The CG1-DG2 method for conservation laws

<u>Melanie Bittl</u>¹, Dmitri Kuzmin¹, Roland Becker² MoST 2014, Germany

¹Dortmund University of Technology, Germany, ²University of Pau, France

CG1-DG2 Method - Motivation

hp-adaptivity for transport problems:

I non-smooth solution: continuous linear elements + FCT (flux corrected transport) ⇒ only h-adaptivity

2 smooth solution:

continuous higher order elements without stabilization

CG1-DG2 Method - Motivation

hp-adaptivity for transport problems:

I non-smooth solution: continuous linear elements + FCT (flux corrected transport) ⇒ only h-adaptivity

2 smooth solution:

continuous higher order elements without stabilization

Consider the stationary problem

$$u + \nabla \cdot (\mathbf{v}u) = f$$
 in $\Omega = (0, 1) \times (0, 1)$

$$\mathbf{v}(x,y) = (1,1).$$

CG1-DG2 Method - Motivation

Figure : Error for continuous Galerkin with quadratic elements (CG2)

Figure : Error for discontinuous Galerkin with quadratic elements (DG2)

Idea

A new method which fulfills

1 Stability

- **2** Optimal convergence rate
- I Lower computational cost than the discontinuous Galerkin (DG) method

Idea

- A new method which fulfills
- 1 Stability
- 2 Optimal convergence rate
- I Lower computational cost than the discontinuous Galerkin (DG) method

The CG1-DG2 method:

Enriching the space of continuous linear finite elements with discontinuous quadratic basis functions:

CG1-DG2 functions are continuous at the vertices but may have jumps across edges.

CG1-DG2 space for triangles

On each triangle K of a shape-regular triangulation \mathcal{K}_h of Ω we have: 1 linear basis function φ_K^i , i = 1, 2, 32 quadratic basis function $\psi_K^i := \varphi_K^i \varphi_K^{i+1 \mod 3}$, i = 1, 2, 3The space of discontinuous quadratic basis functions is defined $D_h := \{v_h \in L^2(\Omega) : v_h |_K \in D_K\}$ with $D_K := \{\psi_K^i : 1 \le i \le 3\}$.

The CG1-DG2 space is defined by:

 $V_h^{1,2} := V_h^1 \oplus D_h.$

where V_h^1 is the space of linear finite elements.

Figure : blue: continuous linear basis functions, white: discontinuous quadratic basis functions

Some analysis for transport equations

Model problem in 2d:

$$\sigma u + \operatorname{div}(\mathbf{v}u) = f \quad \text{in } \Omega,$$
$$u = g \quad \text{on } \partial \Omega^{-}$$

We will assume that 1 $\sigma + \frac{1}{2} \operatorname{div} \mathbf{v} \ge \sigma_0 > 0$, 2 $\sup_{\mathbf{x}\in\Omega} |\sigma(\mathbf{x}) + \operatorname{div} \mathbf{v}(\mathbf{x})| =: \sigma_1 < \infty$. 3 $\sigma \in L^{\infty}(\Omega)$ and $v_1, v_2 \in W^{1,\infty}(\Omega), \mathbf{v} = (v_1, v_2)^T$.

Weak Formulation

On each element $K \in \mathcal{K}_h$: Multiplying with test function φ and integration by parts on each element K. Summation over all elements K:

$$\underbrace{\int_{\mathcal{K}_{h}} -(\mathbf{v}u) \cdot \nabla \varphi + \sigma u \varphi \, \mathrm{d}\mathbf{x} + \int_{\mathcal{S}_{h}^{\mathrm{int}}} v_{n} \hat{u}[\varphi] \, \mathrm{d}\mathbf{s} + \int_{\mathcal{S}_{h}^{\partial,+}} v_{n} u \varphi \, \mathrm{d}\mathbf{s}}_{\mathcal{S}_{h}^{\partial,+}} = \underbrace{\int_{\mathcal{K}_{h}} f \varphi \, \mathrm{d}\mathbf{x} - \int_{\mathcal{S}_{h}^{\partial,-}} v_{n} g \varphi \, \mathrm{d}\mathbf{s}}_{f(\varphi)}.$$

where \hat{u} is the upwind value, $v_n = \mathbf{v} \cdot \mathbf{n}$, \mathcal{S}^{int} interior sides, \mathcal{S}^{∂} boundary sides.

Stability¹

Lemma

There exists a mesh-independent constant $\gamma > 0$ such that

$$\sup_{v_h \in V_h^{1,2} \setminus \{0\}} \frac{a(u_h, v_h)}{\||v_h|\|} \ge \gamma \||u_h|\|.$$

$$\begin{aligned} \|u_h\|_{\mathrm{DG}} &:= \sqrt{\sigma_0 \, \|u_h\|^2 + \frac{1}{2} \int_{\partial \Omega} |v_n| u_h^2 + \frac{1}{2} \int_{\mathcal{S}_h} |v_n| [u_h]^2}, \\ \||u_h|\|_{\mathbf{v}} &:= \sqrt{\sum_{K \in \mathcal{K}_h} \delta_K \, \|\mathbf{v} \cdot \nabla u_h\|_K^2}, \quad \delta_K = \frac{h_K}{\|\mathbf{v}\|_{\infty, K}}, \\ \||u_h|\| &:= \sqrt{\|u_h\|_{\mathrm{DG}} + \||u_h|\|_{\mathbf{v}}^2}. \end{aligned}$$

¹R. Becker, M. Bittl, and D. Kuzmin. "Analysis of a combined CG1-DG2 method for the transport equation". In: *SINUM, submitted* (september 2013).

A priori estimate²

Theorem

Let $h := \max_{K \in \mathcal{K}_h} h_K$. Let $0 \le k \le 2$ and $u \in H^{k+1}(\Omega)$. Then we have the a priori error estimate

 $|||u - u_h||| \le C h^{k+1/2} ||u||_{H^{k+1}(\Omega)}$

²R. Becker, M. Bittl, and D. Kuzmin. "Analysis of a combined CG1-DG2 method for the transport equation". In: *SINUM*, *submitted* (september 2013).

Numerical examples: Stationary convection problem

 $u + \nabla \cdot (\mathbf{v}u) = f$ in $\Omega = (0, 1) \times (0, 1)$ $\mathbf{v}(x, y) = (1, 1).$

Figure : exact solution

Numerical examples: Stationary convection problem

 $u + \nabla \cdot (\mathbf{v}u) = f \quad \text{in } \Omega = (0, 1) \times (0, 1)$

 $\mathbf{v}(x,y) = (1,1).$

	CG2	CG1-DG2	DG2
h	$ u - u_h $	$ \ u-u_h \ $	$\ \ u - u_h \ \ $
1/32	4.45e-02	4.11e-02	1.51e-02
1/64	1.52e-02	9.74e-03	2.67e-03
1/128	5.34e-03	1.95e-03	4.72e-04
1/256	1.88e-03	3.60e-04	8.33e-05
EOC	1.50	2.44	2.50

Figure : exact solution

Numerical examples: Stationary convection problem

(a) Error for CG2

(b) Error for CG1-DG2

Stationary convection problem: DOFs

	h	CG1	CG2	CG1-DG2	DG1	DG2
	1/32	1089	4225	7233	6144	12288
-	1/64	4225	16641	28801	24576	49152
1	/128	16641	66049	114945	98304	196608
1	/256	66049	263169	459265	393216	786432
	1					

Table : DOFs on triangular meshes for the unit square

Solid body rotation

$$\frac{\partial u}{\partial t} + \nabla \cdot (\mathbf{v}u) = 0 \quad \text{in } \Omega = (0, 1) \times (0, 1)$$
$$\mathbf{v}(x, y) = (0.5 - y, x - 0.5)$$

Solid body rotation

Solid body rotation - error

(a) Error for CG2

(b) Error for CG1-DG2

(c) Error for DG2

Solid body rotation - hp-adaptivity

CG1+FCT (non-smooth) and CG1-DG2 (smooth)

Summary & Outlook

We introduced the CG1-DG2 method:

1 Stability

2 A priori error estimate

3 Numerical studies

In the future: Euler equations Inviscid 2-fluid model

Thank you for your attention!