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Motivation

Goal: simulate the motion of a thin elastic leaflet Γ immersed in an
incompressible, viscous, and Newtonian fluid. We assume the leaflet
undergoes large displacements.

Ωf (t)

Γ(t)

We would like to use a method that has the following advantages:

The interface and problem specific features (hydrodynamic forces,
pressure discontinuities etc.) can be resolved very accurately
⇒ typical of interface tracking methods such as ALE methods
Flexibility in handling large displacements of Γ
⇒ typical of interface capturing methods such as level set methods
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The fluid model

Fluid equations: The fluid is governed by the incompressible
Navier-Stokes equations

ρf
∂u
∂t + ρf u · ∇u−∇·σ = ff in Ωf (t)× (0,T )

∇·u = 0 in Ωf (t)× (0,T )

u: fluid velocity σ = −pI + 2µε(u): Cauchy stress tensor

p: fluid pressure ε(u) = (∇u)+(∇u)T

2 : strain rate tensor

The fluid domain changes in time → ALE formulation
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The fluid model

Fluid equations: The fluid is governed by the incompressible
Navier-Stokes equations

ρf
∂u
∂t

∣∣∣
x0

+ ρf (u−w) · ∇u−∇·σ = ff in Ωf (t)× (0,T )

∇·u = 0 in Ωf (t)× (0,T )

u: fluid velocity σ = −pI + 2µε(u): Cauchy stress tensor

p: fluid pressure ε(u) = (∇u)+(∇u)T

2 : strain rate tensor

w: ALE velocity ∂u
∂t
∣∣
x0
: ALE time derivative

Introduction Extended ALE method Numerical results Conclusions



The structure model

Structure equation: the leaflet is modeled as an inextensible beam with
negligible torsional effects1

ρs ẍ + EIx′′′′ = fΓ, with |x′| = 1, on (0,T )× [0, L].

ρs : linear density x: position

ẋ = ∂x
∂t : time derivative x′ = ∂x

∂s : arc length derivative

EI: flexural stiffness L: beam length

1dos Santos, Gerbeau, Bourgat, A partitioned fluid-structure algorithm for elastic thin valves with contact, CMAME (2008)
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The coupling conditions

The leaflet ideally separates Ωf (t) into two subdomains Ω1
f (t) and Ω2

f (t)
and it deforms due to the contact force exerted by the fluid.

Ω1
f (t)

Ω2
f (t)

Γ(t) n1

n2

Adherence ⇒ Continuity of velocities

u = ẋ on Γ(t);

Action-Reaction principle ⇒ Continuity of stresses

fΓ = −σ1n1 − σ2n2 on Γ(t).
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An extended ALE method

We are interested in having a triangulation that is at every time:
aligned with Γ

of “optimal” quality
We use a mesh optimization technique with an additional constraint to
enforce the alignment of the edges of the resulting triangulation with the
interface.2

Standard ALE Extended ALE
2Basting, Weismann, A hybrid level set - front tracking finite element approach for fluid-structure interaction and two-phase flow

applications, JCP (2013)
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Level set alignment

Let φ : [0,T ]× Ω→ R be a continuous level set function:

Ω
1/2
f (t) = {x ∈ Ω : φ(t, x) ≷ 0} ,

Γ(t) = {x ∈ Ω : φ(t, x) = 0} .

A triangulation T is called linearly aligned with
Γ(t) if for all edges e we have:

φ(xe,1)φ(xe,2) ≥ 0

where xe,1 and xe,2 are the endpoints of e.

φ(xe,1) > 0

φ(xe,2) < 0

e
Γ(t)
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Level set alignment

Let φ : [0,T ]× Ω→ R be a continuous level set function:

Ω
1/2
f (t) = {x ∈ Ω : φ(t, x) ≷ 0} ,

Γ(t) = {x ∈ Ω : φ(t, x) = 0} .

A triangulation T is called linearly aligned with
Γ(t) if for all edges e we have:

φ(xe,1)φ(xe,2) ≥ 0

where xe,1 and xe,2 are the endpoints of e.

φ(xe,1) > 0

φ(xe,2) < 0

e
Γ(t)

Ta

Ta is aligned

Tb e

Tb is NOT aligned

Tc e

Tc is aligned
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Optimal triangulations3

Starting from an initial triangulation T of Ω, we want to find an optimal
triangulation T ∗ resulting from a mesh deformation χ∗:

T ∗ = χ∗(T ).

Deformation χ∗ is:
piecewise affine
orientation preserving
globally continuous
optimal in the sense it is the argument for which a certain functional
F attains its minimum value:

F(χ∗) = minF(χ).

Assumption: F can be represented by a sum of weighted, element-wise
contributions FT :

F(χ) =
∑
T∈T

µTFT (χ)

3Rumpf, A variational approach to optimal meshes, Numer. Math. (1996)
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A measure for the quality of triangulations

Let RT denote the affine reference mapping from the optimally deformed
simplex T ∗ to T .
A classical example of function FT is given by

FT (χ) = (‖∇RT (χ)‖2 − 2)2 + det(∇RT (χ)) +
1

det(∇RT (χ))

‖∇RT (χ)‖2 measures the change of edge lengths
the second term measures the change in area
the third term rules out deformations with vanishing determinant

With this technique, we obtain optimal, non-degenerate triangulations
(i.e., no self intersection occurs), and local mesh quality control.

Price to pay: F is highly non-linear, non-convex, and global minimizers
may be non-unique.
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Enforcing level set alignment

Aligned triangulations can be characterized using a single scalar
constraint.
A deformed triangulation is linearly aligned if and only if

0 = c(χ) =
∑

e∈χ(T )

H
(
φ(xe,1)φ(xe,2)

)
,

where

H(z) :

{
> 0 for z < 0
= 0 for z ≥ 0.

An optimal, level set aligned triangulation is obtained from the nonlinear
constrained optimization problem

minF(χ) s.t. c(χ) = 0.
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Quadratic alignment

We make use of isoparametric elements equipped with additional degrees
of freedom located at the edges.

To obtain a piecewise quadratic approximation of Γ(t), we adopt a
two-tier procedure:

1 Get a linearly aligned triangulation and
a discrete interface Γh.

2 Move each quadratic node xq ∈ Γh
along the (linear) normal onto the zero
level set.

xq

Remark: to reduce computational costs, the mesh optimization is
performed only in a box bounding the leaflet.
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The Dirichlet-Neumann method

At every time tn+1, the Dirichlet-Neumann (DN) algorithm iterates over
the fluid and structure subproblems until convergence.
Dirichlet-Neumann algorithm, iteration k + 1

1 Fluid: Solve for flow variables uk+1, pk+1 on Ωf ,k with boundary
condition uk+1 = ẋk on Γk .

2 Structure: Solve for the structure position xk+1 with load fΓ,k+1 on
Γk and obtain Γk+1, which defines Ωf ,k+1.

3 Check: if the stopping criterion

||xk+1 − xk ||
||xk ||

< tol

is satisfied set un+1 = uk+1, pn+1 = pk+1, xn+1 = xk+1,
Γn+1 = Γk+1, and Ωn+1

f = Ωf ,k+1; otherwise we go back to step 1.

To speed up the convergence, we use an Aitken acceleration technique4.
4Küttler, Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, CMECH (2008)

Introduction Extended ALE method Numerical results Conclusions



Details of the fluid solver we use

For the time discretization we use BDF1 or BDF2.
Inertial term in the momentum equation is treated implicitly by
Picard iteration.
For the space discretization we use inf-sup stable Taylor-Hood FE
pair P2 − P1.
We allow for discontinuities of the pressure across Γk , since
accurately resolving the pressure discontinuity across Γk is needed
for the correct evaluation of the hydrodynamic force.
The Subspace Projection Method5 is used to enforce the continuity
of the velocity across Γk .
The linear systems are solved by a direct solver (UMFPACK).

5Bäumler, Bänsch, A subspace projection method for the implementation of interface conditions in a single-drop flow problem,
JCP (2013)
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Details of the structure solver we use - I

For the time discretization we use a generalized Crank-Nicolson
scheme6.
For the space discretization we use a third order Hermite finite
element method7.
After time discretization, at every time step we have to solve a
quasi-static problem which is equivalent to minimization problem:

xk+1 = argmin
y∈K

J(y), with K =
{

y ∈ (H2(0, L))2, |y′| = 1,B.C .
}
,

where the total energy of the beam can be written as:

J(y) =
1
2

∫ L

0

ρs
∆t2 |y|

2ds +
1
2

∫ L

0
EIα |y′′|2 ds −

∫ L

0
f̃k+1 · yds.

6Glowinski, Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM (1988)
7Glowinski, Le Tallec, Large Displacement Calculations of Flexible Pipelines by Finite Element and Nonlinear Programming

Methods, SIAM J. Sci. Stat. Comput (1980)
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Details of the structure solver we use - II

To treat the inextensibility condition |x′| = 1, we use an augmented
Lagrangian Method8. for the equivalent minimization problem

{xk+1, x′k+1} = argmin
{y,q}∈W

J(y), with W = {y ∈ V, q ∈ Q, y′ − q = 0},

where

V =
{

y ∈ (H2(0, L))2, B.C .
}
,

Q =
{

y ∈ (L2(0, L))2, |y| = 1 a.e. on (0, L)
}
.

To solve the saddle-point problem associated with the augmented
Lagrangian functional, we employ ALG29, which is a ‘disguised’
Douglas-Rachford operator-splitting scheme.

8Fortin, Glowinski, The augmented Lagrangian method, North Holland (1983)
9Glowinski, Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM (1988)
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Computation of the hydrodynamic force

The computation of the hydrodynamic force fΓ is crucial for the
numerical stability and accuracy of the solver10.

The load exerted by the fluid onto the structure can be computed as the
variational residual R of the momentum conservation equation for the
fluid tested with test functions v that do not vanish at Γ(t):∫

Γ(t)

fΓ · v dΓ = −
∫

Γ(t)

σ1n1 · v dΓ−
∫

Γ(t)

σ2n2 · v dΓ

= R(Ω1
f (t); u, p, v) +R(Ω2

f (t); u, p, v).

Since Γf ,n+1
h and Γs,n+1

h are aligned but do not coincide and the fluid and
structure discretizations are based on different elements, the discrete
power exchanged at the interface is not exactly balanced. However, with
the numerical results we show that the mismatch is small.

10Farhat, Lesoinne, Le Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching
discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, CMAME (1998)
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Setting

The leaflet is clamped at the midpoint of the base and it is 0.5 cm long.
We set ρf = 1 g/cm3 and µ varies to achieve Re = 100 in each test.

=⇒ Γout

Γdown

Γup

The inlet condition changes depending on the test.
No slip condition in imposed on Γdown

Symmetry condition is imposed on Γup

Homogeneous Neumann condition is enforced on Γout
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Test 0: continuous vs discontinuous pressure

We take: U = 1 cm/s , ρs = 106 g/cm, EI = 0.01 g/(cm s2), hs = 1/44,
hf =

√
2/8 · 2−l with l = 1 (coarse), 2 (medium), 3 (fine).

continuous pressure discontinuous pressure

coarse

medium

fine
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Test 1: standard ALE vs extended ALE

We set ρs = 5 g/cm, EI = 0.05 g/(cm s2), hs = 1/44, hf =
√
2/8 · 2−l

with l = 1, 2.
At Γin, we impose a time dependent Poiseuille profile, with maximum
velocity:

U(t) =
1
4

(
1− cos

(π
2 t
))

.

PLAY

t = 7 s t = 9 s

st. ALE

ex. ALE
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Test 1: tip movement and power exchanged at Γ

coarse mesh medium mesh
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Test 1: power exchanged at Γ

Now we take the medium mesh and check the unbalance in the power
exchange at the interface.

Notice that difference between the two powers exchanged at the interface
is of the order of 10−5, which is 0.1% of the power value.
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Test 2: assessing Aitken’s acceleration method

We set EI = 0.05 g/(cm s2) and let the structure density vary:
ρs = 32, 16, 8, 4, 2, 1, 0.5 g/cm, with ρf = 1 g/cm3.

no relaxation relaxation with Aitken’s acceleration

The number of DN iterations increases as ρs decreases.
The DN algorithm with no relaxation ceases to converge11 when
ρs ≤ ρf .
Aitken’s acceleration method allows a reduction in the number of
DN iterations12.

11Causin, Gerbeau, Nobile, Added-mass effect in the design of part. algorithms for fluid–structure prob., CMAME (2005)
12Küttler, Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, CMECH (2008)
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Test 3: large displacements

We set ρs = 5 g/cm, EI = 0.05 g/(cm s2), hs = 1/44, hf =
√
2/16.

At Γin, we impose a time dependent Poiseuille profile, with maximum
velocity:

U(t) =
(
1− cos

(π
2 t
))

.

PLAY

t = 5.8 s t = 6.5 s

st. ALE

ex. ALE
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Test 3: minimum angle of the elements

The minimum angle in the meshes given by the standard ALE
method occasionally drops below 10 degrees. In particular, it is equal
to 4 degrees at t = 6.5 s, shortly before the simulation breaks down.
The minimum angle for the meshes given by the extended ALE
method oscillates around 23 degrees most of the time.
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Conclusions

We proposed an extended ALE method for the simulation of
fluid-structure interaction problems with large structural
displacements.
Our extended ALE method relies on mesh optimization technique
with an additional constraint to enforce the alignment of the
interface with the edges of the resulting triangulation.
We applied it to the interaction of an incompressible fluid with an
inextensible beam.
We showed that when the structural displacement is mild the results
given by our extended ALE method are in excellent agreement with
the results given by a standard ALE method.
We showed that when the structural displacement is large the
quality of the mesh given by the extended ALE method is still high.
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