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Three Fields Formulation

Formulation involving stress

Bingham/Viscoplastic flows

Viscoelastic flows

Multiphase flows

Saddle point problem

Requires two inf-sup conditions
Velocity-Pressure
Stress-Velocity
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Bingham

Model with additional symmetric viscoplastic stress tensor



||D(u)||ε W−D(u) = 0 in Ω

−∇ · (2ηD(u) + τsW ) +∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

W = D(u)
||D(u)||ε

W = new stress tensor

τs = yield stress
D = strain rate tensor
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Viscoelastic

Model with additional elastic stress tensor

Oldroyd-B (γ = 0) Giesukus (γ = 1)


∂u
∂t + (u · ∇)u = −∇p + ηs∆u + ηp

∧
∇ · eψ

∇ · u = 0
∂ψ

∂t + (u · ∇)ψ − (Ωψ − ψΩ)− 2B = 1
∧

(e−ψ − I)− γeψ(e−ψ − I)2

ψ = log conformation tensor

D = strain rate tensor

ηs = solvent viscosity

ηp = polymer viscosity
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Multiphase

Model with additional multiphase stress tensor
τ = τ s + τ m

ρ(ψ)
(
∂u
∂t + u · ∇u

)
−∇ · τ +∇p = 0

∇ · u = 0

τ m = −σ
(
∇ψ ⊗∇ψ
||∇ψ||

)
, τ s = 2µ(ψ)D(u)


∂ϕ

∂t + u · ∇ϕ− γnd∇ · (( ∇ϕ
||∇ϕ||

· ∇ϕ− 1) ∇ϕ
||∇ϕ||

) = 0

∂ψ

∂τ
+∇ · (γncψ(1− ψ)∇ϕ)−∇ · (γnd (∇ψ · ∇ϕ) ∇ϕ) = 0

τ m = multiphase stress τ s = viscous stress
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Jump Discontinuity

Rising bubble in non-Newtonian fluids

In viscoelastic liquid
Volume exceeds a critical value
Rise velocity jump discontinuity
shape changes: convex to tear drop
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Jump Discontinuity

Prediction: Boundary condition changes from rigid to free

Jump occurs due to negative wake

Jump occurs due to shear dependence of the viscosity
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Industrial Applications

Bubble Phenomena

Pipeline transport application

Bio reactors

Combustion engines

Underwater explosions

Medicine: Angioplasty
Food industry

Fermentation process
Bread and yogurt

Nature: Bubble fence
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Industrial Applications

Bubble Phenomena

Chemical separator

Dispersion of gas bubble

Efficient mass transfer

Polymer and sludge processes
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Goals to Achieve
Efficient three fields solver

Solver: Monolithic multigrid approach

Constraints free for the choice of finite element spaces
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Navier Stokes Equation

Primitive Formulation
(u · ∇)u −∇ · 2ηD(u) +∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(1)

Three Field Formulation

σ −D(u) = 0 in Ω

(u · ∇)u −∇ ·
(

2η(1− α)D(u) + 2ηασ

)
+∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(2)
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Three Fields Formulation

Stokes System

σ −D(u) = 0 in Ω

−∇ ·
(

2η(1− α)D(u) + 2ηασ

)
+∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(3)

σ = extra stress tensor

α = parameter
η = viscosity
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Variational Formulation

V = H1
0(Ω) :=

(
H1

0 (Ω)
)2 → velocity and dual space → V′

Q = L2
0(Ω)→ pressure and dual space → Q′

T =
(
L2(Ω)

)4
sym → stress and dual space → T′

Au defined on V −→ V′

〈Auu, v〉 := 2η(1− α)
∫

Ω
D(u) : D(v) dx (4)

Aσ defined on T −→ T′

〈Aσσ, τ 〉 = 2ηα
∫

Ω
σ : τ dx (5)

The associated bilinear forms

au(u, v) = 〈Auu, v〉, aσ(σ, τ ) = 〈Aσσ, τ 〉 (6)
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Variational Formulation

B and C defined on V −→ Q′ respectively, V −→ T′

〈Bv , q〉 :=−
∫

Ω
∇·v q dx (7)

〈Cv , τ 〉 :=2ηα
∫

Ω
τ : D(v) dx (8)

Associated bilinear forms b(·, ·) and c(·, ·) defined on V×Q −→ R and
V× T −→ R respectively

b(v , q) :=
〈
Bv , q

〉
(9)

c(v , τ ) :=
〈
Cv , τ

〉
(10)
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Two-Folds Saddle Point Problem


Au CT BT

C −Aσ 0

B 0 0




u

σ

p

=


RHSσ

RHSu

RHSp

 (11)

The system (3) has the following weak formulation


−aσ(σ, τ ) + c(u, τ ) = 〈RHSσ, τ 〉 ∀τ ∈ T

au(u, v) + c(v ,σ) + b(v , p) = 〈RHSu , v〉 ∀v ∈ V

b(u, q) = 〈RHSp, q〉 ∀q ∈ Q

(12)
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Variational Formulation

Introduce the null spaces KerB

KerB = {v ∈ V; b(v , q) = 0 ∀q ∈ Q}

Let X := KerB × T

〈A(u,σ), (v , τ )〉 = 〈Auu, v〉+ 〈Cv ,σ〉+ 〈Aσσ, τ 〉 − 〈Cu, τ 〉 (13)

a(U ,V) = au(u, v) + c(v ,σ) + aσ(σ, τ )− c(u, τ ) (14)
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Solvability of Problem

Find U ∈ X such that:

a(U ,V) = 〈f ,V〉 ∀V ∈ X (15)

Theorem

Let X be a Hilbert space and f ∈ X′, topological dual space of X, and let
a(., .) be a bilinear form on X satisfying the following hypothesis:
1). a(·, ·) is continuous: there exists a constant C > 0 such that:

a(U ,V) ≤ C ||U|| ||V|| ∀U ,V ∈ X (16)
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Solvability of Problem

Theorem (cont...)
2). a(·, ·) is X-elliptic: there exists a constant β > 0 such that:

a(V,V) ≥β ||V||2 ∀V ∈ X (17)

then problem has a unique solution U ∈ X.

Remark
Besides from theory of saddle point problem it is easy to show that there
exists a unique p ∈ Q such that (σ,u, p) is the unique solution of
problem (12)
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Solvability of the Problem

Illustration for α 6= 1

a(V,V) = au(v , v) + aσ(τ , τ )

= 2η(1− α)
∫

Ω
||D(v)||2 dx + 2ηα

∫
Ω
||τ ||2 dx

≥ C2η(1− α) ||v ||2V + 2ηα ||τ ||2T

≥ C̃ ||(v , τ )||2X

Remark
When α = 1 → we can show existence and uniqueness using saddle
point theory
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Finite Element Approximation

Domain Ω ⊂ Rd → Quadrilaterals elements K , Ω = int
(⋃

K∈T h K
)

Finite element spaces approaximations

Th =
{

τ h ∈M,σh|K ∈ Q2(K )
}

Vh =
{

vh ∈ V, vh|K ∈ Q2(K )
}

Qh =
{

qh ∈ Q, qh|K ∈ Pdisc
1 (K )

} (18)
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Finite Element Approximation

Approximation of Stokes problem for finite element spaces Th ⊂ T,
Vh ⊂ V, Qh ⊂ Q

−aσ(σh, τ h) + c(uh, τ h) = 〈RHSσ, τ h〉 ∀τ h ∈ Th

au(uh, vh) + c(vh,σh) + b(vh, ph) = 〈RHSu , vh〉 ∀vh ∈ Vh

b(uh, qh) = 〈RHSp, qh〉 ∀qh ∈ Qh

(19)

Two LBB conditions required
Firstly, between velocity and stress
Secondly, between velocity and pressure
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Finite Element Approximation

Approximation of Stokes problem for finite element spaces Th ⊂ T,
Vh ⊂ V, Qh ⊂ Q


−aσ(σh, τ h) + c(uh, τ h) = 〈RHSσ, τ h〉 ∀τ h ∈ Th

au(uh, vh) + c(vh,σh) + b(vh, ph) = 〈RHSu , vh〉 ∀vh ∈ Vh

b(uh, qh) = 〈RHSp, qh〉 ∀qh ∈ Qh

Two LBB conditions required
Firstly, between velocity and stress 7

Secondly, between velocity and pressure 3
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Stable Element Choice 1

Fortin and Fortin element

(u, p) spaces → LBB compatible

σ and D(u)→ same FEM discontinuous space

Motivation Governing Equations Variational Formulation Finite Element Approximation Numerical Results Summary



Stable Element Choice 2

Marchal-Crochet element
Subcell discretization to enrich the local d.o.f for σ

nσ > nu → condition satisfied

Computational cost is increased due to more d.o.f
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EO-FEM Stabilization

Remedy: Jump term addition to ensure element pair is stable

Penalizing the jump of the solution gradient over E

Ju(uh, vh) = γu
∑
e∈Eh

2ηαh
∫

e
[∇uh] : [∇vh] dΩ (20)


Au + Ju C BT

CT −Aσ 0

B 0 0




u

σ

p

=


RHSu

RHSσ

RHSp

 (21)
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Discrete Problem

Find Uh ∈ Xh such that:

a(Uh,Vh) + j(Uh,Vh) = 〈fh,Vh〉 ∀Vh ∈ Xh (22)

|||Vh|||2 = ||Vh||2 + j(Vh,Vh) (23)

Theorem

Let Xh be a Hilbert space and fh ∈ X′h, topological dual space of X, and
let a(., .) be a bilinear form on Xh satisfying the following hypothesis:
1). a(·, ·) is continuous: there exists a constant Ch > 0 such that:

a(Uh,Vh) ≤ Ch |||Uh||| |||Vh||| ∀Uh,Vh ∈ Xh (24)
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Solvability of Problem

Theorem (cont...)
2). There exists a constant β′h > 0 such that :

sup
Vh∈Xh

a(Uh,Vh)
|||Vh|||

≥β′h |||Uh||| ∀Uh ∈ Xh (25)

then problem has a unique solution Uh ∈ Xh.

Remark
Besides from theory of saddle point problem it is easy to show that there
exists a unique ph ∈ Qh such that (σh,uh, ph) is the unique solution of
problem (19)

No constraints on the choice of discrete finite space for stress
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Benchmark Configuration

Inlet: Dirichlet parabolic profile
u(0, y) = 4×Uy(0.41−y)

(0.41)2

No-slip at upper and lower walls
Γ1 and Γ3

Outlet: Neumann boundary Γ2

Kinematic viscosity η = 10−3

Characteristic length of cylinder
lc = 0.1
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Numerical Results
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Monolithic Multigrid Solver

Three fields Stokes vs Stokes solver in primitive variables

Level Lift Drag NL/LL Lift1 Drag NL/LL

1 0.009498 5.5550 7/2 0.009498 5.5550 9/2
2 0.010601 5.5722 7/2 0.010601 5.5722 9/2
3 0.010616 5.5776 7/2 0.010616 5.5776 9/1
4 0.010618 5.5791 7/1 0.010618 5.5791 8/1
5 0.010619 5.5794 6/2

Three field solver performance efficient as primitive Stokes solver

Check robustness and consistency!

1Damanik. H ”FEM Simulation of Non-isothermal Viscoelastic fluids”, PhD Thesis
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EO-FEM : Consistency

Consistency for case α = 0

Level α Lift Drag NL/LL Lift Drag NL/LL
No Stab. Stab.

2 0 0.010601 5.5722 7/2 0.010702 5.5674 7/2
3 0 0.010616 5.5776 7/2 0.010619 5.5757 7/2
4 0 0.010618 5.5791 7/1 0.010617 5.5782 7/2
5 0 0.010619 5.5794 6/2 0.010618 5.5790 6/3

Edge Oriented FEM is consistent

Side effect neither on solution nor on the solver
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EO-FEM :Robustness

Two extreme cases
α=0 → viscous contribution
α=1 → no viscous contribution

Level α Lift Drag NL/LL Lift Drag NL/LL
No Stab. Stab.

2 0 0.010601 5.5722 7/2 0.010702 5.5674 7/2
3 0 0.010616 5.5776 7/2 0.010619 5.5757 7/2
4 0 0.010618 5.5791 7/1 0.010617 5.5782 7/2
5 0 0.010619 5.5794 6/2 0.010618 5.5790 6/3

2 1 ———– —— — 0.010588 5.5520 7/2
3 1 ———– —— — 0.010600 5.5698 7/2
4 1 ———– —— — 0.010612 5.5756 7/2
5 1 ———– —— — 0.010617 5.5778 7/3

Robustness w.r.t. problem!

Consistent and grid independent solver
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Summary

Robust monolithic multigrid solver for three fields Stokes formulation
using EO-FEM:

Advantages
Taking away the 2nd inf-sup condition (no constraints on the choice
of the σ space)

Allowing large class of discretiztation for the stress

Taking the efficiency of the Stokes solver in primitive variables to
Stokes solver in three fields formulation
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