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Abstract. We are concerned, in this work, with Finite Element Method (FEM) for modeling and simulation of
thixotropy in viscoplastic materials. We use a quasi-Newtonian approach to integrate the constitutive equation, which
results in a new thixo-viscoplastic (TVP) generalized Navier-Stokes (N-S) equations. To solve the corresponding flow
fields at once, we developed a FEM TVP solver based on monolithic Newton-multigrid method. The phenomenologi-
cal process of competition of breakdown and buildup characteristics of thixotropic material is replicated throughout,
localization and shear banding for Couette flow on one hand, and induction of more shear rejuvenation layers nearby
walls for contraction flow on the other hand.
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INTRODUCTION

We intend to investigate thixotropy in fluid flow problems with the lens of modeling, simulation, and
optimization, as pillars for studying rheological phenomena using computer experiments.

We use FEM quasi-Newtonian modeling approach to incorporate the internal material microstructure via
structure dependent viscosity. This is a natural way to generalize Finite element settings of N-S equations
to include complex rheological phenomena. As, the constitutive equation cohabits shear-rate independent
and shear-rate dependent stress behaviours, we analyze the type of transitions between fluid-like and solid-
like regimes for Couette flow to manifest the competition process of breakdown and buildup for thixotropic
material. Furthermore, we consider 4:1 contraction flow to investigate the impact of thixotropy on flow
distribution in the vicinity of walls for an eventual optimal settings of restart pressure.

The quasi-Newtonian modeling approach requires a robust solver w.r.t. regularization parameter to ob-
tain accurate numerical solutions. In this regard, we develop a corresponding adaptive combined discrete
Newton’s/monolithic geometric multigrid solver to delicately handle the regularization issue. On one hand,
the adaptivity related to discrete Newton’s is due to the adaptive step-size in divided difference for the
Jacobian calculation, while accuracy/convergence of linear multigrid solver is made dependently on accu-
racy/convergence of nonlinear solver. On other hand, we use Local Pressure Schur Complement (LPSC) to
handle linearized saddle point problems inside the outer Newton sweeps, taking in consideration the advan-
tageous aspect of discontinuous linear pressure FEM approximation. We collocate velocity and structure
parameter with the same FEM quadratic interpolation.

The remainder of the paper is structured as follows, we devote section §2 to quasi-Newtonian modeling
approach for TVP flow problems via regularized viscosity and give the corresponding set of TVP equa-
tions. Then, in section §3, we provide the wellposedness results for TVP problem and establish the best
approximation, followed by the finite element approximations and the necessary stabilization. We solve
the resulting discrete system with an adaptive combined discrete Newton’s/monolithic geometric multigrid
solver in section §4. Then, we investigate thixotropy rheological phenomena for two flow configurations in
section §5, namely, Couette flow as a simple enough for modeling and 4:1 contraction flow as a close enough
to industrial application. In section §6, we highlight conclusions and main results of the paper.

QUASI-NEWTONIAN MODELING APPROACH

In this section, we introduce quasi-Newtonian modeling approach for TVP flows. This is a straightforward
way to use Navier-Stokes equations, as a long standing tool for modeling and simulations of incompressible



flow problems [1, 2]. The extended viscosity, (-, -), dependent on shear rate, |D|, and microstructure, A, for
the generalized TVP Navier-Stokes equations uses an approximation for |D|~'. Papanastasiuo regularization
[3], for instance:

\/% = \/1D_11 (1 - e_k‘/DTI) , (1)

where k is a regularization parameter, and Dy = 3 (D(u) : D(u)) is second invariant of rate-of-strain tensor
D(u). Then, the full set of equations for TVP generalized Navier-Stokes problems reads

(% tu- v) w= V- (2D, ND()) + VP = f,
V-u=0, (2)

0
(a+u-V))\+M(DII,>\)=f>\’

in 2. We denote flow fields, microstructure, velocity, and pressure, by A, u, and p, respectively, and body
forces by f and f,. The viscosity in (2) is defined as

1
Dr,

The additional equation for A in (2) is responsible to integrate breakdown, G, and buildup, F, competition
process. We concisely define TVP model as

#( D, A) = 1(Dr, A) +7(X)

(3)

o

M:=G—F. (4)
‘We summarize from literature a bunch of models in Table I.

TABLE 1. Models for thixotropic materials

n T F g
Worrall et al. [4] Ao To Ma(1-X)|D| M |D|
Coussot et al. [5] A9 mg M, M |D|
Houska [6] (1m0 + M) [D™ ! (70 + Too \) Ma(1 =) MpX™ D]
Dullaert et al. [7] Ano AGo(X |D])A. (Ma, + Ma, |D])(1 — N)t? MpA|D|t™?

Buildup parameter, M,, breakage parameter, M}, nonthixotropic plastic viscosity, 70, nonthixotropic yield
stress, 7o, thixotropic plastic viscosity, 7, thixotropic yield stress, 7., critical elastic strain, A., elastic
modulus of unyielded material Gy, and indices rate g, p, m,n give rise to different thixotropic models.

FINITE ELEMENT APPROXIMATIONS

We devote this section to FEM approximation of TVP problem by a simple generalization of classical FEM
settings of N-S equations. Firstly, we give the weak form of the problem in its general saddle point abstract
framework based on incompressibility. Secondly, we demonstrate the wellposedness of TVP problem and
give the boundedness of solutions w.r.t. data. Thirdly, we present the best approximation, where the energy
estimate shows nonoptimality due to weak coercivity of microstructure. Lastly, we introduce FEM spaces
choice respecting the incompressibility constraint only, while microstructure is collocated with the same
FEM approximation as velocity with the necessary stabilization to cope mainly with weak coercivity.

We consider the spaces V := (Hg(£2))? and Q := L3(f2) for velocity and pressure, respectively. And the
space T := Hll_ () for microstructure, where I'™ denotes the inflow boundary. We associate spaces T and
V with H'-norm |-|, and Q space with L?-norm |-|,, and set W :=V x T [8]. We define on W x W

a4 (@) (@, ) = ay(@)(u,v) +ax(@)(A,§)  for all (@,v) € W x W, (5)
where, & = (\,u) and ¥ = (¢, v).

The continuous weak form of TVP problem (2), in saddle point abstract framework based on incompress-
ibility, reads: Find (@,p) € W x Q such that

ag () (@, v) — b(u,q) + b(v,p) =1(0) for all (v,9) € Wx Q, (6)



where

a0 (@) (u,v) = /Q u- VuvdQ+ /Q 21(Dy, \)D(u) : D(v) 2, (7)
b(v,q):—/ﬂv-'quﬂ, (®)
La(®) =(£urv), ©)

aA('&,)()\,é):/Qu~V)\§dQ+/Q(g(Dn,)\)—]-'(Du,)\))ng, (10)
1€ =(f1,€), and set (D) = (€) + Lu(v). (11)

In theorem 1, we state the results concerning wellposedness and boundedness of solutions w.r.t. data. We
assume

noCx —C1 |ul; >0 (12)
Ma — CQMb |u|1,oo >0 (13)

where C;, i=1,2 are continuity constants related to, convective term in momentum equation and thixotropy
build up function, respectively.

Theorem 1 (Begum et. al 2022 [8]). Given fi € L%(Q), f. € (L*(Q))?, and assume conditions (12) and
(18) are satisfied. Then, TVP problem (6) has a unique solution (&,p) = (A, u,p) € W x Q. Furthermore,
the solution satisfies the boundedness with data

1
< — 14
ful, < Il (14
1 2 (Moo + kToo) + 1] o,
Il < 5 (1+ 2=t e g (13
1 1
Mo+ 300 < o 1A (16

where B denotes LBB constant, and Ck is the constant of Korn’s inequality.

The upper norm bound for microstructure solution is composed of boundary norm and L?-norm (16), i.e.
the high order derivative of X is not controlled, which is due to weak coercivity. This coarseness is reflected
in the best approximation of the approximate problem.

Now, we introduce spaces for approximations in a conforming framework Wj :=V, x T;, C V x T and
Qr C Q. The corresponding discrete TVP problem is to look for a solution (@h,pr) € Wi, X Qp, such that

aw(@p)(Un, Dn) — b(un, gn) + b(vn,pr) = 1(Dn) for all (Dn,qn) € Wi x Qp. (17)

Theorem 2 (Begum et. al 2022 [9]). Let f, € (L?(2))? and f\ € L?(2), assume in addition
MoCx — C1 |upl; >0 (18)
My = CoMy [up|; o, >0 (19)

the discrete TVP problem (17) has a unique solution (@p,pn) = (An, Unh,pr) € Wi, X Qp. Furthermore, the
error estimate satisfies the best approximation, stated as

|u - uhﬁ 0o < (2 + Zéu,u) inf |’U, - vhﬁ 0o + éu,)\ inf ”)‘ - gh”? + Cu,p inf "p _ph”g (20)
’ vr€VR ’ En€Th qn€Qn

2 5 . 2 5 . 2
— < C n u—v + + C n —
||>‘ )‘h"O — Au v:egh | hll,oo (2 2 /\,/\) f:E%h ">‘ §h”1 (21)

where éu,u,(fu,A,(fu,p,(f,\,u, and (,;A,)\ are constants dependent on 10, Neo; Too, Ma, Ms, k, 8,Cx,d, |ul,
|u|1,oo’ |u’|0,oo’ |uh 1,007 |vh|1,oo7 and ||£h||0

The choice of FE spaces for the approximation of TVP problem (6) is done w.r.t. the saddle point
character related to incompressibility only, while microstructure is collocated with velocity. In order to deal
with remaining challenges, i.e. the dependency of solution on k (regularization) and the lack of coercivity



of ax(*)(+,-) in a strong norm, we use higher order stabilized FEM. Indeed, we choose the pair Qo/Pis
for velocity and pressure, and Q9 for microstructure (see Figure 1) with inter-element gradient jumps as a
stabilizing bilinear form supplementing the microstructure equation [1, 10] i.e.

Ow) = X nIEE [ (V2] (V6 do (22)
E€E; E
> o ) 'Y 5 ® p
[ ] ° ° o Py o s ..
[ ° & o
¢ ¢

FIGURE 1. FEM choice for TVP problem: Higher order FEM discretization Q2/Q2/P{*°.

ADAPTIVE COMBINED DISCRETE NEWTON’S/MONOLITHIC
GEOMETRIC MULTIGRID SOLVER

This section is concerned with an adaptive combined discrete Newton’s and Monolithic Geometric Multigrid
(MGMG) solver for the approximate nonlinear TVP problem (17). The solver has two folds w.r.t. adaptivity,
the one related to discrete Newton’s method via the step-size in divided difference for the Jacobian calcula-
tion, while the other is related to linear multigrid solver via the dependency of its accuracy/convergence on
the accuracy/convergence of nonlinear solver.

Let {p;,i =1,2,...,dimW,} and {¢;, i = 1,...,dimQy} be basis for W) and Qj, spaces, respectively.
Thus, the vector solution U = (An, un, pn) = (Un, pr) € Wi X Qp, is expressed as

dimWy, dimQy,
U= Z uip; + Z Dii (23)
i=1 =1

and nonlinear discrete residuals for the system (17) are denoted by R(U) € RImWnr+dirQn

RU) = (Rx(An, un), Ru(An, Uh, Pr), Rp(un, pr)) = (Ra(tn, pr), Rp(@n, pr)) (24)

We present concisely the main steps for the solver in Algorithm 1.

Algorithm 1: Discrete adaptive Newton using adaptive step-length
Result: Y+ = Ul — widU', w; € (0,1]
ro = |RU)|, &5
while r; > r.;

o (i) Calculate convergence rate 7 = HJ%;
(ii) Step-length size update 6;5_1 = g(rl)sli;
(ili) Calculate FD Jacobian [J(Ul)]z.j ~ (Ri(ul+5‘+e€12;?(ul_5; ej));
(iv) Solve via MGMG JUHSU' = R(UY);

end

Remark 3. The damping parameter w; is set to unity, since it is not enough for convergence of the Al-
gorithm 1. The feedback singularity is given by the rate of the actual residual convergence r; in (i). Thus,
the update function g(r)) = (0.7 + e15%)(4.14 + 0.2¢'52) ™" in (ii) is chosen in a way to allow for bigger
step-length parameter e* to remove numerical instabilities and a smaller one in the region of quadratic con-
vergence. Some numerical tests for unit square Bingham flow benchmark can be found in [11]. The finite
difference scheme in (iii) is made to switch flexibly between backward finite difference (e;7 = 0), forward
finite difference (e] =0), and central finite difference (e; =€} # 0) based on the type of singularity of the
Jacobian and the accuracy requirement for its calculation. To solve the linear system (iv), we use monolithic



adaptive geometric multigrid methods, where the convergence of linear solver is made to match the optimal
accuracy of the nonlinear solver by means of the rate of the actual residual convergence [1]. The analysis
of the global convergence property of the algorithm and the smoothing property of multigrid goes beyond the
interest of this paper and will be reported separately.

On one hand, geometric multigrid methods (GMG) damp both high- and low-frequency components of
errors using effectively the complementary processes of coarse-grid correction and smoothing/relaxation. On
other hand, Local Multilevel Pressure Schur Complement (LMPSC) scheme solve exactly the local saddle-
point problem on subdomains and perform an overlapping block-Gauss—Seidel iteration. In the following,
we give the principle of GMG via multi level algorithm and its corresponding components in the context of
FEM discretization of approximate TVP problem (17).

Let {74, } be a familly of hierarchy multilevel triangulations associated with mesh size hy, i.e. each element
on level triangulations T, _, is split into 0;(K);—; . 24, d = 2, new elements to get level triangulations 7p,
(Figure 2). We set Wy := R¥™Whe Q) = R V) .= Wy x Qy, and let 1—:—1 and Iz_l denote the
grid transfer operators, I’,:_l : Ve — Vi_1 and I’,z_l : Vk—1 —> V. The number of smoothing steps in
Figure 2, i.e. pre- and post-smoothing, are denoted by v; > 0 and v2 > 0, respectively.

Given initial guess 0o, the k*-level iteration MG (k, Uy, R) of MG algorithm is an approximation to
O0Uy, which is solution of ToU=R (25)

One step can be described concisely throughout multi-level algorithm in Figure 2.

Uy =8Uy—1+C  (R—TiblUy—1), 1 <1y Uy =0U—1+C; (R—TkdU—1),1 <va
2, = MG(k —1,0,Z; (R — JkdlU,,)) MG(k,0Uo, R)=08U,, +If_, 2>

N\ /
)
I}y = M My \/ I}y =M M

T = M, (I}c‘—u.- [fg—l,k]ij=/v;k(¢f_l)

| —
U
——

MG (1,0Uy, R)=T; 'R

FIGURE 2. Monolithic Geometric MG solver: Multi-grid algorithm on a mesh-slice of 4:1 contraction con-
figuration.

Smoothing steps in multigrid algorithm (Figure 2) are performed using LMPSC schemes in block Gauss-
Seidel iteration manner, where the choice of blocks for the system (25) is based on incompressibility con-
straint/equivalently on the pressure degrees of freedom. Since the choice of blocks is based on incompressibil-
ity constraint and due to no-coupling between pressure and microstructure, we collocate the microstructure
and velocity. )

To set local sub-problems, we introduce prolongation matrices P, P, and Pk defined on spaces of
variables values Wy := RI™Wk  Qp = R4m™Qx and Vg := Wk x Qg, respectively. Then, the bolck
Gauss-Seidel iteration reads OR(UM)

-1
KeTh

Note that local sub-problems are of saddle point type. Furthermore, due to jump stabilization contributions,
local matrices for microstructure and velocity are deduced form patch of elements, i.e. the designated element

by pressure and all its nieghbors. One might only include the jump contributions within the designated
element by pressure to have a standard size of local sub-problems [1, 12].



NUMERICAL SIMULATIONS OF THIXOTROPIC FLOW

In this section, we present numerically thixotropic flow behavior in two configurations: Firstly, in a simple
enough geometry for laboratory experiments and numerical simulations, couette flow. Secondly, a close
enough geometry to industrial applications, 4:1 contraction flow. For this purpose, we select Houska’s
material model from thixotropic collection given in Table I. For the former, we study the type of transitions
between quasi-static and intermediate regimes w.r.t. intensity of breakdown parameter, while in the second
we analyze the flow behavior in the vicinity of walls of the channel in downstream as well as across the
contraction zone.

Thixo-viscoplastic Couette flow

We start by revisiting the numerical study of Couette flow using constitutive model for quasi-static and
intermediate flows of powder material [13], with the aim to analyze the type of transitions between quasi-
static and intermediate flow regimes by introducing thixotropy. We should make it clear that our revisit is
purely theoretical in the absence of experiment data for thixotropic material.

The geometry constitute of two cylinders (concentric), the inner cylinder with radius, 7i,, while the outer
cylinder with radius, 7.4, with radii ratio, ¢, such that r, =¢/(1 —¢) and 7oy = 1/(1 — ). The material
is sheared in the gap using the rotation speed of inner cylinder and no moving outer cylinder Figure 3

(RIGHT).

Figure 3 (LEFT) shows comparison of numerical solutions with experimental data. We calculate on the
rotating cylinder, the ratio of average shear to normal stresses which we plot with respect to shear rate. In
this first test, the experimental data itself was used as an input in the model in order to validate our new
numerical tools.

_~ Axial flow device
-

1.2
Crushed Glass-Numerical calculation
1.1  |— Round Glass-Numerical Calculation
Crushed Glass-Experiment
14 Round Glass- Experiment ‘Q Rotating
0.9 o - Cylinder
g Normal
L 1 £ Stress
1 0.7 4 o =™ Sensor
=. E
0.6 4
0.5 - _ - Stationary
B outer wall
04 —
0.3 Solid like Fluid like
0.2 T T ' T
0.001 0.01 0.1 1 10 100
Shear rate (1/s)

FIGURE 3. Couette flow: Comparison of numerical solution to experiments (LEFT) and Couette device (RIGHT)
(13].

The new developed numerical methods do not introduce errors to experimental data Figure 3 (LEFT).
Furthermore, Figure 3 (LEFT) exposes a shear-rate independent (solid-like), shear rate dependent (fluid-
like), shear stress, and a transition region which is not yet well studied. In what follows, we activate
thixotropy using Houska’s thixotropic model as straightforward extension of the constitutive equation as a
linear combination of shear-rate independent and shear-rate dependent stress with microstructure, providing
extra parameters to investigate the type of transitions between solid-like and fluid-like regions.

Next numerical simulation, we present the cutlines of velocity and microstructure along radial directions
w.r.t. breakdown parameter in Figure 4, similar as in [14].
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FIGURE 4. Thixo-viscoplastic Couette flows: Cutlines of velocity and microstructure along radial directions,
0 = ¢, ¢ € [0,27], w.r.t. breakdown parameter, My, for Houska’s model, where remaining parameters are set to
M, =1.0,1 =1.0, 70 = 2.0, Noo = 1.0, Too = 1.0, n =1, and k = 10%.

A smooth transition from fluid-like regimes to solid-like regimes is given with small values of breakdown
parameter, while a sharp transition is induced for higher breakdown parameter. Microstructure profiles
match with fluid-like and solid-like regions indicated by velocity profiles. Furthermore, the transition points
for “localization” (lower breakdown parameter, M; = 0.5) and “shear banding” (higher breakdown pa-
rameter M, = 2.0) for velocity and microstructure match, which express once more the accuracy of the
quasi-Newtonian modeling approach modulo sufficient higher regularization parameter.

Thixo-viscoplastic contraction flow

In this experiment, we use 4:1 contraction configuration to analyze TVP material. Our aim is to revisit flow
characteristics taking in consideration material’s thixotropy.
The breakdown parameter, My, effect on flow characteristics is shown in Figure 5.

i
0.25 0.30 0.35 040 045 050 055 060 065 070 0.75 080 0.85 090 095 1.0
————————————— | b ——

FIGURE 5. Thixo-viscoplastic flows in contractions: Microstructure A distribution with respect to breakdown
parameter, M = 1.0/ M, = 2.0 (TOP/BOTTOM). The remaining model parameters are set to M, = 1.0, 7o = 0.0,
Noo = 1.0, Too = 2.0, mo = 1.0, and k = 10*.



It is noticeable, in (Figure 5), that the induced thickness of rejuvenation layers is an outcome of breakdown
parameter. This is why thixotropic material remains smoothly flowing and not resting along channel. As
a consequence, further studies concerning the necessity of extra lubrication as well as the optimization of
restart pressure settings are required.

Furthermore, three unyielded zones, near corners, entrance part of upstream channel, and center of down-
stream channel, are separated with one yielded zone. The yielded separation zone is categorized as a smooth
for lower breakdown parameter and sharp for higher breakdown parameter. The observed non-emerging up-
stream’s and downstream’s unyielded zones is most probably due to lack of elasticity in the model. In fact,
elasticity allows for a continuous flowing of the material across contraction section, which is not the case for
TVP material. The answer relay on the investigation of thixo-elastoviscoplastic material via more general
models.

SUMMARY

We presented FEM quasi-Newtonian modeling and simulation of TVP flows as straightforward way to gener-
alize standard FEM settings of N-S equations. The microstructure is integrated within the nonlinear viscosity
as a feedback response for the evolution competitive process of aging/buildup and rejuvenation/breakdown of
thixotropic material. Firstly, we provided wellposedness results for TVP problem, then established the best
approximation. The energy inequality presents some coarseness in terms of extra regularity requirement for
velocity, nonoptimality of microstructure estimate, and dependency of its constants on regularization, which
we dealt with stabilized higher order FEM approximations. In fact, we used higher order stable Stokes pair
Q2/Pgs¢ FE approximations for velocity /pressure and higher order Q2 FE approximation for microstructure
field with a penalized inter-element gradient jump to enhance discrete weak energy norm to an equivalent
one-norm. Secondly, the discrete nonlinear TVP system is solved using adaptive combined discrete New-
ton’s monolithic geometric multigrid solver. The adaptivity within the discrete Newton’s method is done
through the step-size in divided difference for Jacobian calculation, while the accuracy of linear geometric
multigrid solver is made in accordance to the accuracy requirement for nonlinear solver. The resulting solver
is robust w.r.t. regularization parameter as a must for an accurate solution for quasi-Newtonian modeling
of TVP problem. Lastly, we revisited Couette flow and 4:1 contraction flow by activating thixotropy. For
the former, we correlated the constitutive models of shear rate independent and shear rate dependent stress
using microstructure, enabling analysis of type of transitions between solid-like and fluid-like regimes. For
4:1 contraction flow, we showed that thixotropy induces extra breakdown layers in the vicinity of walls,
consequently optimizing the restart pressure settings.
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