Monolithic Newton-Multigrid Solver for Multiphase Flow Problems with Surface Tension

M. A. Afaq, S. Turek, A. Fatima, A. Ouazzi aaqib.afaq@math.tu-dortmund.de

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund University

92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, August 15-19, 2022

technische universität dortmund

Gesellschaft für angewandte Mathematik und Mechanik

1 Motivation

- Q Governing Equations
- Oiscretization/Solver
- 4 Test Case 1: Static Bubble
 - Numerical Results
- 5 Test Case 2: Oscillating Bubble
 - Numerical Results
- 6 Benchmark: Rising Bubble
 - Numerical Results

🕖 Summary

References

Motivation

- 2 Governing Equations
- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- Test Case 2: Oscillating Bubble
 Numerical Results
- Benchmark: Rising Bubble
 Numerical Results

🕖 Summary

References

Multiphase flows in Nature and Industry

Gas-Liquid

- Condensation
- Boiling
- Spray cooling
- Biological flows

Solid-Liquid

- Emulsification
- Slurries
- food processing

Gas-Solid

- Fluidization
- Coal burners

Liquid-Liquid

- Petroleum extraction
- Oil exploration:

4-phases

Interface tracking: Immersed boundary,¹ Front tracking²

Interface capturing: Volume of fluid,³ Phase field,^{4,5} Level set^{6,7}

Continuum surface force (CSF): Interface as a smooth transition^{8,9}

Continuum surface stress (CSS): Surface force term as the divergence of the stress $tensor^{8, 10}$

Motivation

Overning Equations

- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- Test Case 2: Oscillating Bubble
 Numerical Results
- Benchmark: Rising Bubble
 Numerical Results

🕖 Summary

References

CSF Formulation

The incompressible Navier Stokes equations

$$\begin{cases} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot 2\mu \mathbf{D}(\boldsymbol{u}) + \nabla \boldsymbol{p} = \boldsymbol{f}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega. \end{cases}$$
(1)

• $\rho = \text{density}$ • $\mathbf{D}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ • p = pressure• f = external force

$$f = \kappa \sigma \mathbf{n} \delta_{\Gamma} \tag{2}$$

- $\kappa = \text{curvature}$ n = normal to the interface
- $\sigma =$ surface tension constant $\delta_{\Gamma} =$ delta function

$$\begin{cases} \rho(\Gamma) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - \nabla \cdot 2\mu(\Gamma) \mathbf{D}(\boldsymbol{u}) + \nabla \boldsymbol{p} = \kappa \sigma \boldsymbol{n} \delta_{\Gamma}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega. \end{cases}$$
(3)

• Interface capturing by level set method

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = 0 \tag{4}$$

• $\phi = \text{level set function}$

This transport equation can be efficiently solved due to the choice of a smooth level set function

• Exact representation of the interface

$$\Gamma = \{ x \in \Omega, \phi = 0 \}$$
(5)

• Provides derived geometrical quantities (n, κ)

$$\boldsymbol{n} = \frac{\nabla \phi}{\|\nabla \phi\|}, \quad \kappa = -\nabla \cdot \boldsymbol{n}$$
(6)

• The surface tension force in terms of the level set function

$$f = \kappa \sigma \mathbf{n} \delta_{\Gamma}(\phi) \tag{7}$$

The signed distance function is the natural choice for the level set!

Problems and Challenges

• Spurious velocity Unphysical flows near the interface

- Unphysical interface movement
- Misinterpret the flow physics

Large surface tension

- Spurious velocity may grow
- Destroy the interface
- **Observed** \longrightarrow explicit/implicit interface representation
- Explicit treatment of surface tension Capillary time restriction
- Explicit reinitialization Requires perfect interface description

Towards a fully implicit treatment

Material cut-off function

$$\psi(x,t) = \begin{cases} +\frac{1}{2} & \text{if } \phi(x,t) \ge 0\\ -\frac{1}{2} & \text{if } \phi(x,t) < 0 \end{cases}$$
(8)

Features

- Enhances the accuracy
- ψ is material characteristic \longrightarrow conservative level set
- Regularization of material cut-off function

$$\psi = \frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + 0.5 \tag{9}$$

New set of equations for multiphase flow

$$\begin{cases} \rho(\psi) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - di \boldsymbol{v} \boldsymbol{\tau} + \nabla \boldsymbol{p} = \boldsymbol{0}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{0}, & \text{in } \Omega, \\ \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = \boldsymbol{0}, & \text{in } \Omega, \\ \psi - \Big(\frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + \boldsymbol{0}.5 \Big) = \boldsymbol{0}, & \text{in } \Omega. \end{cases}$$
(10)

- $\bullet \ \phi = {\rm level \ set \ function}$
- $\epsilon_{\psi} = \text{interface thickness}$

• $au = (au_s + au_m)$ full stress tensor

•
$$\psi = \text{cut-off function}$$

Viscous stress

$$\boldsymbol{\tau}_{s}=2\mu(\psi)\mathbf{D}(\boldsymbol{u})$$

Multiphase stress

$$\boldsymbol{\tau}_m = -\sigma \Big(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \Big)$$

Signed distance function needs to satisfy the constraint

$$\|\nabla \phi\| = 1 \quad \Longleftrightarrow \quad \mathbf{n} \cdot \nabla \phi = 1$$

• For implicit approach, constraint is imposed

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi - \underbrace{\nabla \cdot (\gamma_{nd} (\boldsymbol{n} \cdot \nabla \phi - 1) \boldsymbol{n})}_{reinitialization} = 0$$

• γ_{nd} = penalty parameter

Curvature-Free Level Set¹¹

$$\begin{cases} \rho(\psi) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - \nabla \cdot \Big(2\mu(\psi) \mathbf{D}(\boldsymbol{u}) + \sigma \Big(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \Big) \Big) + \nabla \boldsymbol{p} = 0, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega, \\ \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi - \nabla \cdot \Big(\gamma_{nd} \Big(\frac{\nabla \phi}{\|\nabla \phi\|} \cdot \nabla \phi - 1 \Big) \frac{\nabla \phi}{\|\nabla \phi\|} \Big) = 0, & \text{in } \Omega, \end{cases}$$
(11)
$$\psi - \Big(\frac{-1}{1 + \exp(\frac{\phi}{\epsilon_{\psi}})} + 0.5 \Big) = 0, & \text{in } \Omega. \end{cases}$$

Advantages

- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction
- Reinitialization is integrated within the formulation
- Navier-Stokes with homogeneous force terms

The momentum equation gets rid of the CSF force terms

PDE for the material cut-off function with fictitious time¹²

$$\frac{\partial \psi}{\partial \tau} + \underbrace{\nabla \cdot \left(\gamma_{nc}\psi(1-\psi)\boldsymbol{n}\right)}_{\text{Conv. normal}} - \underbrace{\nabla \cdot \left(\gamma_{nd}(\nabla\psi\cdot\boldsymbol{n})\boldsymbol{n}\right)}_{\text{Diff. normal}} = 0$$
(12)

- **Conv. normal**: nonlinear convection tends to build the Heaviside step function
- Diff. normal: normal diffusion control the sharpness of the interface

Curvature-Free Cut-off Function¹¹

$$\begin{cases} \rho(\psi) \Big(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \Big) - \nabla \cdot \Big(2\mu(\psi) \mathbf{D}(\boldsymbol{u}) + \sigma \Big(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \Big) \Big) + \nabla \boldsymbol{p} = 0, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega, \\ \frac{\partial \psi}{\partial t} + \boldsymbol{u} \cdot \nabla \psi + \nabla \cdot \Big(\gamma_{nc} (0.5 + \psi) (0.5 - \psi) \frac{\nabla \psi}{\|\nabla \psi\|} \Big) - \nabla \cdot \Big(\gamma_{nd} \Big(\nabla \psi \cdot \frac{\nabla \psi}{\|\nabla \psi\|} \Big) \frac{\nabla \psi}{\|\nabla \psi\|} \Big) = 0, & \text{in } \Omega. \end{cases}$$
(13)

• $\gamma_{nc} = \text{nonlinear convection}$

• $\gamma_{nd} = \text{normal diffusion}$

Advantages

- No need for the level set function
- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction

The momentum equation gets rid of the CSF force terms

1 Motivation

2 Governing Equations

Oiscretization/Solver

- Test Case 1: Static BubbleNumerical Results
- 5 Test Case 2: Oscillating Bubble
 - Numerical Results
- Benchmark: Rising Bubble
 Numerical Results

🕖 Summary

8 References

Discretization/Solver

- Time discretization: Crank-Nicolson
- Space discretization: FEM Q_2 , P_1^{disc} for \boldsymbol{u} , p and Q_2 for ϕ, ψ

Newton-multigrid solver

- Nonlinearity: Treated by Newton solver
- Linear problem: Solved by multigrid

1 Motivation

2 Governing Equations

Oiscretization/Solver

Test Case 1: Static BubbleNumerical Results

5 Test Case 2: Oscillating Bubble
 Numerical Results

6 Benchmark: Rising Bubble

🕖 Summary

References

Test Case 1: Static Bubble

•
$$\Omega = [0, 1]^2$$
 with bubble centred at origin $[0.5, 0.5]$

•
$$\sigma = \mu = \rho = 1$$
, $g = 0$, $r = 0.25$, $t_f = 10$

Pressure field should satisfy Laplace Young law

$$p_i = p_o + \frac{\sigma}{r} \tag{14}$$

• $p_i/p_o =$ pressure inside/outside the bubble

		CSF formu	lation (3)		S. Turek et al. ¹³				
L	$\frac{\ \mathbf{p_i} - \mathbf{p_o}\ }{(\sigma/r)}$	$\left\ u-u_{h}\right\ _{0}$	$\ \boldsymbol{u}-\boldsymbol{u}_h\ _{1,h}$	NL/LL	$rac{\ \mathbf{p_i}-\mathbf{p_o}\ }{(\sigma/r)}$	$\left\ u-u_{h}\right\ _{0}$	$\ \boldsymbol{u}-\boldsymbol{u}_h\ _{1,h}$	NL/LL	
4	1.040583	1.22×10^{-3}	5.63×10^{-2}	4/1	0.954349	2.61×10^{-3}	2.08×10^{-1}	5/1	
5	0.999839	9.58×10^{-5}	1.28×10^{-2}	5/1	0.979682	9.71×10^{-4}	1.54×10^{-1}	5/1	
6	1.000969	4.98×10^{-5}	5.26×10^{-3}	5/1	0.992961	3.62×10^{-4}	1.13×10^{-1}	4/1	
7	1.000204	2.10×10^{-6}	1.03×10^{-3}	6/1	0.997166	1.38×10^{-4}	8.21×10^{-2}	4/1	

Numerical Results:¹⁴ Static Bubble

Curvature-Free Level Set

Curvature-Free Cut-off Material

Mass is conserved!

Curvature-Free Level Set: Static Bubble

Curvature-Free Cut-off Function: Static Bubble

- 1 Motivation
- 2 Governing Equations
- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- 5 Test Case 2: Oscillating Bubble
 Numerical Results
- 6 Benchmark: Rising Bubble Numerical Results

🕖 Summary

Test Case 2:14 Oscillating Bubble

• $\Omega = [0, 1]^2$, bubble centred at origin [0.5, 0.5]

•
$$\sigma = \mu = \rho = 1$$
, $g = 0$, $r_x = 0.25$, $r_y = 0.125$

•
$$t_f = 100, \ \Delta t = 10^{-2}$$

Evaluate

- Mass conservation? \longrightarrow Surface area¹⁴
- Bubble shape \longrightarrow Interface position¹⁴

Expected behaviour¹⁵

Curvature-Free Level Set: Oscillating Bubble

Curvature-Free Cut-off Function: Oscillating Bubble

Less oscillations, mass is conserved!

Curvature-Free Cut-off Function

$$\rho(\psi) \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nabla \cdot \left(2\mu(\psi) \mathsf{D}(u) + \sigma \left(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \right) \right) + \nabla \rho = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega,$$

Advantages

- No need for the level set function
- Fully implicit and requires less regularity
- Neither \boldsymbol{n} nor κ are explicitly calculated
- No capillary time restriction

Investigate the effects of γ_{nc} and γ_{nd}

Effects of γ_{nc} and γ_{nd} : Static Bubble

Big $\gamma_{nc} \rightarrow$ disturbs ψ range

 ψ range recovers \rightarrow suitable value of γ_{nd}

1 Motivation

- 2 Governing Equations
- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- Test Case 2: Oscillating Bubble
 Numerical Results
- Benchmark: Rising Bubble
 Numerical Results

🕖 Summary

References

Benchmark: Rising Bubble¹⁶

• $\Omega = \Omega_1 \cup \Omega_2$, bubble of radius r = 0.25

• centred at origin [0.5, 0.5]

Parameters¹⁶

ρ_1	ρ_2	μ_1	μ_2	g	σ	Re	Eo	$ ho_1/ ho_2$	μ_1/μ_2
1000	100	10	1	0.98	24.5	35	10	10	10

Evaluate

• rise velocity
$$U_c = \int_{\Omega_2} u dx / \int_{\Omega_2} 1 dx$$

• center of mass $X_c = \int_{\Omega_2} u dx / \int_{\Omega_2} 1 dx$

• circularity
$$c = P_a/P_b = \pi d_a/P_b$$

bubble shape

Curvature-Free Cut-off Function: Rising Bubble

1 Motivation

- 2 Governing Equations
- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- 5 Test Case 2: Oscillating Bubble
 - Numerical Results
- Benchmark: Rising Bubble
 - Numerical Results

🗿 Summary

A monolithic Newton-multigrid solver for multiphase flow problems is developed

- Solves velocity, pressure and interface position simultaneously
- Nonlinearity: Treated with a Newton solver
- Linearized system: Solved by geometrical multigrid
- Requires less regularity
- No explicit calculation of ${\it n}$ and κ
- No capillary time restriction
- Reinitialization issue is integrated within the formulations

Sr. No.	Problem Formulations	Static Bubble	Oscillating Bubble	Rising Bubble
		(Test Case 1)	(Test Case 2)	(Benchmark)
1	Level Set Approach	√	\checkmark	
2	Level Set with Material Cut-off Function	~	\checkmark	
3	Curvature-Free Level Set	√	\checkmark	
4	Curvature-Free Cut-off Material Function	√	\checkmark	√

1 Motivation

- 2 Governing Equations
- Oiscretization/Solver
- Test Case 1: Static BubbleNumerical Results
- Test Case 2: Oscillating Bubble
 Numerical Results
 - Numerical Results
- Benchmark: Rising BubbleNumerical Results

7 Summary

References I

- Charles S Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3):220–252, 1977.
- ² S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100(1):25–37, 1992.
- ³ C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. <u>Journal of Computational Physics</u>, 39(1):201–225, 1981.
- ⁴ D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. <u>Annual Review of Fluid Mechanics</u>, 30(1):139–165, 1998.
- ⁵ V. E. Badalassi, H. D. Ceniceros, and S. Banerjee. Computation of multiphase systems with phase field models. <u>Journal of Computational Physics</u>, 190(2):371–397, 2003.
- ⁶ S. Osher and J. A. Sethian.

Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations.

- Journal of Computational Physics, 79(1):12-49, 1988.
- J. A. Sethian.

Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.

Cambridge monographs on applied and computational mathematics. Cambridge University Press, 1999.

8 M. Boger.

Numerical Modeling of Compressible Two-Phase Flows with a Pressure-Based Method.

PhD thesis, University of Stuttgart, Institute of Aerodynamics and Gas Dynamics, December 2013.

⁹ J. U. Brackbill, D. B. Kothe, and C. Zemach.

A continuum method for modeling surface tension.

Journal of Computational Physics, 100(2):335-354, 1992.

¹⁰ B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. <u>Journal of Computational Physics</u>, 133(1):134–147, 1994.

¹¹ A. Ouazzi, S. Turek, and H. Damanik.

A curvature-free multiphase flow solver via surface stress-based formulation. International Journal for Numerical Methods in Fluids, 88(1):18–31, 2018.

https://doi.org/10.1002/fld.4509.

¹² E. Olsson and G. Kreiss.

A conservative level set method for two phase flow. Journal of Computational Physics, 210(1):225–246, 2005.

¹³ S. Turek, A. Ouazzi, and J. Hron.

On pressure separation algorithms (PSEPA) for improving the accuracy of incompressible flow simulations.

International Journal for Numerical Methods in Fluids, 59(4):387-403, 2008.

14 M. A. Afaq, S. Turek, A. Ouazzi, and A. Fatima.

Monolithic Newton-multigrid solver for multiphase flow problems with surface tension.

Editorial Universitat Politècnica de València, 2021. ISBN 978-84-9048-969-7. 15 S. Hysing.

Numerical simulation of immiscible fluids with FEM level set techniques.

PhD thesis, Technische Universität Dortmund, December 2007.

¹⁶ CFD Benchmarking(rising bubble).

http://www.mathematik.tu-dortmund.de/ featflow/en/benchmarks/cfdbenchmarking/bubble.html.

¹⁷ S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska. Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60(11):1259–1288, 2009.

Thank you for your Attention!

a a q ib.a f a q @math.tu-dortmund.de