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Motivation

Visualizing vortices and material flow of complicated instationary
flows is difficult and a current topic of various research groups.
Plotting vector fields or the stream function might give some insights
for stationary flow fields, but are often misleading for instationary
fields.
It would be desirable to find a visualization method with following
properties:

Showing the flow as a ‘whole’ with all interesting features in view.

Depiction of the ‘material flow’ in a Lagrangian sense (as with
particle tracing).

Easily extendable for 3D applications.
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Problems

Attempts with particle tracing shift the problems to the proper
placement of particle sources and show only the flow currently
containing particles. This causes its own set of problems.

(a) Flow configuration (b) Velocity magnitude (c) Particle Tracing (top in-

sertion)

(d) Particle Tracing (full in-

sertion)

Figure: Snapshots for ‘Driven cavity’
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Ideas

The ideas behind the NATD method can be summed up as

Smooth a noise field tangentially to a given flow field.

Smooth perpendicular to this flow depending on the local
gradient of the current solution to generate ‘clustered’ flow lines.
The amount of diffusion is determined by a function also used in
Perona-Malik models.

Transport the solution with the flow.

Since this diffusion creates a ‘feature scale space’ that gets coarser
with time several solutions started at different times have to be
computed and blended together to keep the visual output of a desired
feature scale.
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The PDE to be solved

The nonlinear anisotropic transport diffusion (NATD) model (of
Rumpf/Preusser)

∂tρ+ v · ∇ρ− div (A(v,∇ρ)∇ρ) = f (ρ)

with (external) CFD flow field v(x, t)

A(v,∇ρ) := B(v)T
(

α(||v||) 0
0 G(∇ρ, v)Idd−1

)

B(v)

α(||v||) :=
β2 max

(

||v||2, ||vmin||
2
)

τ

2
G(∇ρ, v) :=

{

ǫ

1+c‖∇ρ‖2 if ||v|| > 0

δ if ||v|| = 0

f (ρ) := φ ·
(

(2ρ− 1) − (2ρ− 1)3) δ :=
β2||vmin||

2τ

2

Remark: ||vmin||, τ , φ, c, β and ǫ are nonnegative real parameters, τ is
the used timestep.
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Numerical Discretization

In space a robust and accurate bilinear FEM discretization is used.
The time discretization is done by linearization of the PDE and using
implicit Euler (Crank-Nicolson is also possible).

The discretized variational formulation reads

(un+1, ψ) + τ(vn+1 · ∇un+1, ψ) + τ(A(vn+1,∇un)∇un+1,∇ψ) =

τ(f (un), ψ) + (un, ψ) ∀ψ ∈ V

with the test function space V and test functions ψ.

Remark: Treatment of the nonlinearity by using Newton or higher order
time-stepping schemes does not give as much improvement as to
compensate for the higher processing time/complexity.
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Numerical & algorithmic aspects I

Problem: Transport term causes numerical instabilities
⇒ Stabilization needed!

Diffusion operator already split in flow direction
⇒ Use streamline diffusion (SD) by modifying α(·)
Additionally SD is ‘2nd’ order!

Alternative methods that could also be used are

Upwind diffusion (UPD). Only 1st order!

Total variation diminishing (TVD)

Internal penalty/Edge-oriented stabilization.

Introduction Mathematical Formulation Examples Summary & Outlook Bibliography



Universität Dortmund

Numerical & algorithmic aspects II

Anisotropic diffusion is equivalent to isotropic diffusion on an
anisotropic deformed mesh. The problems encountered solving this
kind of PDE are therefore similar to those on very anisotropic meshes.
⇒ Solvers that are good for anisotropic meshes should also be useful
for anisotropic diffusion problems. See also the diploma thesis of
Michael Köster for further information.

level elements nodes
1 20 34
2 80 107
3 320 373
4 1280 1385
5 5120 5329
6 20480 20897
7 81920 82753

Table: Listing of number of nodes
and cells for different mesh refinement
levels

level τ = 0.001 #it τ = 0.002 #it τ = 0.003 #it
5 0.08753 6 0.08345 6 0.12957 7
6 0.08973 6 0.11818 7 0.19461 9
7 0.20600 9 0.37173 15 0.50550 21

level τ = 0.001 #it τ = 0.002 #it τ = 0.003 #it
5 0.00001 1 0.00008 2 0.00030 2
6 0.00003 2 0.00043 2 0.00985 3
7 0.00027 2 0.06115 5 0.60475 28

level τ = 0.001 #it τ = 0.002 #it τ = 0.003 #it
5 0.00001 1 0.00001 2 0.00008 2
6 0.00001 1 0.00059 2 0.00275 3
7 0.00001 1 0.00641 3 0.05587 5

Table: Comparing convergence rates for different refinement levels, time-steps and solvers
(preconditioned (ADITRIGS) BiCG-stab (top), MG with ADITRIGS smoother, 8 smoothing steps,
F-cycle (middle), preconditioned (MG/ADITRIGS) BiCG-stab (bottom). In each case the noise
field was replaced with sine waves and 6 digits accuracy had to be gained.

⇒ BiCG-stab preconditioned with MG/ADITRIGS allows larger timesteps τ .
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Numerical & algorithmic aspects III

Problem for unstructured grids:
No fixed element size
⇒ Frequency of noise not uniform
⇒ Underlying mesh can be ‘seen’ in solution!

Solution:
Create noise textures and map those to the grid.
⇒ Underlying mesh ‘disappears’!
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Numerical & algorithmic aspects IV

As mentioned before, the NATD method needs to blend different
solutions representing various feature scales together to create a
solution at ‘stabilized’ feature scale.
There are different possibilities for such a ‘blending’ of solutions that
are all based on different decompositions of 1.

Trigonometric functions, especially sine functions.
⇒ C∞ transitions between solutions.
Drawbacks:

No good solutions for the ‘startup phase’.
One solution is dominant while the other solutions are repressed.

Bernstein polynomials, especially B-Splines.
⇒ Solutions for the ‘startup phase’ can be increasing the order of
the polynomials and the contribution to the blended solution is
more evenly spread.
Drawback: The smoothness of transitions is reduced.

In the following examples B-Spline based blending is used!
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Circular flow

For a more analytical view of the behavior of the NATD method, we define an
artificial stationary circular flowfield on an unstructured mesh by scaling the
tangential to each point by a sine function depending on the distance of that
point from the center.

Figure: Circular flowfield. Flow strength
and direction additionally visualized by
vectors.

Figure: Solution after 10 timesteps (no
blending).

Settings: τ = 0.0025, ǫ = 0.01, c = 300, φ = 5, #cells=589824, #nodes=590593.
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Vortex shedding behind a cylinder

Problem: Vortex shedding behind a cylinder.
Both columns show the same flow, but with slightly different enhancement and blending

settings.
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The Venturi pipe

Venturi pipe

Inventor: Giovanni Battista Venturi (18th-19th-century)

Purpose: Creating suction/low pressure by using a fast flow
(Bernoulli’s principle)

Usage example: Draining sailing boats by their own movements
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Pictures/Movies

Visualization of the complex vortices and material flow given by this flow is
prone with difficulties. Neither of the Eulerian methods using streamfunction
or flow magnitude are showing much. Even the Lagrangian method of
particle tracing has its problems.
The NATD method gives much better results, as can be seen at the right
picture column. Even small vortices are identifiable!
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Summary & Outlook

Summary

Visualization technique for time-dependent CFD flow fields on
unstructured grids.

An accurate, robust and efficient solver.

Handling of noise on unstructured grids.

Blending of solutions.

Outlook

Improvements in controlling diffusion strengths and directions for
vector based solutions. See also the diploma thesis of David
Tschumperlé (University of Nice-Sophia Antipolis).

Use of higher order fully implicit time-stepping schemes.

Replacement of streamline diffusion with better stabilization
methods.

3D!
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