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Petascale computing

Petascale computing is the calculation of FEM

simulations with 1015 unknowns in reasonable time.
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FEAST overview

FEAST Finite Element Analysis and Solution Tools

under development at TU Dortmund in Stefan Turek’s group

http://www.feast.tu-dortmund.de

Core features

separation of unstructured and structured data for optimised linear
algebra components

Finite Element discretisations (Q1)

parallel generalised domain decomposition multigrid solvers

usage of GPUs as coprocessors

grid adaptivity and error control

scalar and vector-valued problems

applications in CFD and CSM
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local structure

local band matrices

Poisson equation

generalised tensor product mesh

conforming bilinear Finite Elements Q1

matrix consists of 9 bands
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FEAST grids
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data structures

Cover domain by unstructured collection of subdomains

resolve complex geometries, boundary layers in fluid dynamics, etc.

Refine each subdomain independently and discretise using FEs

generalised tensorproduct fashion

isotropic and anisotropic refinement combined with r/h/rh adaptivity

Performance

clear separation of globally unstructured and locally structured parts

nonzero pattern of local FE matrices known a priori

exploit spatial and temporal locality for tuned LA building blocks
(Sparse Banded BLAS)
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Petascale strategy I

Maximise computational efficiency per node.
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ScaRC solver

Contradictory properties

numerical vs. computational efficiency

weak and strong scalability vs. numerical scalability

Parallel multigrid

strong recursive coupling optimal in serial codes

usually relaxed to block-Jacobi due to high comm requirements

degrades convergence rates in the presence of local anisotropies

Generalised DD/MG approach (ScaRC)

global MG, block-smoothed by local MGs (optimal asymptotic
complexity)

hide anisotropies locally

good scalability by design

global operations realised via special local BCs and syncronisation
across subdomain boundaries (no overlap!)
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Petascale strategy II

Use iterative solvers featuring

optimal asymptotic complexity

robustness

weak scalability
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Overview of GPU integration
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Petascale strategy III

Use specialised hardware when available.
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general idea

The performance of FEAST requires locally structured grids

elementwise h-adaptivity implies locally unstructured grids

⇒ relocate the grid points preserving the local tensor product structure
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preliminaries

domain Ω

triangulation T , quads T

“monitor function” 0 < εf < f ∈ C1(Ω̄): desired area distribution

“weight function” 0 < εg < g ∈ C1(Ω̄): current area distribution

goal: mapping Φ : Ω → Ω with

g(x)|JΦ(x)| = f (Φ(x)) ∀x ∈ Ω

and
Φ : ∂Ω → ∂Ω.

T d = Φ(T ), X := Φ(x)
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deformation method

Deformation(f , T )

compute f̃ − g̃ , f̃ := c/f , g̃ = C/g ,
R

f̃
!
=

R

g̃

solve −div(v(x)) = f̃ (x) − g̃(x), x ∈ Ω, v(x) · n = 0, x ∈ ∂Ω

DO FORALL x ∈ T

solve
∂tϕ(x , t) =

v(ϕ(x,t),t)

tf̃ (ϕ(x,t))+(1−t)g̃(ϕ(x,t))
, 0 ≤ t ≤ 1, ϕ(x , 0) = x

Φ(x) := ϕ(x , 1)

ENDDO

END Deformation

realisation: v := ∇w ⇒ −∆w = f̃ − g̃ , ∂nw = 0 on ∂Ω

total amount:

1 Poisson problem + 2N decoupled IVPs
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test example

domain : Ω = [0, 1]2

monitor function: f (x) = min
(

1, max( |d−0.25|
0.25 , ǫ)

)

,

d :=
√

(x1 − 0.5)2 + (x2 − 0.5)2, ǫ = 1/10
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generic r -AFEM

r-AFEM

GRID1 := GRID

DO i = 1, imax

ui := SOLVE(f , g , GRIDi )

ηi :=ESTIMATE(ui , J)

IF (ηi < TOL) EXIT LOOP

fmon,i :=MON(ηi )

GRIDi+1 := DEFORM(fmon,i , GRIDi )
IF (∃ non-convex elements) RETURN

END DO

J(uh) := J(ui ); η := ηi

RETURN J(uh), η

END r-AFEM
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L-domain

Poisson equation

Ω = [−0.5, 0.5]2/[0, 0.5]2

u(r , ϕ) = r2/3 sin(2/3ϕ)

goal: gradient error
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gradient errors

r-adaptive
regular

0.5

||
∇

u
−

∇
u

h
||

1e71e61e51e41e3

1e-2

1e-3

1e-4

optimal convergence rates by r-adaptivity

details: M. Grajewski, A new fast and accurate grid deformation method for

r -adaptivity in the context of high performance computing, PhD thesis, 2008
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Petascale strategy IV

Raise discretisation efficiency by adaptivity without
interfering with strategies I-III.
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CSM and FEAST

Computational Solid Mechanics Application FEASTsolid

Fundamental model problem:

elastic, compressible material

small deformations, static loading process

Hooke’s material law

Lamé equation

−2µdivε(u) − λ∇(divu) = f , x ∈ Ω

u = g , x ∈ ΓD

σ(u) · n = t, x ∈ ΓN

Separate displacement ordering

−

(

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂xy µ∂xx + (2µ + λ)∂yy

)(

u1

u2

)

=

(

f

g

)
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solution procedure

Discretisation of reordered Lamé equation
block-structured system

(

K11 K12

k21 K22

)(

u1

u2

)

=

(

f

g

)

Coupling of K11, K21, K22

block Gauß-Seidel smoothing of global multigrid solver

K11u1 = f1 and K22u2 = f2 correspond to scalar elliptic equations ⇒
ScaRC

Solver specialisation

global BiCGStab (vector-valued) preconditioned by

global multigrid (vector-valued) block-GS-smoothed by

local multigrids (scalar) per subdomain
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Test goals

Accuracy

analytic reference solution

global anisotropies to worsen condition numbers

Scalability

here: only weak scalability

Speedup

exemplarily for some test scenarios
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Accuracy

Test case: Cantilever beam

Global anisotropy and ratio of
fixed Dirichlet and free Neu-
mann BCs proportional to # of
processors

Illustration of ill-conditioning

plain Conjugate gradient
solver

anisotropies of 1:1, 1:4 and
1:16

plot: Number of iterations
for increasing problem size,
logscale

Aniso16 does not even
exhibit doubling of iterations
any more
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GPU-CPU comparison

aniso04 iterations volume y -displacement
refinement L CPU GPU CPU GPU CPU GPU

8 4 4 1.6087641E-3 1.6087641E-3 -2.8083499E-3 -2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 -2.8083628E-3 -2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 -2.8083667E-3 -2.8083667E-3

aniso16

8 6 6 6.7176398E-3 6.7176398E-3 -6.6216232E-2 -6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 -6.6216551E-2 -6.6216552E-2
10 5.5 5.5 6.7176516E-3 6.7176516E-3 -6.6217501E-2 -6.6217502E-2

Same solution for GPU and CPU

volume of deformed body

displacement of reference point at tip of the beam

same number of iterations until convergence
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weak scalability

Good scalability

original and accelerated
CSM solver Infiniband,
Xeon EM64T, 3.4GHz,
outdated Quadro 1400
GPU
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More results
Poisson problem for 1.3 billion unknowns in less than 50 seconds on 160
outdated GPUs (Quadro 1400)
Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a

GPU-enhanced cluster, Parallel Computing 33(10-11), 685-699, 2007
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Test configurations

Test system with 16 nodes: dualcore Santa Rosa Opteron CPU, Quadro
5600 GPU, Infiniband
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van Mises stresses
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speed ups
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Summary

Finite Element code

local band matrices

generalised DD/MG approach (ScaRC)

GPU integration

MFLOP/s preserving adaptivity

grid deformation

model problem: Lamé equation

numerical tests

accuracy

scalability

speedup

www.feast.tu-dortmund.de
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Thank you for your attention!
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