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Introduction

non-stationary incompressible Navier-Stokes equations

ut + u · ∇u− ν∆u+∇p = f, (−)∇ · u = 0 in Ω× [0, T ]

with initial and boundary conditions

domain Ω ⊂ Rd, d = 2, 3

time limit T
velocity u
pressure p
kinematic viscosity ν
rhs f (external source)
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Introduction

weak formulation∫
Ω

∂tu · v +

∫
Ω

(u · ∇u) · v − ν

∫
Ω

∆u · v +

∫
Ω

∇p · v =

∫
Ω

f · v

partial derivative

−ν
∫

Ω

∆u · v = ν

∫
Ω

∇u : ∇v − ν

∫
∂Ω

(∇u · n) · v∫
Ω

∇p · v = −
∫

Ω

p∇ · v +

∫
∂Ω

pv · n

discretization

(∂tuh, vh) + (uh · ∇uh, vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f, vh)

(−)(qh,∇ · uh) = 0
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Introduction

boundary conditions
Given area Ω ⊂ Rd, d = 2, 3 with boundary ∂Ω = ∂Ωin ∪ ∂Ω0 ∪ ∂Ωout.

∂Ω0∂Ωin

∂Ω0

∂Ω0

∂Ωout

On ∂ΩD := ∂Ωin ∪ ∂Ω0 dirichlet boundary are given:
u|∂Ωin

:= uin and u|∂Ω0
:= 0

On ∂Ωout „do nothing“ ⇒ −ν
∫
∂Ω

(∇u · n) · v +
∫
∂Ω
pv · n = 0

„do nothing“
leave the solution and the test space free on that portion of the boundary



Efficient numerical and algorithmic realization
of a pressure Poisson complement solver for the
incompressible Navier-Stokes equations in FEAT3

– Mirco Arndt –
5 / 23

Introduction

matrix formulation[
M 0
0 0

] [
∂tuh

0

]
+

[
K(uh) + νL B
(+)−BT 0

] [
uh
ph

]
=

[
F
0

]
mass matrix Mij := (vih, v

j
h)

transport matrix K(u)ij := (uh · ∇vjh, vih)

laplacian matrix Lij := (∇vjh,∇vih)

gradient matrix Bij := −(qjh,∇ · vih) (divergence matrix BT )
right hand side Fi := (f, vih)

time stepping techniques (theta-scheme)[
S(ul) kB
BT 0

] [
ul

pl

]
=

[
g
0

]
step size k := ∆t

S(ul) := αM + kθ(K(ul) + νL)

g := Mul−1 − k(1− θ)(K(ul−1) + νL) + kθF l + k(1− θ)F l−1
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Structure of (almost) all solvers[
S(ul) kB
BT 0

] [
ul

pl

]
=

[
g
0

]
⇔ S(u)u+ kBp = g

BTu = 0

Galerkin schemes
local MPSC

Outer: N nonlinear steps
Inner: L DPM (Discrete Projection
Method) steps (Oseen)

Projection schemes
global MPSC

Outer: 1 DPM steps
Inner: N nonlinear steps

(Burgers)

L = 1 L > 1

CC
Coupled solution
by Coupled solver

CP
Coupled solution

by Projection solver

PP
Projection solution
by Projection solver

All versions of CC, CP, PP lead to the „same“ solutions.
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Essential difference between the solvers

key ideas of MPSC approaches
Re-interpretation of Navier-Stokes solvers (Chorin, VanKan, Uzawa, etc.)
as „incomplete solvers“ for discrete saddle-point problems.

Galerkin schemes
local MPSC (Multilevel Pressure Schur Complement)

Fully coupled Newton-like solver as outer nonlinear procedure
Solve exactly on subsets/patches and perform an outer
Block–Gauß-Seidel/Jacobi iteration as smoother

Projection schemes
global MPSC (Multilevel Pressure Schur Complement)

Outer decoupling of velocity and pressure
Newton-like schemes for Momentum equations
Multigrid solver for all scalar subproblems
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Essential difference between the solvers

Galerkin schemes
CC (Coupled solution by Coupled solver)

„direct solvers“ for stationary (generalized) Navier-Stokes equations
fully implicit character
⇒ the most accurate and robust time stepping schemes
⇒ only variants which allow a rigorous a posteriori error control
large time steps to reach a desired accuracy
very expensive costs for one time step

CP (Coupled solution by Projection solver)
cost can be diminished by

weakening the threshold parameters
applying only a fixed small number of nonlinear steps

⇒ accuracy and robustness behaviour may be weakened
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Essential difference between the solvers

Projection schemes
PP (Projection solution by Projection solver)

applied to nonstationary flows only
rigorous error control in time is not clear
„exact“ treatment of the nonlinearity
depending on the last pressure iterate
(→ smaller time steps)
smaller and much cheaper time steps
(compared to Galerkin schemes)
resulting solutions satisfy the continuity equation,
but the discrete momentum equation only approximately

for fully nonstationary flows with dominating convective term and
on complex domains, this approach is a favourized one
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PP formulation
PP (Projection solution by Projection solver)
global MPSC (Multilevel Pressure Schur Complement)

1 a decoupling step for u and p as outer iteration
2 compute a velocity field without taking into account incompressibility
3 perform a pressure correction, which is a projection back to the

subspace of divergence free vector fields

pressure Schur complement:

S(u)u+ kBp = g

BTu = 0

u = S−1(u)g − kS−1(u)Bp

0 = BTS−1(u)g − kBTS−1(u)Bp

pressure Schur complement
A scalar equation that contains the pressure:

BTS−1(u)B︸ ︷︷ ︸
=:P̃

p =
1

k
BTS−1(u)g︸ ︷︷ ︸

=:fp
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PP formulation - perform only once per time step
Equation for u (’Burgers’)

solve for ul :
S(ul)ul = g − kBpl−1

Equation for p
pressure correction with a suitable preconditioner C:

pl = pl−1 + C−1

(
1

k
BTS−1(ul)g −BTS−1(ul)Bp

)
︸ ︷︷ ︸

residual (pressure Schur complement)

Cpl = Cpl−1 +
1

k
BT

(
S−1(ul)g − kS−1(ul)Bpl

)︸ ︷︷ ︸
definition of ul

= Cpl−1 +
1

k
BTul

convergence Cp = Cp+ 1
kB

Tul =⇒ BTu = 0
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Construction of globally defined additive preconditioning operators

A := BTS−1(u)B with S(u) = αM + kθ(νL+K(u))

additive approach: construct „optimal“ operators for the limit cases
C−1 := αRA

−1
R + αDA

−1
D + αKA

−1
K

AR is an „optimal“ (reactive) preconditionier for BTM−1B

(divergence-free L2-projection)
AD is an „optimal“ (diffusive) preconditionier for BTL−1B

(Stokes-equation)
AK is an „optimal“ (convective) preconditionier for BTK−1(u)B

(incompressible Euler equation)

„optimal“

partial preconditioners were direct solvers
with respect to the underlying subproblem
resulting convergence behaviour is independent of

outer parameters underlying mesh



Efficient numerical and algorithmic realization
of a pressure Poisson complement solver for the
incompressible Navier-Stokes equations in FEAT3

– Mirco Arndt –
13 / 23

The „reactive“ preconditioner for BTM−1B

M is already diagonal by construction
finite difference approach
nonconforming triangular finite elements

Otherwise lumping

AR := P := BTM−1
l B

An (almost) exact solver / preconditioner AR for small time steps
S(u) = αMl + kθ(νL+K(u)) −→ αMl for k → 0

A flexible treatment of pressure boundary conditions on discrete level
Highly efficient multigrid solvers for applying A−1

R

Very compact matrices AR in independence of the spatial
discretization
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The „reactive“ preconditioner - Pressure Poisson problem

Poisson problem
−∆q = rhs

matrix formulation

rhs = −∇ · ∇q = ∇ · v v = −∇q[
I ∇
∇· 0

] [
v
q

]
=

[
0
rhs

]
v

[
Ml B
BT 0

] [
v
q

]
=

[
0
fp

]
Pressure Poisson problem

solve for q: (P := BTM−1
l B)

Pq = fp (−∆q = rhs)

P calculated only once in a preprocessing step
(or if the spatial mesh has changed)
P arises from a mixed formulation
⇒ even piecewise constant ansatz functions are allowed
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The „diffusive“ preconditioner for BTL−1B

The inverse discrete Laplacian L−1 and also BTL−1B are full matrices!
(At least for all finite difference/element/volumen approaches.)

Idea:

∇ ·∆−1∇ v I

In the finite element context:

BTL−1B vMp

AD := Mp

All numerical tests show, that indeed AD := Mp is sufficient.
Absolutely robust against all variations of parameters and the shape
of the mesh in the pure Stokes case.
Leads to an improved convergence rate in the pressure update!
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The „convective“ preconditioner for BTK−1(u)B

The inverse transport matrix K−1(u) and BTK−1(u)B are full matrices!

continuous construction

∇ · (U · ∇)−1∇ v (Ũ · ∇)?

discrete construction[
ILU(S) B
BT 0

]
⇔ BT ILU(S)−1B instead of

[
S B
BT 0

]
⇔ BTS−1B

poor condition number: O(h−1)−O(h−2)

sensitive to mesh anisotropies

complete solution process is almost so expensive as for the original system

new techniques . . .
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PP Algorithm

Start with: u0 := 0. Given: Iterate pl−1.
Perform:

1 (’Burgers’) Solve: for an intermediate velocity ũ:
S(ũ)ũ = g − kBpl−1 S(ũ)ũ = g

VanKan Chorin
2 Calculate: the right hand side fp for the pressure Poisson problem:

fp =
1

k
BT ũ

(
=

1

k
BTS−1[g − kBpl−1] = residual (pl−1)

)
3 (’Pressure Poisson’) Solve: for q:

Pq = fp (P := BTM−1
l B)

4 Update: new pressure pl:

pl = pl−1 + αRq + αDM
−1
pl
fp pl = αRq + αDM

−1
pl
fp

VanKan Chorin
5 Update: new velocity ul to satisfy the incompressibility constraint:

ul = ũ− kM−1
l Bq
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PP Algorithm - Burgers equation

Burgers equation with given Iterate pl−1 and ul−1

S(ũ)ũ = g − kBpl−1︸ ︷︷ ︸
=:f

(VanKan) or S(ũ)ũ = g︸︷︷︸
=:f

(Chorin)

fixed point iteration
1 Calculate nonlinear residual dn:

dn = f − S(ũn)ũn

2 Solve an auxiliary subproblem for yn:

S(ũn)yn = dn

3 Update ũ via the auxiliary solution yn:

ũn+1 = ũn + yn

full fixed point iteration
set ũ0 := ul−1

use N nonlinear steps
extrapolate previous
time step

linear extrapolation of
solution in time:

ũ0 := 2ul−1 − ul−2

one nonlinear step
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PP solver configurations
fixed point loop

relative tolerance (∼ 10−2)

velocity solver - solver a
Richardson with Jacobi
Smoother
Richardson-Multigird with
Jacobi-Smoother (or SOR)

Coarse-Grid Solver:
Richardson-Multigird with
Jacobi-Smoother
(50 iterations)

max. iteration (50)

relative tolerance (∼ 10−2)

smooth steps (2)

smooth damp (0.7)
non newtonian fluid (0.3)

pressure solver - solver s
PCG with Jacobi Smoother
PCG-Multigird with
Jacobi-Smoother

Coarse-Grid Solver:
UMFPACK (exact solver)

max. iteration (100)

absolute tolerance (∼ 10−10)

relative tolerance (∼ 10−2)

smooth steps (16, (32))

smooth damp (∼ 0.9)

scaling parameters
α ∈ [0, 1] (1)

αR ∈ [0, 1] (1)

αD ≤ kθν (kθν)
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DFG flow around cylinder benchmark 2D-1, laminar case

Figure 1: Velocity and pressure profile for Re = 20.
Drag: 5.57953523384
Lift: 0.01061894815
Pressure difference: 0.11752016697

post processing - pressure
do nothing midpoint

ppost = 0.5(pl + pl−1)

linear extrapolation

ppost = pl + 0.5(pl − pl−1)
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DFG flow around cylinder benchmark 2D-2 and 2D-3
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DFG flow around cylinder benchmark 2D-3, fixed time interval
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Convergence history

Burgers:
(v 10−3)

Pressure Poisson:
(v 0.1)
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