

Petascale Strategies for FEM Simulations

Chr. Becker, S. Buijssen, D. Göddeke, M. Grajewski*, S. Turek, and H. Wobker

Technische Universität Dortmund

March 14th, 2008

FEAST concepts 00000000000 MFLOP/s-rate preserving adaptivity 000000000

MFLOP/s-rate preserving adaptivity

FEAST concepts

MFLOP/s-rate preserving adaptivity

MFLOP/s-rate preserving adaptivity

3 Applications in structural mechanics

FEAST concepts

MFLOP/s-rate preserving adaptivity

Applications in structural mechanics DODDODDODODO

Petascale computing is the calculation of FEM simulations with 10^{15} unknowns in reasonable time.

FEAST overview

J technische universität dortmund

FEAST Finite Element Analysis and Solution Tools

- under development at TU Dortmund in Stefan Turek's group
- http://www.feast.tu-dortmund.de

Core features

- separation of unstructured and structured data for optimised linear algebra components
- Finite Element discretisations (Q₁)
- parallel generalised domain decomposition multigrid solvers
- usage of GPUs as coprocessors
- grid adaptivity and error control
- scalar and vector-valued problems
- applications in CFD and CSM

FEAST overview

J technische universität dortmund

FEAST Finite Element Analysis and Solution Tools

- under development at TU Dortmund in Stefan Turek's group
- http://www.feast.tu-dortmund.de

Core features

- separation of unstructured and structured data for optimised linear algebra components
- Finite Element discretisations (Q₁)
- parallel generalised domain decomposition multigrid solvers
- usage of GPUs as coprocessors
- grid adaptivity and error control
- scalar and vector-valued problems
- applications in CFD and CSM

local structure

local band matrices

- Poisson equation
- generalised tensor product mesh
- conforming bilinear Finite Elements Q₁
- matrix consists of 9 bands

FEAST grids

FEAST concepts

drLOP/s-rate preserving adaptivity

Cover domain by unstructured collection of subdomains

• resolve complex geometries, boundary layers in fluid dynamics, etc.

Refine each subdomain independently and discretise using FEs

- generalised tensorproduct fashion
- isotropic and anisotropic refinement combined with r/h/rh adaptivity

Performance

- clear separation of globally unstructured and locally structured parts
- nonzero pattern of local FE matrices known a priori
- exploit spatial and temporal locality for tuned LA building blocks (Sparse Banded BLAS)

Maximise computational efficiency per node.

FEAST concepts

MFLOP/s-rate preserving adaptivity

ScaRC solver

J technische universität dortmund

Contradictory properties

- numerical vs. computational efficiency
- weak and strong scalability vs. numerical scalability

Parallel multigrid

- strong recursive coupling optimal in serial codes
- usually relaxed to block-Jacobi due to high comm requirements
- degrades convergence rates in the presence of local anisotropies

Generalised DD/MG approach (ScaRC)

- global MG, block-smoothed by local MGs (optimal asymptotic complexity)
- hide anisotropies locally
- good scalability by design
- global operations realised via special local BCs and syncronisation across subdomain boundaries (no overlap!)

technische universität dortmund

Use iterative solvers featuring

- optimal asymptotic complexity
- robustness
- weak scalability

Overview of GPU integration

MFLOP/strate preserving adaptivity 00000000 Applications in structural mechanics

technische universität

dortmund

Use specialised hardware when available.

MPLOP/s-rate preserving adaptivity

OMFLOP/s-rate preserving adaptivity

3 Applications in structural mechanics

FEAST concepts

MFLOP/s-rate preserving adaptivity

Applications in structural mechanics. DODDODODODOO

The performance of FEAST requires locally structured grids

elementwise *h*-adaptivity implies locally unstructured grids

 \Rightarrow relocate the grid points preserving the local tensor product structure

00000000

preliminaries

• domain Ω

- triangulation \mathcal{T} , quads \mathcal{T}
- "monitor function" $0 < \varepsilon_f < f \in C^1(\overline{\Omega})$: desired area distribution
- "weight function" $0 < \varepsilon_g < g \in C^1(\overline{\Omega})$: current area distribution

goal: mapping $\Phi : \Omega \to \Omega$ with

$$g(x)|J\Phi(x)| = f(\Phi(x)) \quad \forall x \in \Omega$$

and

$$\Phi:\partial\Omega\to\partial\Omega.$$

$$\mathcal{T}^d = \Phi(\mathcal{T}), \quad X := \Phi(x)$$

FEAST concepts

MFLOP/s-rate preserving adaptivity

Applications in structural mechanics 00000000000

deformation method

Deformation(f, T)compute $\tilde{f} - \tilde{g}$, $\tilde{f} := c/f$, $\tilde{g} = C/g$, $\int \tilde{f} \stackrel{!}{=} \int \tilde{g}$ solve $-\operatorname{div}(v(x)) = \tilde{f}(x) - \tilde{g}(x), x \in \Omega, \quad v(x) \cdot \mathfrak{n} = 0, x \in \partial\Omega$ DO FORALL $x \in \mathcal{T}$ solve $\partial_t \varphi(x,t) = \frac{v(\varphi(x,t),t)}{t\tilde{f}(\varphi(x,t)) + (1-t)\tilde{\sigma}(\varphi(x,t))}, \quad 0 \le t \le 1, \ \varphi(x,0) = x$ $\Phi(x) := \varphi(x, 1)$ **FNDDO END** Deformation

realisation:
$$v := \nabla w \Rightarrow -\Delta w = \tilde{f} - \tilde{g}, \quad \partial_n w = 0 \text{ on } \partial\Omega$$

total amount:

1 Poisson problem + 2N decoupled IVPs

deformation method

 $\begin{aligned} & \mathsf{Deformation}(f, \mathcal{T}) \\ & \mathsf{compute} \ \tilde{f} - \tilde{g}, \quad \tilde{f} := c/f, \tilde{g} = C/g, \int \tilde{f} \stackrel{!}{=} \int \tilde{g} \\ & \mathsf{solve} - \mathrm{div}(v(x)) = \tilde{f}(x) - \tilde{g}(x), \, x \in \Omega, \qquad v(x) \cdot \mathfrak{n} = 0, \, x \in \partial\Omega \\ & \mathsf{DO} \ \mathsf{FORALL} \ x \in \mathcal{T} \\ & \underset{\partial_t \varphi(x, t) = \frac{v(\varphi(x, t), t)}{t \tilde{f}(\varphi(x, t)) + (1 - t) \tilde{g}(\varphi(x, t))}, \quad 0 \le t \le 1, \, \varphi(x, 0) = x \\ & \Phi(x) := \varphi(x, 1) \\ & \mathsf{ENDDO} \end{aligned}$

END Deformation

realisation:
$$v := \nabla w \Rightarrow -\Delta w = \tilde{f} - \tilde{g}, \quad \partial_n w = 0 \text{ on } \partial\Omega$$

total amount:

1 Poisson problem + 2N decoupled IVPs

deformation method

END Deformation

realisation:
$$v := \nabla w \Rightarrow -\Delta w = \tilde{f} - \tilde{g}, \quad \partial_n w = 0 \text{ on } \partial\Omega$$

total amount:

1 Poisson problem + 2N decoupled IVPs

domain : $\Omega = [0, 1]^2$

monitor function:
$$f(x) = \min\left(1, \max(\frac{|d-0.25|}{0.25}, \epsilon)\right)$$
,
 $d := \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2}$, $\epsilon = 1/10$

FEAST concepts

MFLOP/s-rate preserving adaptivity

generic r-AFEM

r-AFEM

 $GRID_1 := GRID$

DO
$$i=1$$
, $i_{\sf max}$

 $u_i :=$ **SOLVE** $(f, g, GRID_i)$

 $\eta_i := \texttt{ESTIMATE}(u_i, J)$

IF ($\eta_i < TOL$) EXIT LOOP

 $f_{mon,i} := MON(\eta_i)$

 $GRID_{i+1} := \text{DEFORM}(f_{mon,i}, GRID_i)$ IF (\exists non-convex elements) RETURN

000000000

END DO

$$J(u_h) := J(u_i); \ \eta := \eta_i$$

RETURN $J(u_h), \eta$

END *r*-AFEM

technische universität

dortmund

L-domain

Poisson equation

$$\Omega = [-0.5, 0.5]^2 / [0, 0.5]^2$$

$$u(r,\varphi)=r^{2/3}\sin(2/3\varphi)$$

goal: gradient error

gradient errors

optimal convergence rates by r-adaptivity

details: M. Grajewski, A new fast and accurate grid deformation method for *r*-adaptivity in the context of high performance computing, PhD thesis, 2008

Raise discretisation efficiency by adaptivity without interfering with strategies I-III.

FEAST concepts

MFLOP/s-rate preserving adaptivity

Applications in structural mechanics DODDODODODOD

Overview

OMFLOP/s-rate preserving adaptivity

Applications in structural mechanics

FEAST concepts 00000000000 MFLOP/s-rate preserving adaptivity

CSM and FEAST

Computational Solid Mechanics Application FEASTsolid

Fundamental model problem:

- elastic, compressible material
- small deformations, static loading process
- Hooke's material law

Lamé equation

$$\begin{aligned} -2\mu \mathrm{div}\varepsilon(u) - \lambda \nabla(\mathrm{div}\, u) &= f, \quad x \in \Omega \\ u &= g, \quad x \in \Gamma_D \\ \sigma(u) \cdot n &= t, \quad x \in \Gamma_N \end{aligned}$$

Separate displacement ordering

$$-\begin{pmatrix} (2\mu+\lambda)\partial_{xx}+\mu\partial_{yy} & (\mu+\lambda)\partial_{xy} \\ (\mu+\lambda)\partial_{xy} & \mu\partial_{xx}+(2\mu+\lambda)\partial_{yy} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

Discretisation of reordered Lamé equation

block-structured system

$$\begin{pmatrix} K_{11} & K_{12} \\ k_{21} & K_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

Coupling of K_{11}, K_{21}, K_{22}

- block Gauß-Seidel smoothing of global multigrid solver
- $K_{11}u_1 = f_1$ and $K_{22}u_2 = f_2$ correspond to scalar elliptic equations \Rightarrow ScaRC

Solver specialisation

- global BiCGStab (vector-valued) preconditioned by
- global multigrid (vector-valued) block-GS-smoothed by
- local multigrids (scalar) per subdomain

Test goals

Accuracy

- analytic reference solution
- global anisotropies to worsen condition numbers

Scalability

here: only weak scalability

Speedup

exemplarily for some test scenarios

Accuracy

Test case: Cantilever beam

Global anisotropy and ratio of fixed Dirichlet and free Neumann BCs proportional to # of free processors

Illustration of ill-conditioning

- plain Conjugate gradient solver
- anisotropies of 1:1, 1:4 and 1:16
- plot: Number of iterations for increasing problem size, logscale
- Aniso16 does not even exhibit doubling of iterations any more

aniso04	iterations		volume		y-displacement	
refinement L	CPU	GPU	CPU	GPU	CPU	GPU
8	4	4	1.6087641E-3	1.6087641E-3	-2.8083499E-3	-2.8083499E-3
9	4	4	1.6087641E-3	1.6087641E-3	-2.8083628E-3	-2.8083628E-3
10	4.5	4.5	1.6087641E-3	1.6087641E-3	-2.8083667E-3	-2.8083667E-3
aniso16						
8	6	6	6.7176398E-3	6.7176398E-3	-6.6216232E-2	-6.6216232E-2
9	6	5.5	6.7176427E-3	6.7176427E-3	-6.621655 1 E-2	-6.621655 2 E-2
10	5.5	5.5	6.7176516E-3	6.7176516E-3	-6.621750 1 E-2	-6.621750 2 E-2

Same solution for GPU and CPU

- volume of deformed body
- displacement of reference point at tip of the beam
- same number of iterations until convergence

weak scalability

U technische universität dortmund

Good scalability

original and accelerated CSM solver Infiniband, Xeon EM64T, 3.4GHz, outdated Quadro 1400 GPU

More results

Poisson problem for 1.3 billion unknowns in less than 50 seconds on 160 outdated GPUs (Quadro 1400)

Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, Parallel Computing 33(10-11), 685-699, 2007

Test configurations

Test system with 16 nodes: dualcore Santa Rosa Opteron CPU, Quadro 5600 GPU, Infiniband

MFLOP/s-rate preserving adaptivity 00000000

van Mises stresses

MrLOP/s-rate preserving adaptivity

speed ups

Summary

- Finite Element code
- Iocal band matrices
- generalised DD/MG approach (ScaRC)
- GPU integration
- MFLOP/s preserving adaptivity
- grid deformation
- model problem: Lamé equation
- numerical tests
- accuracy
- scalability
- speedup
- www.feast.tu-dortmund.de

Thank you for your attention!

FEAST concepts

MFLOP/s-rate preserving adaptivity