Monolithic Newton-Multigrid Solver for Multiphase Flow Problems with Surface Tension

M. Aaqib Afaq

aaqib.afaq@math.tu-dortmund.de

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund University

28th November, 2022

Contents

🚺 Motivation

- Q Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 🗿 Rising Bubble Test
- Ø Benchmark: Rising Bubble

🗿 Summary

References

Contents

Motivation

- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- 8 Summary

9 References

Multiphase flows in Nature and Industry

Gas-Liquid

- Condensation
- Boiling
- Spray cooling
- Biological flows

Solid-Liquid

- Emulsification
- Slurries
- Food processing

Gas-Solid

- Fluidization
- Coal burners

Liquid-Liquid

- Petroleum extraction
- Oil exploration:

4-phases

Interface tracking: Immersed boundary,¹ Front tracking²

Interface capturing: Volume of fluid,³ Phase field,^{4,5} Level set^{6,7}

Continuum surface force (CSF): Interface as a smooth transition^{8,9}

Continuum surface stress (CSS): Surface force term as the divergence of the stress $tensor^{8, 10}$

Contents

Motivation

- Overning Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- 8 Summary

9 References

CSF Formulation

The incompressible Navier Stokes equations

$$\begin{cases} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot 2\mu \mathbf{D}(\boldsymbol{u}) + \nabla \boldsymbol{p} = \boldsymbol{f}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega. \end{cases}$$
(1)

• $\rho = \text{density}$ • $\mathbf{D}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ • p = pressure• f = external force

$$f = \kappa \sigma \mathbf{n} \delta_{\Gamma} \tag{2}$$

- $\kappa = \text{curvature}$ n = normal to the interface
- $\sigma =$ surface tension constant $\delta_{\Gamma} =$ delta function

$$\begin{cases} \rho(\Gamma) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - \nabla \cdot 2\mu(\Gamma) \mathbf{D}(\boldsymbol{u}) + \nabla \boldsymbol{p} = \kappa \sigma \boldsymbol{n} \delta_{\Gamma}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega. \end{cases}$$
(3)

• Interface capturing by level set method

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = 0 \tag{4}$$

• $\phi = \text{level set function}$

This transport equation can be efficiently solved due to the choice of a smooth level set function

• Exact representation of the interface

$$\Gamma = \{ x \in \Omega, \phi = 0 \}$$
(5)

• Provides derived geometrical quantities (n, κ)

$$\boldsymbol{n} = \frac{\nabla \phi}{\|\nabla \phi\|}, \quad \kappa = -\nabla \cdot \boldsymbol{n}$$
(6)

• The surface tension force in terms of the level set function

$$f = \kappa \sigma \mathbf{n} \delta_{\Gamma}(\phi) \tag{7}$$

The signed distance function is the natural choice for the level set!

Problems and Challenges

• Spurious velocity¹¹ Unphysical flows near the interface

- Unphysical interface movement
- Misinterpret the flow physics

• Large surface tension

- Spurious velocity may grow
- Destroy the interface
- **Observed** \longrightarrow explicit/implicit interface representation
- Explicit treatment of surface tension Capillary time restriction¹²
- Explicit reinitialization Requires perfect interface description

Problems and Challenges: Capillary Time Step

- Dominant limitation on time step in simulations of interfacial flows with surface tension
- Time-explicit discretization of the surface tension leads to stability constraint

Mathematical expression

- Same density: $\Delta t_h^{cap} < \sqrt{rac{
 ho h^3}{\sigma}}$
- Different densities: $\Delta t_h^{cap} < \sqrt{rac{(
 ho_1+
 ho_2)h^3}{4\pi\sigma}}$
- Capillary time step \propto to mesh size $h^{rac{3}{2}}$

Towards a fully implicit treatment

Material cut-off function

$$\psi(x,t) = \begin{cases} +\frac{1}{2} & \text{if } \phi(x,t) \ge 0\\ -\frac{1}{2} & \text{if } \phi(x,t) < 0 \end{cases}$$
(8)

Features

- Enhances the accuracy
- ψ is material characteristic \longrightarrow conservative level set
- Regularization of material cut-off function

$$\psi = \frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + 0.5 \tag{9}$$

New set of equations for multiphase flow

$$\begin{cases} \rho(\psi) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - di \boldsymbol{v} \boldsymbol{\tau} + \nabla \boldsymbol{p} = \boldsymbol{0}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{0}, & \text{in } \Omega, \\ \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = \boldsymbol{0}, & \text{in } \Omega, \\ \psi - \Big(\frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + \boldsymbol{0}.5 \Big) = \boldsymbol{0}, & \text{in } \Omega. \end{cases}$$
(10)

- $\bullet \ \phi = {\rm level \ set \ function}$
- $\epsilon_{\psi} = \text{interface thickness}$

• $au = (au_s + au_m)$ full stress tensor

•
$$\psi = \text{cut-off function}$$

Viscous stress

$$\boldsymbol{\tau}_{s}=2\mu(\psi)\mathbf{D}(\boldsymbol{u})$$

Multiphase stress

$$\boldsymbol{\tau}_m = -\sigma \Big(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \Big)$$

Signed distance function needs to satisfy the constraint

$$\|\nabla \phi\| = 1 \quad \Longleftrightarrow \quad \mathbf{n} \cdot \nabla \phi = 1$$

• For implicit approach, constraint is imposed

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi - \underbrace{\nabla \cdot (\gamma_{nd} (\boldsymbol{n} \cdot \nabla \phi - 1) \boldsymbol{n})}_{reinitialization} = 0$$
(11)

• γ_{nd} = penalty parameter

Curvature-Free Level Set¹³

$$\begin{cases} \rho(\psi) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - \nabla \cdot \Big(2\mu(\psi) \mathbf{D}(\boldsymbol{u}) + \sigma \Big(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \Big) \Big) + \nabla p = 0, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega, \\ \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi - \nabla \cdot \Big(\gamma_{nd} \Big(\frac{\nabla \phi}{\|\nabla \phi\|} \cdot \nabla \phi - 1 \Big) \frac{\nabla \phi}{\|\nabla \phi\|} \Big) = 0, & \text{in } \Omega, \end{cases}$$
(12)
$$\psi - \Big(\frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + 0.5 \Big) = 0, & \text{in } \Omega. \end{cases}$$

Advantages

- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction
- Reinitialization is integrated within the formulation
- Navier-Stokes with homogeneous force terms

The momentum equation gets rid of the CSF force terms

PDE for the material cut-off function with fictitious time¹⁴

$$\frac{\partial \psi}{\partial \tau} + \underbrace{\nabla \cdot \left(\gamma_{nc}\psi(1-\psi)\boldsymbol{n}\right)}_{\text{Conv. normal}} - \underbrace{\nabla \cdot \left(\gamma_{nd}(\nabla\psi\cdot\boldsymbol{n})\boldsymbol{n}\right)}_{\text{Diff. normal}} = 0$$
(13)

- **Conv. normal**: nonlinear convection tends to build the Heaviside step function
- Diff. normal: normal diffusion control the sharpness of the interface

Curvature-Free Cut-off Function¹³

$$\begin{pmatrix} \rho(\psi) \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot \left(2\mu(\psi) \mathbf{D}(\boldsymbol{u}) + \boldsymbol{\sigma} \left(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \right) \right) + \nabla \boldsymbol{p} = 0, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega, \\ \frac{\partial \psi}{\partial t} + \boldsymbol{u} \cdot \nabla \psi + \nabla \cdot \left(\gamma_{nc} (0.5 + \psi) (0.5 - \psi) \frac{\nabla \psi}{\|\nabla \psi\|} \right) - \nabla \cdot \left(\gamma_{nd} \left(\nabla \psi \cdot \frac{\nabla \psi}{\|\nabla \psi\|} \right) \frac{\nabla \psi}{\|\nabla \psi\|} \right) = 0, & \text{in } \Omega. \end{cases}$$
(14)

• $\gamma_{nc} = \text{nonlinear convection}$

• γ_{nd} = normal diffusion

Advantages

- No need for the level set function
- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction

Using Coupez¹⁵ and Olsson and Kreiss¹⁴ the two step method converted to one step method

Weak Formulation

• Spaces:
$$\mathbb{V} = H_0^1(\Omega) := (H_0^1(\Omega))^2$$
, $\mathbb{Q} = L_0^2(\Omega)$, $\mathbb{M} = H^1(\Omega)$

$$\underbrace{\int_{\Omega} \rho(\psi) uv \, dx}_{\langle \mathcal{M}_u u, v \rangle} + \underbrace{\int_{\Omega} \rho(\psi) w \cdot \nabla v \, dx}_{\langle \mathcal{N}_u(w) u, v \rangle} + \underbrace{\int_{\Omega} 2\mu(\psi) D(u) : D(v) \, dx}_{\langle \mathcal{L}_u u, v \rangle} + \underbrace{\int_{\Omega} \tau_m(\psi) : \nabla v \, dx}_{\langle \mathcal{L}_v u, v \rangle} - \underbrace{\int_{\Omega} p \nabla \cdot v \, dx}_{\langle \mathcal{B}^T u, q \rangle} = 0 \quad \text{in } \Omega$$

$$\underbrace{\int_{\Omega} q \nabla \cdot u \, dx}_{\langle \mathcal{B} u, q \rangle} = 0 \quad \text{in } \Omega$$

$$\underbrace{\int_{\Omega} \psi \xi \, dx}_{\langle \mathcal{M}_\psi \psi, \xi \rangle} + \underbrace{\int_{\Omega} u \cdot \nabla \psi \xi \, dx}_{\langle \mathcal{N}_\psi(u) \psi, \xi \rangle} + \underbrace{\int_{\Omega} \mathcal{F}(\psi) \nabla \xi \, dx}_{\langle \mathcal{N}_\psi(\nabla \psi) \psi, \xi \rangle} + \underbrace{\int_{\Omega} \mathcal{G}(\psi) \nabla \xi \, dx}_{\langle \mathcal{L}_\psi(\nabla \psi) \psi, \xi \rangle} = 0 \quad \text{in } \Omega$$

•
$$\mathcal{F}(\psi) = (0.5 + \psi)(0.5 - \psi) \frac{\nabla \psi}{\|\nabla \psi\|}$$
 • $\mathcal{G}(\psi) = -\left(\nabla \psi \cdot \frac{\nabla \psi}{\|\nabla \psi\|}\right) \frac{\nabla \psi}{\|\nabla \psi\|}$

$$\begin{bmatrix} \mathcal{A}_{\boldsymbol{u}} & \mathcal{C} & \mathcal{B}^{\mathsf{T}} \\ \boldsymbol{0} & \mathcal{A}_{\boldsymbol{\psi}} & \boldsymbol{0} \\ \mathcal{B} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\psi} \\ \boldsymbol{p} \end{bmatrix} = \begin{bmatrix} rhs_{\boldsymbol{u}} \\ rhs_{\boldsymbol{\psi}} \\ rhs_{\boldsymbol{p}} \end{bmatrix}$$
(15)
• $\mathcal{A}_{\boldsymbol{u}} = \mathcal{M}_{\boldsymbol{u}} + \mathcal{L}_{\boldsymbol{u}} + \mathcal{N}_{\boldsymbol{u}}(\boldsymbol{u})$ • $\mathcal{A}_{\boldsymbol{\psi}} = \mathcal{M}_{\boldsymbol{\psi}} + \mathcal{N}_{\boldsymbol{\psi}}(\boldsymbol{u}) + \gamma_{nc}\mathcal{N}_{\boldsymbol{\psi}}(\nabla\boldsymbol{\psi}) + \gamma_{nd}\mathcal{L}_{\boldsymbol{\psi}}(\nabla\boldsymbol{\psi})$

$$\underline{\operatorname{For}} \ \mathcal{U} = (\boldsymbol{u}, \boldsymbol{\psi}) \text{ and } \mathcal{V} = (\boldsymbol{v}, \boldsymbol{\xi})$$

$$\boldsymbol{a}(\mathcal{U}, \mathcal{V}) = \langle \mathcal{A}_{\boldsymbol{u}}\boldsymbol{u}, \boldsymbol{v} \rangle + \langle \mathcal{A}_{\boldsymbol{\psi}}\boldsymbol{\psi}, \boldsymbol{\xi} \rangle + \langle \mathcal{C}\boldsymbol{\psi}, \boldsymbol{v} \rangle,$$

$$\boldsymbol{b}(\mathcal{U}, \boldsymbol{q}) = \boldsymbol{b}(\boldsymbol{u}, \boldsymbol{q}).$$
(16)

Find $(\mathcal{U}, p) \in \mathbb{Y} \times \mathbb{Q}$ s.t.

$$\begin{cases} \mathsf{a}(\mathcal{U},\mathcal{V}) + \mathsf{b}(\mathcal{V},\mathsf{p}) = 0 & \forall \mathcal{V} \in \mathbb{Y}, \\ \mathsf{b}(\mathcal{U},q) &= 0 & \forall q \in \mathbb{Q}. \end{cases}$$
(17)

Contents

1 Motivation

2 Governing Equations

Oiscretization/Solver

- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- 8 Summary

9 References

Discretization/Solver

- Time discretization: Crank-Nicolson
- Space discretization: Finite element method

$$\mathbb{V}^{h} = \left\{ \boldsymbol{v}_{h} \in \mathbb{V}, \boldsymbol{v}_{h|K} \in (Q_{2}(K))^{2} \right\}$$
$$\mathbb{M}^{h} = \left\{ \varphi_{h} \in \mathbb{M}, \varphi_{h|K} \in Q_{2}(K) \right\}$$
$$\mathbb{Q}^{h} = \left\{ q_{h} \in \mathbb{Q}, q_{h|K} \in P_{1}^{\mathsf{disc}}(K) \right\}$$

Newton-multigrid solver

• Nonlinearity: Newton solver

• Linear problem: Multigrid

Contents

Motivation

- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- 8 Summary

9 References

Test Case 1: Static Bubble

•
$$\Omega = [0, 1]^2$$
 with bubble centred at origin $[0.5, 0.5]$

•
$$\sigma = \mu = \rho = 1$$
, $g = 0$, $r = 0.25$, $t_f = 10$

Pressure field should satisfy Laplace Young law

$$p_i = p_o + \frac{\sigma}{r} \tag{18}$$

•
$$p_i/p_o$$
 = pressure inside/outside the bubble

CSF formulation (3)					S. Turek et al. ¹⁶				
L	$\frac{\ \mathbf{p_i} - \mathbf{p_o}\ }{(\sigma/r)}$	$\left\ u-u_{h}\right\ _{0}$	$\ \boldsymbol{u}-\boldsymbol{u}_h\ _{1,h}$	NL/LL	$\frac{\ \mathbf{p_i} - \mathbf{p_o}\ }{(\sigma/\mathbf{r})}$	$\ \mathbf{u}-\mathbf{u_h}\ _0$	$\ \boldsymbol{u}-\boldsymbol{u}_h\ _{1,h}$	NL/LL	
4	1.040583	1.22×10^{-3}	5.63×10^{-2}	4/1	0.954349	2.61×10^{-3}	2.08×10^{-1}	5/1	
5	0.999839	9.58×10^{-5}	1.28×10^{-2}	5/1	0.979682	9.71×10^{-4}	1.54×10^{-1}	5/1	
6	1.000969	4.98×10^{-5}	5.26×10^{-3}	5/1	0.992961	3.62×10^{-4}	1.13×10^{-1}	4/1	
7	1.000204	2.10×10^{-6}	1.03×10^{-3}	6/1	0.997166	1.38×10^{-4}	8.21×10^{-2}	4/1	

Numerical Results:¹⁷ Static Bubble

Curvature-Free Level Set

Mass is conserved!

Curvature-Free Level Set: Static Bubble

Curvature-Free Cut-off Function: Static Bubble

Capillary Time Step Restriction: Static Bubble

- In CSF: Some upper bounds on $\Delta t \longrightarrow \Delta t_h^{cap} < \sqrt{\frac{\rho h^3}{\sigma}}$
- Static bubble: $ho=10^4$, $\sigma=1$, $h=1/32\longrightarrow \Delta t_h^{cap}=0.55$

No capillary time step restriction for CSS!

Large Surface Tension Effects: Static Bubble

1.8e-2 1.3e-2 2.1e-2 9.9e-3 1.3e-2 1.6e-2 1.1e-2 6.6e-3 8.8e-3 3.3e-3 4.4e-3 5.3e-3 0.0 0.0 0.0 (d) $\sigma = 50$ (e) $\sigma = 75$ (f) $\sigma = 100$

Spurious velocity magnitude increased!

Curvature-Free Cut-off Function

$$\rho(\psi) \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nabla \cdot \left(2\mu(\psi) \mathsf{D}(u) + \sigma \left(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \right) \right) + \nabla \rho = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

Advantages

- No need for the level set function
- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction

Investigate the effects of γ_{nc} and γ_{nd}

Effects of γ_{nc} and γ_{nd} : Static Bubble

Big $\gamma_{nc} \rightarrow$ disturbs ψ range

 ψ range recovers \rightarrow suitable value of γ_{nd}

Contents

- Motivation
- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- 8 Summary

O References

Test Case 2:17 Oscillating Bubble

• $\Omega = [0, 1]^2$, bubble centred at origin [0.5, 0.5]

•
$$\sigma = \mu = \rho = 1$$
, $g = 0$, $r_x = 0.25$, $r_y = 0.125$

•
$$t_f = 100, \ \Delta t = 10^{-2}$$

Evaluate

- Mass conservation? —> Surface area¹⁷
- Bubble shape → Interface position¹⁷

Expected behaviour¹⁸

Curvature-Free Level Set: Oscillating Bubble

Less oscillations, mass is conserved!

Capillary Time Step Restriction: Oscillating Bubble

- In CSF: Some upper bounds on $\Delta t \longrightarrow \Delta t_h^{cap} < \sqrt{rac{
 ho h^3}{\sigma}}$
- Oscillating bubble: ho = 1, $\sigma = 1$, $h = 1/32 \longrightarrow \Delta t_h^{cap} = 0.0055$

Mesh level	L4	L5	L6	
Δt_h^{cap}	0.0156	0.0055	0.0019	

 $\Delta t = 0.1$, no capillary time step restriction for CSS!

Behaviour due to capillary time step restriction¹⁸

Large Surface Tension Effects: Oscillating Bubble

Spurious velocity magnitude increased and interface position is effected!

Contents

- Motivation
- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 💿 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- Summary

O References

Test: Rising Bubble

• $\Omega = \Omega_1 \cup \Omega_2$, bubble of radius r = 0.2

• centred at origin [0.5, 0.5]

Parameters¹⁸

ρ_1	ρ_2	μ_1	μ_2	g	σ
10 ⁴	10 ³	1	1	-8 ×10 ⁻⁴	0.5

• In CSF: Some upper bounds on Δt

$$\Delta t_h^{cap} < \sqrt{\frac{(\rho_1 + \rho_2)h^3}{4\pi\sigma}}$$

Capillary Time Step Restriction: Rising Bubble

- In CSF: Some upper bounds on $\Delta t \longrightarrow \Delta t_h^{cap} < \sqrt{\frac{(\rho_1 + \rho_2)h^3}{4\pi\sigma}}$
- Rising bubble: $\sigma = 0.5$, $h = 1/80 \longrightarrow \Delta t_h^{cap} = 0.056$ (S. Hysing 2007)

Severe oscillations pollute the solution!¹⁸

Capillary Time Step Restriction: Rising Bubble

• Rising bubble: $\sigma = 0.5$, $h = 1/64 \longrightarrow \Delta t_h^{cap} = 0.081$

(a) t = 15 (b) t = 30 (c) t = 45 (d) t = 60 (e) t = 75

No capillary time step restriction for CSS!

Contents

- Motivation
- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 🕖 Benchmark: Rising Bubble
 - Summary

9 References

Benchmark: Rising Bubble¹⁹

• $\Omega = \Omega_1 \cup \Omega_2$, bubble of radius r = 0.25

• centred at origin [0.5, 0.5]

Parameters¹⁹

ρ_1	ρ_2	μ_1	μ_2	g	σ	Re	Eo	$ ho_1/ ho_2$	μ_1/μ_2
1000	100	10	1	0.98	24.5	35	10	10	10

Evaluate

• rise velocity
$$oldsymbol{u}=\int_{\Omega_2}udx/\int_{\Omega_2}1dx$$

• center of mass $X = \int_{\Omega_2} u dx / \int_{\Omega_2} 1 dx$

• circularity
$$\phi = P_a/P_b = \pi d_a/P_b$$

bubble shape

Good conformity with TP2D(Hysing et al.²⁰), experiment(Clift. et al.²¹)

h	ϵ	¢ _{min}	$t _{\not e=\not e_{\min}}$	u _{max}	$t _{u=u_{max}}$	X(t = 3)
1/32	0.015	0.8946	2.170	0.2468	0.940	1.0650
1/64	0.010	0.9022	1.955	0.2443	0.925	1.0822
1/128	0.005	0.9010	1.890	0.2426	0.915	1.0815
TP2D ²⁰		0.9013	1.9041	0.2417	0.9213	1.0813
FreeLIFE ²⁰		0.9011	1.8750	0.2421	0.9313	1.0799
MooNMD ²⁰		0.9013	1.9000	0.2417	0.9239	1.0817
Hosseini et al. ²²	0.005	0.9013	1.9200	0.2420	0.9200	1.0794

- ϵ : Interface thickness
- ϕ_{min} : Min. circularity
- $t|_{\not = \not =_{min}}$: Min. circularity at t

- **u**_{max}: Max. velocity
- $t|_{u=u_{max}}$: Max. velocity at t
- X(t = 3): Bubble center

The results are in good aggrement with Hysing et al.²⁰ Hosseini et al.²²

$$\begin{split} \|e\|_{1} &= \frac{\sum_{t=1}^{N} |q_{t,ref} - q_{t}|}{\sum_{t=1}^{N} |q_{t,ref}|}, \|e\|_{2} &= \left(\frac{\sum_{t=1}^{N} |q_{t,ref} - q_{t}|^{2}}{\sum_{t=1}^{N} |q_{t,ref}|^{2}}\right)^{1/2}, \|e\|_{\infty} &= \frac{\max_{t} |q_{t,ref} - q_{t}|}{\max_{t} |q_{t,ref}|}\\ EOC_{(.)} &= \frac{\log(\|e_{i-1}\|_{(.)} / \|e_{i}\|_{(.)})}{\log(h_{i-1}/h_{i})}. \end{split}$$

q	h	ϵ	$\ e\ _1$	EOC_1	$\ e\ _2$	EOC_2	$\left\ e \right\ _{\infty}$	EOC_{∞}
X	1/32	0.015	0.0098		0.0121		0.0170	
	1/64	0.010	0.0024	2.0280	0.0029	2.0423	0.0039	2.1335
	1/128	0.005	0.0007	1.7776	0.0009	1.6881	0.0012	1.7004
u	1/32	0.015	0.0252		0.0268		0.0377	
	1/64	0.010	0.0130	0.9549	0.0158	0.7623	0.0341	0.1448
	1/128	0.005	0.0035	1.8931	0.0045	1.8119	0.0102	1.7412
¢	1/32	0.015	0.0044		0.0063		0.0123	
	1/64	0.010	0.0016	1.4594	0.0021	1.5849	0.0045	1.4507
	1/128	0.005	0.0007	1.1926	0.0009	1.2224	0.0018	1.3219

Order of convergence between 1 and approx. 2 in all norms

Contents

- Motivation
- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble

A monolithic Newton-multigrid solver for multiphase flow problems is developed

- Solves velocity, pressure and interface position simultaneously
- Nonlinearity: Treated with a Newton solver
- Linearized system: Solved by geometrical multigrid
- Requires less regularity
- No explicit calculation of ${\it n}$ and κ
- No capillary time restriction
- Reinitialization issue is integrated within the formulations

Sr. No.	Problem Formulations	Static Bubble	Oscillating Bubble	Rising Bubble
		(Test Case 1)	(Test Case 2)	(Benchmark)
1	Level Set Approach	√	\checkmark	
2	Level Set with Material Cut-off Function	~	\checkmark	
3	Curvature-Free Level Set	√	\checkmark	
4	Curvature-Free Cut-off Material Function	√	\checkmark	√

Contents

- Motivation
- 2 Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
- 5 Test Case 2: Oscillating Bubble
- 6 Rising Bubble Test
- 7 Benchmark: Rising Bubble
- Summary

References I

- Charles S Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3):220–252, 1977.
- ² S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100(1):25–37, 1992.
- ³ C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. <u>Journal of Computational Physics</u>, 39(1):201–225, 1981.
- ⁴ D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. <u>Annual Review of Fluid Mechanics</u>, 30(1):139–165, 1998.
- ⁵ V. E. Badalassi, H. D. Ceniceros, and S. Banerjee. Computation of multiphase systems with phase field models. <u>Journal of Computational Physics</u>, 190(2):371–397, 2003.
- ⁶ S. Osher and J. A. Sethian.

Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations.

Journal of Computational Physics, 79(1):12-49, 1988.

J. A. Sethian.

Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.

Cambridge monographs on applied and computational mathematics. Cambridge University Press, 1999.

⁸ M. Boger.

Numerical Modeling of Compressible Two-Phase Flows with a Pressure-Based Method.

PhD thesis, University of Stuttgart, Institute of Aerodynamics and Gas Dynamics, December 2013.

J. U. Brackbill, D. B. Kothe, and C. Zemach.
 A continuum method for modeling surface tension.
 Journal of Computational Physics, 100(2):335–354, 1992.

¹⁰ B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. Journal of Computational Physics, 133(1):134–147, 1994.

¹¹ S. Ganesan, G. Matthies, and L. Tobiska.

On spurious velocities in incompressible flow problems with interfaces. International Journal for Numerical Methods in Fluids, 88(1):18–31, 2018. https://doi.org/10.1002/fid.4509.

¹² F. Denner, F. Evrard, and B. Wachem. Breaching the capillary time-step constraint using a coupled vof method with implicit surface tension. Journal of Computational Physics, 459:111128, 03 2022.

¹³ A. Ouazzi, S. Turek, and H. Damanik.

A curvature-free multiphase flow solver via surface stress-based formulation. International Journal for Numerical Methods in Fluids, 88(1):18–31, 2018. https://doi.org/10.1002/fld.4509.

¹⁴ E. Olsson and G. Kreiss.

A conservative level set method for two phase flow.

Journal of Computational Physics, 210(1):225-246, 2005

¹⁵ T. Coupez.

Convection of local level set function for moving surfaces and interfaces in forming fow.

In S. Repin, T. Tiihonen, and T. Tuovinen, editors, <u>NUMIFORM '07: 9th International Conference on Numerical Methods in Industrial</u> Forming Processes, Jun 2007, Porto, Portugal. 908, pages 61–66. Springer, 2007.

¹⁶ S. Turek, A. Ouazzi, and J. Hron.

On pressure separation algorithms (PSEPA) for improving the accuracy of incompressible flow simulations.

International Journal for Numerical Methods in Fluids, 59(4):387-403, 2008.

¹⁷ M. A. Afaq, S. Turek, A. Ouazzi, and A. Fatima.

Monolithic Newton-multigrid solver for multiphase flow problems with surface tension.

Editorial Universitat Politècnica de València, 2021. ISBN 978-84-9048-969-7.

¹⁸ S. Hysing.

Numerical simulation of immiscible fluids with FEM level set techniques.

PhD thesis, Technische Universität Dortmund, December 2007.

¹⁹ CFD Benchmarking(rising bubble).

http://www.mathematik.tu-dortmund.de/ featflow/en/benchmarks/cfdbenchmarking/bubble.html.

20 S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska. Quantitative benchmark computations of two-dimensional bubble dynamics.

International Journal for Numerical Methods in Fluids, 60(11):1259-1288, 2009.

²¹ R. Clift, J. R. Grace, and Weber. M. E.

Bubbles, Drops, and Particles.

Academic Press: New York, 1978. ISBN 9780486317748. ²² B. S. Hosseini, S. Turek, M. Möller, and C. Palmes. Isogeometric analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows. Journal of Computational Physics, 348:171–194, 2017.

Thank you for your attention!

aaqib.afaq@math.tu-dortmund.de