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Problem Formulation

Assumptions

Steady, 2D laminar natural convection boundary layer
flow

Density obeys the Boussinesq approximation

The surface of the cone is maintained at uniform
temperature Tw , such that Tw >> T∞.

Challenges

Imposing the Boundary conditions at wavy surface of
shape, ŷw = σ̂ (x̂) = â sin

(
πx̂
L

)
with local radius

r̂ = x̂ sinφ

Fluid viscosity and thermal conductivity as function of
temperature [1], i.e.,
µ = µ∞

(
1 + ε(T−T∞)

Tw−T∞

)
, κ = κ∞

(
1 + γ(T−T∞)

Tw−T∞

)
Presence of non-linear thermal radiation effects in the
fluid in terms of qr .

Figure: Physical Model



Governing Equations
Conservation of mass, momentum and energy

∂(r̂ û)
∂x̂

+
∂(r̂ v̂)
∂ŷ

= 0

ρ

(
û
∂û
∂x̂

+ v̂
∂û
∂ŷ

)
= −

∂p̂
∂x̂

+∇ · (µ∇û) + ρgβ (T − T∞) cosφ

ρ

(
û
∂v̂
∂x̂

+ v̂
∂v̂
∂ŷ

)
= −

∂p̂
∂ŷ

+∇ · (µ∇v̂)− ρgβ (T − T∞) sinφ

ρcp

(
û
∂T
∂x̂

+ v̂
∂T
∂ŷ

)
= ∇ · (κ∇T )−∇.qr

where the radiative heat flux [3]:

qr = −
4σ∗

3κ (αr + σs )
∇T 4

along with the boundary conditions:{
û(x̂ , ŷw ) = v̂(x̂ , ŷw ) = T (x̂ , ŷw )− Tw = 0

û(x̂ ,∞) = T (x̂ ,∞)− T∞ = 0



Boundary Layer Equations

Transformations
u =

L
ν∞

Gr−1/2û, v =
L
ν∞

Gr−1/4 (v̂ − σx û) , x =
x̂
L
, r =

r̂
L
, a =

â
L

y =
ŷ − σ (x̂)

L
Gr1/4, θ =

T − T∞
Tw − T∞

, p =
L2

ρν2
∞Gr

p̂, σ(x) =
σ̂(x̂)

L

Dimensionless system of equations
∂(ru)
∂x

+
∂(rv)
∂y

= 0

u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x

+ σx Gr1/4 ∂p
∂y

+
(

1 + σ2
x
)(

(1 + εθ)
∂2u
∂y2 + ε

∂u
∂y

∂θ

∂y

)
+ θ

σx

(
u
∂u
∂x

+ v
∂u
∂y

)
+ σxx u2 = −Gr1/4 ∂p

∂y
+ σx

(
1 + σ2

x
)(

(1 + εθ)
∂2u
∂y2 + ε

∂u
∂y

∂θ

∂y

)
− tanφθ



Boundary Layer Equations

u
∂θ

∂x
+ v

∂θ

∂y
=

(
1 + σ2

x
)

Pr

[
(1 + γθ)

∂

∂y

(
1 +
(4

3
Rd (1 + δθ)3

)
∂θ

∂y

)
+ γ

(
∂θ

∂y

)2
]

subject to the transformed boundary conditions:{
u(x , 0) = v(x , 0) = 0, θ(x , 0)− 1 = 0

u(x ,∞) = 0, θ(x ,∞) = 0

where the dimensionless variables are:
Gr =

gβ(Tw − T∞) cosφL3

ν2 , θw =
Tw

T∞
, δ = θw − 1,

Rd =
4σ∗T 3

∞
κ (αr + σs )

, Pr =
µcp

κ

Next step
Dimensionless system ⇒ Tri-diagonal solver for numerical treatment



Primitive Variable Formulation
Transformations

x = X , y = x
1
4 Y , u = x

1
2 U, v = x−

1
4 V , θ = Θ, r = x sinφ

Parabolic system of PDEs
3
2

U + X
∂U
∂X
−

1
4

Y
∂U
∂Y

+
∂V
∂Y

= 0(
1
2

+
XσXσXX(
1 + σ2

X

))U2 + XU
∂U
∂X

+
(

V −
Y
4

U
)
∂U
∂Y

=
(

1 + σ2
X
)(

(1 + εΘ)
∂2U
∂Y 2

+ε
∂U
∂Y

∂Θ
∂Y

)
+

1− σX tanφ(
1 + σ2

X

) Θ

XU
∂Θ
∂X

+
(

V −
Y
4

U
)
∂Θ
∂Y

=

(
1 + σ2

X

)
Pr

[
(1 + γΘ)

∂

∂Y

(
1 +
(4

3
Rd (1 + δΘ)3

)
∂Θ
∂Y

)
+γ
(
∂Θ
∂Y

)2
]

{
U(X , 0) = V (X , 0) = 0,Θ(X , 0)− 1 = 0

U(X ,∞) = 0, Θ(X ,∞) = 0



Solution Methodology

Discretization Procedure(
∂Ω
∂X

)
i,j

=
Ωi,j − Ωi−1,j

∆X
,

(
∂Ω
∂Y

)
i,j

=
Ωi,j+1 − Ωi,j−1

2∆Y

Ωi,j = Ω(Xi ,Yj ) Yj = (j − 1)∆Y for j = 1, 2, 3...N,

Y∞ = YN Xi = (i − 1)∆X for i = 1, 2, 3...M

Here Ω denotes the dependent variable U and Θ.
Tridiagonal matrix equation

Ai,j Ωi,j−1 + Bi,j Ωi,j + Ci,j Ωi,j+1 = Di,j

where Ωi,j =
[

U
Θ

]
Ai,j =

[
A11 0

0 A22

]
Bi,j =

[
B11 B12

0 B22

]
Ci,j =

[
C11 0
0 C22

]
Di,j =

[
D1

D2

]
Ω1 =

[
0
1

]
ΩN =

[
0
0

]



Solution Methodology

An algorithm to find Ωi,j is adopted as:

Ωi,j = −Ej Ωi,j+1 + Fj 1 ≤ j ≤ N − 1

where E1 = EN =
[

0 0
0 0

]
, F1 =

[
1
1

]
, FN =

[
0
0

]
Ej = (Bj − Aj Ej−1)−1Cj 2 6 j 6 N − 1

Fj = (Bj − Aj Ej−1)−1(Dj − Aj Fj−1) 2 6 j 6 N − 1

Based on the information available at the i th nodal point, the dependent
variables Ωj are predicted at i + 1th stage.
Use of continuity equation to obtain normal velocity component V

Vi,j = Vi−1,j +
Y (Ui,j − Ui−1,j )

4
−

X4Y (Ui,j − Ui,j−1 + Ui−1,j − Ui−1,j−1)
24X

−
3
2
4YUi,j

Next step ⇒ Calculation of physical quantities



Numerical Results

Physical quantities of interest
Cf =

τw

ρ∞ (ν∞/L)2 , Nu =
LQw

κ∞ (Tw − T∞)

where τw = µ (n̂.∇û)ŷ=0 , Qw = −κ (n̂.∇T )ŷ=0 −
4σ∗

3 (αr + σs )
(∇T 4)ŷ=0

Here n̂ is the unit vector normal to the wavy surface defined as:

n̂ =

(
−

σX√
1 + σ2

X

,
1√

1 + σ2
X

)
Expressions for skin friction and rate of heat transfer
Cf

(
Gr−3

X

)1/4

= (1 + ε)
√

1 + σ2
X

(
∂U
∂Y

)
Y =0

Nu
(Gr

X

)−1/4
= −(1 + γ)

√
1 + σ2

X

(
1 +

4
3

Rdθ
3
w

)(
∂Θ
∂Y

)
Y =0

Next step ⇒ Validation of results



Validation of Results

Tabular comparison with previous results

Table: Values of rate of heat transfer and skin friction coefficient for a = 0.3,
Rd = 0.0, θw = 3.1, γ = ε = 5.0 and φ = π/6.

Pr -Θ′(X , 0) U ′(X , 0)
Ref.[2] Present Ref.[2] Present

0.1 0.09730 0.09731 0.01488 0.01477
0.7 0.09783 0.09686 0.01487 0.01438
1.0 0.09809 0.09724 0.01486 0.01420
7.0 0.10344 0.10447 0.01467 0.01472

Present results with PVF and tri-diagonal solver!
Ref.[2] results with SFF and Keller box!



Validation of Results

Graphical comparison
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Figure: Local Nusselt number coefficient for a = 0.1, 0.3 while ε = γ = Rd = 0.0,
Pr = 1.0, θw = 1.1 and φ = 0.

The results in Ref. [4] are for Wavy plate by using SFF and Keller box!



Numerical Results

Effect of viscosity variation parameter on skin friction coefficient
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Figure: Skin friction coefficient for ε = 0.0, 2.5, 5.0, Rd = 10.0, Pr = 0.7, θw = 3.1,
γ = 5.0, a = 0.3 and φ = π/6.



Numerical Results

Effect of thermal conductivity variation parameter on rate of heat transfer
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Figure: Nusselt number coefficient for γ = 0.0, 2.5, 5.0, Rd = 10.0, Pr = 0.7,
θw = 3.1, ε = 5.0, a = 0.3 and φ = π/6.



Numerical Results

Effect of thermal radiation parameter
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Figure: (a) Skin friction coefficient and (b) Nusselt number coefficient for
Rd = 0.05.0, 10.0, γ = ε = 5.0, Pr = 0.7, θw = 3.1, a = 0.3 and φ = π/6.



Numerical Results

Effect of surface heating parameter
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Figure: (a) Skin friction coefficient and (b) Nusselt number coefficient for
θw = 1.1, 3.1, 5.1, Rd = 10.0, γ = ε = 5.0, Pr = 0.7, a = 0.3 and φ = π/6.



Numerical Results

Effect of thermal radiation on streamlines
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Figure: Streamlines for (a)Rd = 0.0, (b)Rd = 10.0 while Pr = 0.7, θw = 3.1,
γ = ε = 2.0, a = 0.3 and φ = π/6.



Numerical Results

Effect of thermal radiation on isotherms
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Figure: Isotherms for (a)Rd = 0.0, (b)Rd = 10.0 while Pr = 0.7, θw = 3.1,
γ = ε = 2.0, a = 0.3 and φ = π/6.



Conclusions

From the graphical results, it can be concluded that:

Local skin friction coefficient enhances about 55.04% as viscosity variation
parameter increases from 0.0 to 5.0, which is quite a significant figure.

Thermal radiation and thermal conductivity variation parameter extensively
promotes the heat transfer coefficient near the surface of the wavy cone.

The skin friction coefficient exhibits the asymptotic behavior by
intensifying the value of radiation parameter.



Summary

Numerical investigations of Navier-Stokes equations w.r.t.

temperature-dependent viscosity and thermal conductivity

thermal radiation in participating fluid

sinusoidal wavy cone geometry

mass conservation

tri-diagonal solver for parabolic system of PDEs

In addition, I also obtained the results for dusty fluid flow, bioconvection
nanofluid flow, Marangoni convection in context of different geometries.



Future plans

My future aims relates to two categories:

1 Numerical investigations of FEM for Navier-Stokes equations for concrete
flow in geometry of rectangular channel.

2 Finite difference simulation of non-Newtonain fluids in confined geometries
like channel, cavities etc.
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