume of the entire multimaterial (MM) cell.

Pure-material polygons, !

c
m, are obtained by sequential cuts from cell c. That is, there is an

explicit assumption that there is a prescribed order of materials m1, m2, , . . . mn, where n is
the total number of the materials in cell c. The material polygon !

c
m1

is obtained by cutting
o↵ cell c, which is equivalent to the intersection of cell c with some half-plane - Pm1 such
that |c \ Pm,1| = V

c
m. Next, to obtain material polygon !

c
m2

one must intersect what is left
from cell c after cutting o↵ !

c
m1

, that is, c \ !

c
m1

with another plane and so on. The points
r = (x, y) in half-plane P

c
m, which defines material polygon !

c
m satisfy the following inequality

n

c
m · r + d

c
m � 0, where n

c
m is the unit outward normal and d

c
m is the signed distance from

origin to the corresponding straight line n

c
m · r + d

c
m = 0. The normal n

c
m is defined by one

parameter '

c
m which is the angle between the normal and one of the coordinate axes. For a

given normal, n

c
m, the parameter d

c
m is uniquely defined by the requirement that the volume

of the corresponding cuto↵ is equal to target volume.

In the interface reconstruction (IR) methods used in the standard volume-of-fluid (VOF) meth-
ods, one first estimates the direction of the normal n

c
m using information about target volumes

(volume fractions) of material m in the cell c itself and its neighbors. That is, communication
with neighboring cells is required on this stage. For more than two materials, one needs to
specify the order of materials and in VOF methods it has to be a global order (that is, the
same order for all multimaterial cells). But even in this case there is no clear and meaningful
procedure for how to estimate a normal for each material. Moreover, for VOF methods there
is no qualitative measure to compare results of IR with di↵erent material ordering.
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2 Moment-of-Fluid Interface Reconstruction

The Moment-of-Fluid (MoF) method, [1, 2] can can be characterized as a moment tracking
method in which one tracks the zero moment - M

c
0,m = V

c
m =

R
!c

m
1 dV (as in VOF method)

and also the first moment - M

c
1,m =

R
!c

m
x dV . We assume that for each cell c we are given a

set of target zeroth moments M

c
0,m, such that

P
m M

c
0,m = Vc, and also a set of first moments

M

c
1,m. We will call M

c
1,m - by the reference first moment for material m. In the MOF method

the IR is performed separately for each MM cell - there is no information from neighboring cells
required. The construction of each cuto↵ is formulated as a constrained optimization problem:
minimize first moment discrepancy between the reference first moment and the first moment of
the actual cuto↵ polygon !

c
m subject to an exact preservation of material volume. In 2D, this

is optimization with respect to one variable '

c
m, which defines normal. The optimal material

ordering in cell c produces the smallest overall discrepancy for first moments for all material
polygons.

3 Applications

Our primary application for MOF is MM Arbitrary Lagrangian-Eulerian (ALE) methods for
compressible flows. In Fig. 1 we demonstrate superiority of MOF IR method with respect to
traditional VOF IR for the ALE modeling of three-material vortex formation problem.
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Figure 1: Vortex formation - comparison of MOF IR and VOF IR.

In Fig. 2 we show result of ALE modeling of Kelvin-Helmholtz instability.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: MOF IR for Kelvin-Helmholtz instability problem

In [3] one can find application of MOF for modeling incompressible flows.

The details of MOF method and examples of other applications will be presented in the lecture.
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