

Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-Newtonian Flow Problems

M. Aaqib Afaq

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund

13 July 2017

Contents

- Overning Equations
- Overational Formulation
- Finite Element Approximation
- 5 Numerical Results

Contents

Motivation

- 2 Governing Equations
- Overational Formulation
- ④ Finite Element Approximation
- 5 Numerical Results

Three Fields Formulation

• Formulation involving stress

Bingham

$$\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \mathbf{W} - \mathbf{D}(\boldsymbol{u}) = 0$$
 in Ω

 $\begin{cases} \|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \mathbf{W} - \mathbf{D}(\boldsymbol{u}) = 0 & \text{in } \boldsymbol{\Omega} \\ -\nabla \cdot (2\eta \mathbf{D}(\boldsymbol{u}) + \tau_{s} \mathbf{W}) + \nabla p = 0 & \text{in } \boldsymbol{\Omega} \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \boldsymbol{\Omega} \\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{on } \boldsymbol{\Gamma}_{I} \end{cases}$

$$abla \cdot \boldsymbol{u} = 0 \qquad \text{in } \Omega$$

$$\boldsymbol{u} = \boldsymbol{g}_D$$
 on Γ_D

$$\mathsf{W} = rac{\mathsf{D}(u)}{\|\mathsf{D}(u)\|_{\epsilon}}$$

Viscoelastic

Model with additional elastic stress tensor

• Oldroyd-B (
$$\gamma = 0$$
) • Giesukus ($\gamma = 1$)

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla \boldsymbol{p} + \eta_{s} \Delta \boldsymbol{u} + \frac{\eta_{p}}{\Lambda} \nabla \cdot \boldsymbol{e}^{\psi} \\ \nabla \cdot \boldsymbol{u} = 0 \\ \frac{\partial \psi}{\partial t} + (\boldsymbol{u} \cdot \nabla)\psi - (\Omega\psi - \psi\Omega) - 2B = \frac{1}{\Lambda} (\boldsymbol{e}^{-\psi} - \mathbb{I}) - \gamma \boldsymbol{e}^{\psi} (\boldsymbol{e}^{-\psi} - \mathbb{I})^{2} \end{cases}$$

•
$$\psi = \log$$
 conformation tensor

• **D** = strain rate tensor

• $\eta_s = \text{solvent viscosity}$

• $\eta_p = \text{polymer viscosity}$

Multiphase

Model with additional multiphase stress tensor

$$\begin{aligned} \boldsymbol{\tau} &= \boldsymbol{\tau}_{s} + \boldsymbol{\tau}_{m} \\ \begin{cases} \rho(\psi) \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot \boldsymbol{\tau} + \nabla \boldsymbol{p} = \boldsymbol{0} \\ \nabla \cdot \boldsymbol{u} &= \boldsymbol{0} \end{cases} \\ \boldsymbol{\tau}_{m} &= -\sigma \left(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \right), \quad \boldsymbol{\tau}_{s} = 2\mu(\psi) \mathbf{D}(\boldsymbol{u}) \\ \frac{\partial \varphi}{\partial t} + \boldsymbol{u} \cdot \nabla \varphi - \gamma_{nd} \nabla \cdot \left(\left(\frac{\nabla \varphi}{\|\nabla \varphi\|} \cdot \nabla \varphi - 1 \right) \frac{\nabla \varphi}{\|\nabla \varphi\|} \right) = \boldsymbol{0} \\ \frac{\partial \psi}{\partial \tau} + \nabla \cdot \left(\gamma_{nc} \psi(1 - \psi) \nabla \varphi \right) - \nabla \cdot \left(\gamma_{nd} (\nabla \psi \cdot \nabla \varphi) \nabla \varphi \right) = \boldsymbol{0} \end{aligned}$$

• $\boldsymbol{\tau}_m =$ multiphase stress

• τ_s = viscous stress

Jump Discontinuity

Rising bubble in non-Newtonian fluids

- In viscoelastic liquid
 - Volume exceeds a critical value
 - Rise velocity jump discontinuity
 - shape changes: convex to tear drop

Jump Discontinuity

- Prediction: Boundary condition changes from rigid to free
- Jump occurs due to negative wake
- Jump occurs due to shear dependence of the viscosity

Industrial Applications

technische universität dortmund

Bubble Phenomena

- Pipeline transport application
- Bio reactors
- Combustion engines
- Underwater explosions
- Medicine: Angioplasty
- Food industry
 - Fermentation process
 - Bread and yogurt
- Nature: Bubble fence

Industrial Applications

technische universität dortmund

Bubble Phenomena

- Chemical separator
- Dispersion of gas bubble
- Efficient mass transfer
- Polymer and sludge processes

Contents

Motivation

Overning Equations

3 Variational Formulation

4 Finite Element Approximation

5 Numerical Results

Goals to Achieve

- Efficient three fields solver
- Solver: Monolithic multigrid approach
- Constraints free for the choice of finite element spaces

Primitive Formulation

$$\nabla (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \nabla \cdot 2\eta \mathbf{D}(\boldsymbol{u}) + \nabla \boldsymbol{p} = 0 \quad \text{in } \Omega$$
$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega$$
$$\boldsymbol{u} = \boldsymbol{g}_{D} \quad \text{on } \Gamma_{D}$$

Three Field Formulation

$$\begin{cases} \boldsymbol{\sigma} - \mathbf{D}(\boldsymbol{u}) = 0 & \text{in } \Omega \\ (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nabla \cdot \left(2\eta(1-\alpha)\mathbf{D}(\boldsymbol{u}) + 2\eta\alpha\sigma\right) + \nabla p = 0 & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{on } \Gamma_{P} \end{cases}$$
(2)

Three Fields Formulation

Stokes System

$$\begin{cases} \boldsymbol{\sigma} - \mathbf{D}(\boldsymbol{u}) = 0 & \text{in } \Omega \\ -\nabla \cdot \left(2\eta(1-\alpha)\mathbf{D}(\boldsymbol{u}) + 2\eta\alpha\boldsymbol{\sigma}\right) + \nabla \boldsymbol{p} = 0 & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{on } \Gamma_{D} \end{cases}$$
(3)

• $\sigma =$ extra stress tensor

• $\eta = \text{viscosity}$

• $\alpha = parameter$

Contents

Motivation

2 Governing Equations

Overational Formulation

- Finite Element Approximation
- 5 Numerical Results

Variational Formulation

•
$$\mathbb{V} = \boldsymbol{H}_0^1(\Omega) := \left(H_0^1(\Omega) \right)^2 \to$$
 velocity and dual space $\to \mathbb{V}'$

•
$$\mathbb{Q} = L^2_0(\Omega) \to$$
 pressure and dual space $\to \mathbb{Q}'$

•
$$\mathbb{T} = \left(\mathcal{L}^2(\Omega) \right)^4_{\mathsf{sym}} o$$
 stress and dual space $o \mathbb{T}'$

 $\mathcal{A}_{\textit{\textbf{u}}}$ defined on $\mathbb{V} \longrightarrow \mathbb{V}'$

$$\langle \mathcal{A}_{\boldsymbol{u}}\boldsymbol{u},\boldsymbol{v}\rangle := 2\eta(1-\alpha)\int_{\Omega} \mathbf{D}(\boldsymbol{u}): \mathbf{D}(\boldsymbol{v})\,dx$$
 (4)

 $\mathcal{A}_{oldsymbol{\sigma}}$ defined on $\mathbb{T} \longrightarrow \mathbb{T}'$

$$\langle \mathcal{A}_{\boldsymbol{\sigma}}\boldsymbol{\sigma},\boldsymbol{\tau}\rangle = 2\eta\alpha \int_{\Omega}\boldsymbol{\sigma}:\boldsymbol{\tau} \,d\boldsymbol{x}$$
 (5)

The associated bilinear forms

$$a_u(u,v) = \langle \mathcal{A}_u u, v \rangle, \quad a_\sigma(\sigma, \tau) = \langle \mathcal{A}_\sigma \sigma, \tau \rangle$$

Variational Formulation

 $\mathcal B$ and $\mathcal C$ defined on $\mathbb V\longrightarrow \mathbb Q'$ respectively, $\mathbb V\longrightarrow \mathbb T'$

$$\langle \mathcal{B}\boldsymbol{v},q\rangle := -\int_{\Omega} \nabla \cdot \boldsymbol{v} \ q \ dx$$
 (7)

$$\langle C \boldsymbol{v}, \boldsymbol{\tau} \rangle := 2\eta \alpha \int_{\Omega} \boldsymbol{\tau} : \mathbf{D}(\boldsymbol{v}) \, d\mathbf{x}$$
 (8)

Associated bilinear forms $b(\cdot, \cdot)$ and $c(\cdot, \cdot)$ defined on $\mathbb{V} \times \mathbb{Q} \longrightarrow \mathbb{R}$ and $\mathbb{V} \times \mathbb{T} \longrightarrow \mathbb{R}$ respectively

$$b(\mathbf{v},q) := \langle \mathcal{B}\mathbf{v},q \rangle \tag{9}$$
$$c(\mathbf{v},\tau) := \langle \mathcal{C}\mathbf{v},\tau \rangle \tag{9}$$

$$\begin{bmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathcal{C}^{\mathsf{T}} & \mathcal{B}^{\mathsf{T}} \\ \mathcal{C} & -\mathcal{A}_{\boldsymbol{\sigma}} & \boldsymbol{0} \\ \mathcal{B} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\sigma} \\ \boldsymbol{\rho} \end{bmatrix} = \begin{bmatrix} \mathsf{RHS}_{\boldsymbol{\sigma}} \\ \mathsf{RHS}_{\boldsymbol{u}} \\ \mathsf{RHS}_{\boldsymbol{\rho}} \end{bmatrix}$$
(11)

The system (3) has the following weak formulation

$$\begin{cases}
-a_{\sigma}(\sigma,\tau) + c(\boldsymbol{u},\tau) = \langle RHS_{\sigma},\tau \rangle & \forall \tau \in \mathbb{T} \\
a_{\boldsymbol{u}}(\boldsymbol{u},\boldsymbol{v}) + c(\boldsymbol{v},\sigma) + b(\boldsymbol{v},p) = \langle RHS_{\boldsymbol{u}},\boldsymbol{v} \rangle & \forall \boldsymbol{v} \in \mathbb{V} \\
b(\boldsymbol{u},q) = \langle RHS_{p},q \rangle & \forall q \in \mathbb{Q}
\end{cases}$$
(12)

Introduce the null spaces $\operatorname{Ker} \mathcal B$

$$\mathsf{Ker}\,\mathcal{B} = \{\boldsymbol{v} \in \mathbb{V}; \ b(\boldsymbol{v}, q) = 0 \quad \forall q \in \mathbb{Q}\}$$

Let $\mathbb{X}:=\operatorname{\mathsf{Ker}}\mathcal{B}\times\mathbb{T}$

$$\langle \mathcal{A}(\boldsymbol{u},\boldsymbol{\sigma}),(\boldsymbol{v},\boldsymbol{\tau})\rangle = \langle \mathcal{A}_{\boldsymbol{u}}\boldsymbol{u},\boldsymbol{v}\rangle + \langle \mathcal{C}\boldsymbol{v},\boldsymbol{\sigma}\rangle + \langle \mathcal{A}_{\boldsymbol{\sigma}}\boldsymbol{\sigma},\boldsymbol{\tau}\rangle - \langle \mathcal{C}\boldsymbol{u},\boldsymbol{\tau}\rangle$$
(13)

$$a(\mathcal{U},\mathcal{V}) = a_{u}(\boldsymbol{u},\boldsymbol{v}) + c(\boldsymbol{v},\boldsymbol{\sigma}) + a_{\sigma}(\boldsymbol{\sigma},\boldsymbol{\tau}) - c(\boldsymbol{u},\boldsymbol{\tau})$$
(14)

Solvability of Problem

• Find $\mathcal{U} \in \mathbb{X}$ such that:

$$a(\mathcal{U},\mathcal{V}) = \langle \boldsymbol{f},\mathcal{V} \rangle \qquad \forall \mathcal{V} \in \mathbb{X}$$
(15)

Theorem

Let X be a Hilbert space and $\mathbf{f} \in X'$, topological dual space of X, and let a(.,.) be a bilinear form on X satisfying the following hypothesis: 1). $a(\cdot, \cdot)$ is continuous: there exists a constant C > 0 such that:

$$\mathsf{P}(\mathcal{U},\mathcal{V}) \leq C \|\mathcal{U}\| \|\mathcal{V}\| \qquad \quad \forall \mathcal{U},\mathcal{V} \in \mathbb{X}$$
 (16)

Theorem (cont...)

2). a(\cdot, \cdot) is X-elliptic: there exists a constant $\beta > 0$ such that:

$$a(\mathcal{V},\mathcal{V}) \ge \beta \left\| \mathcal{V} \right\|^2 \qquad \qquad \forall \mathcal{V} \in \mathbb{X}$$
(17)

then problem has a unique solution $\mathcal{U} \in \mathbb{X}$.

Remark

Besides from theory of saddle point problem it is easy to show that there exists a unique $p \in Q$ such that (σ, u, p) is the unique solution of problem (12)

Solvability of the Problem

Illustration for $\alpha \neq 1$

$$\begin{aligned} \mathsf{a}(\mathcal{V},\mathcal{V}) &= \mathsf{a}_{u}(\mathbf{v},\mathbf{v}) + \mathsf{a}_{\sigma}(\tau,\tau) \\ &= 2\eta(1-\alpha) \int_{\Omega} \|\mathbf{D}(\mathbf{v})\|^{2} \, dx + 2\eta\alpha \int_{\Omega} \|\boldsymbol{\tau}\|^{2} \, dx \end{aligned}$$

$$\geq C2\eta(1-\alpha) \left\| \boldsymbol{v} \right\|_{\mathbb{V}}^{2} + 2\eta\alpha \left\| \boldsymbol{\tau} \right\|_{\mathbb{T}}^{2}$$

$$\geq ilde{ extsf{C}} \left\| (oldsymbol{v}, oldsymbol{ au})
ight\|_X^2$$

Remark

• When $\alpha = 1 \rightarrow$ we can show existence and uniqueness using saddle point theory

Contents

Motivation

- 2 Governing Equations
- Overational Formulation
- Finite Element Approximation
- 5 Numerical Results

Finite Element Approximation

tu technische universität dortmund

- Domain $\Omega \subset \mathbb{R}^d o \mathsf{Q}$ uadrilaterals elements K, $\Omega = \mathsf{int} \left(\bigcup_{K \in \mathcal{T}^h} \overline{K} \right)$
- Finite element spaces approaximations

$$\mathbb{T}^{h} = \left\{ \boldsymbol{\tau}_{h} \in \mathbb{M}, \boldsymbol{\sigma}_{h|K} \in Q_{2}(K) \right\}$$
$$\mathbb{V}^{h} = \left\{ \boldsymbol{v}_{h} \in \mathbb{V}, \boldsymbol{v}_{h|K} \in Q_{2}(K) \right\}$$
$$\mathbb{Q}^{h} = \left\{ q_{h} \in \mathbb{Q}, q_{h|K} \in P_{1}^{\text{disc}}(K) \right\}$$
(18)

Approximation of Stokes problem for finite element spaces $\mathbb{T}^h \subset \mathbb{T}$, $\mathbb{V}^h \subset \mathbb{V}$, $\mathbb{Q}^h \subset \mathbb{Q}$

$$\begin{cases} -a_{\boldsymbol{\sigma}}(\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h}) + c(\boldsymbol{u}_{h},\boldsymbol{\tau}_{h}) &= \langle RHS_{\boldsymbol{\sigma}},\boldsymbol{\tau}_{h} \rangle & \forall \boldsymbol{\tau}_{h} \in \mathbb{T}^{h} \\ a_{\boldsymbol{u}}(\boldsymbol{u}_{h},\boldsymbol{v}_{h}) + c(\boldsymbol{v}_{h},\boldsymbol{\sigma}_{h}) + b(\boldsymbol{v}_{h},p_{h}) &= \langle RHS_{\boldsymbol{u}},\boldsymbol{v}_{h} \rangle & \forall \boldsymbol{v}_{h} \in \mathbb{V}^{h} \\ b(\boldsymbol{u}_{h},q_{h}) &= \langle RHS_{\boldsymbol{p}},q_{h} \rangle & \forall q_{h} \in \mathbb{Q}^{h} \end{cases}$$
(19)

- Two LBB conditions required
 - Firstly, between velocity and stress
 - Secondly, between velocity and pressure

Summary

Approximation of Stokes problem for finite element spaces $\mathbb{T}^h\subset\mathbb{T}$, $\mathbb{V}^h\subset\mathbb{V}$, $\mathbb{Q}^h\subset\mathbb{Q}$

$$egin{aligned} & \left\{egin{aligned} -a_{\pmb{\sigma}}(\pmb{\sigma}_h,\pmb{ au}_h)+c(\pmb{u}_h,\pmb{ au}_h)&=\langle extsf{RHS}_{\pmb{\sigma}},\pmb{ au}_h
ight
angle & orall \pmb{ au}(\pmb{u}_h,\pmb{v}_h)+c(\pmb{v}_h,\pmb{\sigma}_h)+b(\pmb{v}_h,p_h)&=\langle extsf{RHS}_{\pmb{u}},\pmb{v}_h
ight
angle & orall \pmb{ au}_h\in\mathbb{V}^h\ & b(\pmb{u}_h,q_h)&=\langle extsf{RHS}_{\pmb{\rho}},q_h
angle & orall \pmb{ au}_h\in\mathbb{Q}^h \end{aligned}$$

- Two LBB conditions required
 - Firstly, between velocity and stress X

Stable Element Choice 1

- (u, p) spaces \rightarrow LBB compatible
- σ and $\mathsf{D}(u)
 ightarrow$ same FEM discontinuous space

Stable Element Choice 2

Marchal-Crochet element

- ullet Subcell discretization to enrich the local d.o.f for σ
- $n_{\sigma} > n_{u} \rightarrow$ condition satisfied

Computational cost is increased due to more d.o.f

Remedy: Jump term addition to ensure element pair is stable

• Penalizing the jump of the solution gradient over E

$$J_{\boldsymbol{u}}(\boldsymbol{u}_{h},\boldsymbol{v}_{h}) = \gamma_{\boldsymbol{u}} \sum_{\boldsymbol{e}\in\mathcal{E}_{h}} 2\eta\alpha h \int_{\boldsymbol{e}} [\nabla \boldsymbol{u}_{h}] : [\nabla \boldsymbol{v}_{h}] \ d\Omega$$
(20)

$$\begin{bmatrix} \mathcal{A}_{\boldsymbol{u}} + J_{\boldsymbol{u}} & \mathcal{C} & \mathcal{B}^{\mathsf{T}} \\ \mathcal{C}^{\mathsf{T}} & -\mathcal{A}_{\boldsymbol{\sigma}} & \mathbf{0} \\ \mathcal{B} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\sigma} \\ \boldsymbol{\rho} \end{bmatrix} = \begin{bmatrix} \mathsf{RHS}_{\boldsymbol{u}} \\ \mathsf{RHS}_{\boldsymbol{\sigma}} \\ \mathsf{RHS}_{\boldsymbol{\rho}} \end{bmatrix}$$

(21)

Discrete Problem

• Find $\mathcal{U}_h \in \mathbb{X}_h$ such that:

$$a(\mathcal{U}_h, \mathcal{V}_h) + j(\mathcal{U}_h, \mathcal{V}_h) = \langle f_h, \mathcal{V}_h \rangle \qquad \forall \mathcal{V}_h \in \mathbb{X}_h$$
(22)

$$\left\|\left|\mathcal{V}_{h}\right\|\right|^{2} = \left\|\mathcal{V}_{h}\right\|^{2} + j(\mathcal{V}_{h}, \mathcal{V}_{h})$$
(23)

Theorem

Let X_h be a Hilbert space and $f_h \in X'_h$, topological dual space of X, and let a(.,.) be a bilinear form on X_h satisfying the following hypothesis: 1). $a(\cdot, \cdot)$ is continuous: there exists a constant $C_h > 0$ such that:

$$\mathsf{a}(\mathcal{U}_h, \mathcal{V}_h) \leq C_h \left\| \mathcal{U}_h \right\| \left\| \mathcal{V}_h \right\| \qquad \forall \mathcal{U}_h, \mathcal{V}_h \in \mathbb{X}_h$$

(24)

Solvability of Problem

Theorem (cont...)

2). There exists a constant $\beta'_h > 0$ such that :

$$\sup_{\mathcal{V}_h \in \mathbb{X}_h} \frac{a(\mathcal{U}_h, \mathcal{V}_h)}{\|\mathcal{V}_h\|} \ge \beta'_h \|\mathcal{U}_h\| \qquad \forall \mathcal{U}_h \in \mathbb{X}_h$$
(25)

then problem has a unique solution $\mathcal{U}_h \in \mathbb{X}_h$.

Remark

Besides from theory of saddle point problem it is easy to show that there exists a unique $p_h \in Q_h$ such that (σ_h, u_h, p_h) is the unique solution of problem (19)

No constraints on the choice of discrete finite space for stress

Contents

Motivation

- 2 Governing Equations
- Overational Formulation
- ④ Finite Element Approximation
- 5 Numerical Results

Benchmark Configuration

- Inlet: Dirichlet parabolic profile $u(0, y) = \frac{4 \times Uy(0.41-y)}{(0.41)^2}$
- No-slip at upper and lower walls Γ_1 and Γ_3

- Outlet: Neumann boundary Γ_2
- Kinematic viscosity $\eta = 10^{-3}$
- Characteristic length of cylinder $l_c = 0.1$

2,2

Numerical Results

Velocity Magnitude

0.0e+00 0.09 0.18 0.27 0.36 4.1e-01

Pressure

-1.276e-020 0.03 0.06 0.09 1.321e-01

Stream Function

-0.2728-02 -0.04 -0.02 0 1,9288-02

Motivation –

Three fields Stokes vs Stokes solver in primitive variables

Level	Lift	Drag	NL/LL	Lift ¹	Drag	NL/LL
1	0.009498	5.5550	7/2	0.009498	5.5550	9/2
2	0.010601	5.5722	7/2	0.010601	5.5722	9/2
3	0.010616	5.5776	7/2	0.010616	5.5776	9/1
4	0.010618	5.5791	7/1	0.010618	5.5791	8/1
5	0.010619	5.5794	6/2			

Three field solver performance efficient as primitive Stokes solver

Check robustness and consistency!

¹Damanik. H "FEM Simulation of Non-isothermal Viscoelastic fluids", PhD Thesis

EO-FEM : Consistency

• Consistency for case $\alpha = 0$

Level	α	Lift	Drag	NL/LL	Lift	Drag	NL/LL
		No Stab.			Stab.		
2	0	0.010601	5.5722	7/2	0.010702	5.5674	7/2
3	0	0.010616	5.5776	7/2	0.010619	5.5757	7/2
4	0	0.010618	5.5791	7/1	0.010617	5.5782	7/2
5	0	0.010619	5.5794	6/2	0.010618	5.5790	6/3

Edge Oriented FEM is consistent

Side effect neither on solution nor on the solver

EO-FEM :Robustness

- Two extreme cases
 - $\alpha = 0 \rightarrow$ viscous contribution
 - $\alpha{=}1 \rightarrow$ no viscous contribution

Level	α	Lift	Drag	NL/LL	Lift	Drag	NL/LL
		No Stab.			Stab.		
2	0	0.010601	5.5722	7/2	0.010702	5.5674	7/2
3	0	0.010616	5.5776	7/2	0.010619	5.5757	7/2
4	0	0.010618	5.5791	7/1	0.010617	5.5782	7/2
5	0	0.010619	5.5794	6/2	0.010618	5.5790	6/3
2	1			_	0.010588	5.5520	7/2
3	1			—	0.010600	5.5698	7/2
4	1			—	0.010612	5.5756	7/2
5	1			—	0.010617	5.5778	7/3

Robustness w.r.t. problem!

Consistent and grid independent solver

Contents

Motivation

- Overning Equations
- Overational Formulation
- 4 Finite Element Approximation
- 5 Numerical Results

Robust monolithic multigrid solver for three fields Stokes formulation using EO-FEM:

Advantages

- Taking away the 2nd inf-sup condition (no constraints on the choice of the σ space)
- Allowing large class of discretiztation for the stress
- Taking the efficiency of the Stokes solver in primitive variables to Stokes solver in three fields formulation

