
ON SOLVING FRICTIONAL CONTACT PROBLEMSPART II: DYNAMIC CASEHERIBERT BLUM1, HEIKO KLEEMANN1, ANDREAS RADEMACHER1, AND ANDREAS SCHRÖDER2Abstra
t. Solution te
hniques for dynami
 
onta
t problems, namely dynami
 Signorini prob-lems with and without fri
tion, thermo-me
hani
al, and rolling 
onta
t problems, are dis
ussed.Rothe's method is used to dis
retise the problems. After dis
retisation in time with an adequatetime stepping s
heme, e. g. the Newmark method, whi
h is studied exemplarily in this arti
le,the semi dis
rete problems are solved by low order �nite elements. The �nite element dis
reti-sation is based on the solution te
hniques, whi
h were des
ribed in the �rst part of this series ofarti
les [H. Blum, H. Kleemann, A. Radema
her, A. S
hröder: On Solving Fri
tional Conta
tProblems, Part I: Abstra
t Framework and the Stati
 
ase℄. Numeri
al results, in
luding theappli
ation of the presented te
hniques to an example from produ
tion engineering, illustratethe performan
e of the presented te
hniques in every 
onsidered problem type.1. Introdu
tionDynami
 fri
tional 
onta
t problems are an adequate model for many engineering pro
esses,e.g., in milling and grinding pro
esses, vehi
le design and ballisti
s. In all of these pro
esses, themain e�e
ts emerge from the 
onta
t at the surfa
e of the bodies under 
onsideration. E.g. ingrinding pro
esses, the workpie
e intera
ts with the grinding wheel only in a small 
onta
t zone.However, the behaviour of the grinding ma
hine is strongly a�e
ted by the resulting 
onta
t andfri
tional for
es, and the thermal e�e
ts. The reliable simulation of su
h a pro
ess has to predi
tpre
isely all mentioned e�e
ts and their in�uen
e onto the whole body.In this arti
le, an appropriate dis
retisation s
heme for dynami
 
onta
t problems involvingfri
tional, thermal, and rotational e�e
ts is developed. The dis
retisation s
heme is based onRothe's method to dis
retise time dependent problems. The dis
retisation is 
arried out in twosteps. First, the problem is dis
retised in time by an appropriate time stepping s
heme. Here,we use �nite di�eren
e s
hemes, like the Newmark [23℄ or the Generalized-α [10℄ method. Thetemporal dis
retisation of dynami
 
onta
t problems is a di�
ult task. Several approa
hes basedon di�erent problem formulations have been presented in literature. Te
hniques for smoothingand stabilizing the 
omputation with spe
ial �nite elements, e.g. Mortar �nite elements, arepresented in [15, 21, 25℄. The Newmark s
heme, whi
h is extended by an additional L2-proje
tionfor stabilisation, is used in [13℄. In [17, 18℄, a time stepping s
hme is introdu
ed, whi
h is basedon the additive splitting of the a

eleration into two parts, representing the interior and the
onta
t for
es. Algorithms for dynami
 
onta
t/impa
t problems are derived in [1, 20℄. They arebased on the 
onservation of energy and momentum. Spe
ial 
onta
t elements in 
ombinationwith Lagrange multipliers are presented in [2℄. The penalty method is used in [30℄ to solve thedis
rete problems. The approa
h, whi
h is used here, was developed in [12, 26, 27℄. It is basedon variational inequalities and optimization algorithms. A detailed survey of this topi
 
an befound in the monographs [19, 29℄. Espe
ially in [29℄, all mentioned problem types are introdu
edand dis
ussed.From the dis
retisation in time, a sequen
e of problems arises, whi
h are 
ontinuous in spa
eand dis
rete in time. These problems are 
alled semi dis
rete. They have the same mathemati
alstru
ture as stati
 
onta
t problems. Consequently, the same solution te
hniques 
an be applied.In the �rst part of this series of arti
les [5℄, an approa
h to solve stati
 fri
tional 
onta
t problemsnumeri
ally has been presented. At �rst, the equivalen
e of several problem formulations, theKey words and phrases. Fri
tional Conta
t problems, Signorini problem, Coulomb fri
tion, Thermo-me
hani
al
onta
t, Finite element method, Optimization.
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2 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERstrong formulation, the weak formulation as variational inequality, the mixed formulation, andthe formulation as minimisation problem, is dis
ussed. It is shown that the mixed formulation isfavourable as starting point for the dis
retisation, for whi
h a stable mixed �nite element methodis used. The arising dis
rete problems are solved by building the S
hur 
omplement and applyingquadrati
 optimization te
hniques. The assets and drawba
ks of this method 
ompared to othersolution te
hniques known from literature are dis
ussed. Here, we rewrite the semi dis
retevariational inequalities as mixed problems and use a mixed �nite element solution approa
h.Only small modi�
ations on the stati
 solution algorithms are ne
essary.The arti
le is organised as follows: In the next se
tion, dynami
 Signorini and obsta
le prob-lems without fri
tion in
luding damping e�e
ts are dis
ussed. Based on the 
ontinuous problemformulation, the dis
retisation is presented. Numeri
al results illustrate the properties of thesolution algorithm. In Se
tion 3, the problem formulation is extended by fri
tional e�e
ts. Fur-thermore, the ne
essary modi�
ations of the dis
retisation are dis
ussed. The 
oupling betweenfri
tion and heat is the fo
us of Se
tion 4. Thermal e�e
ts are in
luded in the problem for-mulation and the dis
retisation s
heme. Rotational e�e
ts are dis
ussed in Se
tion 5. Theyare introdu
ed in the dis
ratisation s
heme by an arbitrary Lagrangian Eulerian (ALE) ansatz.The approa
h is applied on an example from produ
tion engineering, where a damped thermo-me
hani
al 
onta
t problem involving rotational e�e
ts o

urs. The arti
le 
on
ludes with adis
ussion of the results.2. Dynami
 Signorini and Obsta
le ProblemsDynami
 
onta
t problems without fri
tion, namely dynami
 Signorini and obsta
le problems,are the topi
 of this se
tion. This is an extension of se
tion 3.2 in [5℄, where stati
 Signorini andobsta
le problems are 
onsidered, by inertia terms. Furthermore, vis
ous damping is in
ludedin the problem formulation. The presented 
ontinuous formulation and dis
retisation te
hniqueare the basis for all following problems.2.1. Continuous Formulation. The strong and the weak formulation of the dynami
 Signoriniproblem are presented. Let Ω ⊂ R
3 be the basi
 domain and I := [0, T ] ⊂ R a time interval. Theboundary ∂Ω of Ω is divided into three mutually disjoint parts ΓD, ΓC and ΓN with positivemeasure. Homogeneous Diri
hlet and Neumann boundary 
onditions are pres
ribed on the 
losedset ΓD and on ΓN , respe
tively. Conta
t may take pla
e on the su�
iently smooth set ΓC ,

Γ̄C ⊂ ∁ΓD. See, e.g., [5℄, Se
tion 3.2 for more details.We assume a linear elasti
 material model with small deformations. The linearized strainoperator is given by ε(u) := 1
2

(

∇u+ ∇uT
), where ∇u is the gradient of the displa
ement uin spa
e dire
tion. The �rst and se
ond time derivatives are denoted by u̇ and ü, respe
tively.The stress operator of linear elasti
ity, whi
h is de�ned by the modulus of elasti
ity E and byPoisson's number ν, is σ(u). The density of the material is given by ρ.For the des
ription of the 
onta
t 
onditions, the te
hniques presented in [5℄ are used. Thetime dependent su�
iently smooth gap fun
tion is denoted by g. The displa
ement on theboundary in normal dire
tion is given by δn(u) and σnn(u) is the stress in normal dire
tion onthe boundary. Here, the restri
tion δn(u) ≤ g on ΓC is 
onsidered, δn(u) ≥ g 
an be treatedanalogously.We assume that the damping is proportional to the velo
ity and use the approa
h of Rayleighto des
ribe this proportionality. The damping e�e
ts are splitted into a mass proportional and asti�ness proportional part. The term adρu̇ reprensents the mass depending damping, where adis some positive 
onstant. The sti�ness porportional part is given by σ(u) = σ (u+ bdu̇) with a
onstant bd ≥ 0.The initial displa
ement us is in H1 (Ω,ΓD)3 :=

{

v ∈ H1 (Ω)3
∣

∣

∣
γ|ΓD

(v) = 0
} and the initialvelo
ity vs is in L2 (Ω)3. Here, γ denotes the tra
e operator of fun
tions in H1 (Ω,Γd)

3 onto theboundary ∂Ω. See, e.g., [14℄ for more details. In what follows, all relations have to be understoodalmost everywhere.We 
hoose the un
onstrained trial spa
e
V := W 2,∞

(

I;L2 (Ω)3
)

∩ L∞
(

I;H1 (Ω,ΓD)3
)
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onvenien
e, although the existen
e of a solution in V 
an not be proven, even inthe 
onta
t free 
ase [14℄. The set of admissible displa
ements is
K := {ϕ ∈ V |δn (ϕ) ≤ g on ΓC × I } .The L2-s
alar produ
t is de�ned by (u, v) =

∫

Ω
uv dx for u, v ∈ L2 (Ω)3. Eventually, if thesolution u is su�
iently smooth, the strong formulation of the dynami
 Signorini problem reads

ρü+ adρu̇− div (σ (u+ bdu̇)) = f in Ω × I

u = 0 on ΓD × I

σnn(u) = 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I.Using integration by parts in spa
e, we obtain the weak formulationProblem 2.1. Find a fun
tion u ∈ K with u (t = 0) = us and u̇ (t = 0) = vs for whi
h
(ρü (t) + adρu̇(t), ϕ (t) − u (t)) + (σ(u (t) + bdu̇(t)), ε (ϕ (t) − u (t)))

≥ (f (t) , ϕ (t) − u (t))holds for all ϕ ∈ K and all t ∈ I.Throughout this arti
le, we assume f ∈ L∞
(

I;L2 (Ω)
). A detailed derivation of the weakformulation 
an be found in [24℄.2.2. Dis
retisation. We use Rothe's method to dis
retise the dynami
 Signorini problem. First,the problem is dis
retised in temporal dire
tion by the Newmark method (see [23℄). The resultingspatial problems are approximately solved by low order �nite elements. Alternative time steppings
hemes are the Generalized-α method, whi
h was examined in [11, 26℄, and Galerkin spa
e-timemethods, whi
h were developed in [4℄.2.2.1. Temporal Dis
retization. The time interval I is split into N equidistant subintervals In :=

(tn−1, tn] of length k = tn − tn−1 with 0 =: t0 < t1 < . . . < tN−1 < tN := T . The value of afun
tion w at a time instan
e tn is approximated by wn. We use the notation v = u̇ and a = üfor the velo
ity and the a

eleration, respe
tively.In the Newmark method, v and a are approximated as:
an =

1

βk2

(

un − un−1
)

−
1

βk
vn−1 −

(

1

2β
− 1

)

an−1(2.1)
vn = vn−1 + k

[

(1 − α) an−1 + αan
](2.2)Here, α and β are free parameters in the interval [0, 2]. For se
ond order 
onvergen
e, α = 1

2is required. Furthermore, the inequality 2β ≥ α ≥ 1
2
has to be valid for un
onditional stability(see [16℄). For dynami
 
onta
t problems, the 
hoi
e α = β = 1

2
is re
ommanded to guarantee
onservation of energy and momentum (see [2, 26℄). For starting the Newmark method the initiala

eleration as is needed. It 
an be 
al
ulated on the basis of the inital displa
ement and velo
ity(see [16℄). The semi dis
rete problem then reads as follows:Problem 2.2. Find u with u0 = us , v0 = vs and a0 = as, su
h that in every time step

n ∈ {1, 2, . . . , N}, the fun
tion un ∈ Kn is the solution of the variational inequality(2.3) (ρan + adρv
n, ϕ− un) + (σ (un + bdv

n) , ε (ϕ− un)) ≥ (f (tn) , ϕ − un)for all ϕ ∈ Kn. Moreover un, vn and an have to ful�ll the equations (2.1) and (2.2).



4 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERThe set Kn :=
{

ϕ ∈ H1 (Ω,ΓD)3 |δn (ϕ) ≤ gn on Ω
} is the time dis
retized set of admissibledispla
ements. Substituting the equation (2.1) with α = β = 1

2
in the inequality (2.3) leads to

(

1 +
1

2
kad

)

(ρun, ϕ− un) +
1

2
k (k + bd) (σ (un) , ε (ϕ− un))

≥

(

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1 + k ρvn−1 −
1

4
k3adρa

n−1, ϕ − un

)

+
1

2
kbd

(

σ

(

un−1 −
1

2
k2an−1

)

, ε (ϕ− un)

)

.This 
an be written as(2.4) c (un, ϕ− un) ≥ (Fn
1 , ϕ− un) + (σ (Fn

2 ) , ε (ϕ− un)) ,where c is de�ned by
c (ω,ϕ) :=

(

1 +
1

2
kad

)

(ρω, ϕ) +
1

2
k (k + bd) (σ(ω), ε(ϕ)) ,

Fn
1 by

Fn
1 :=

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1 + k ρvn−1 −
1

4
k3adρa

n−1and Fn
2 by

Fn
2 :=

1

2
kbd

(

un−1 −
1

2
k2an−1

)

.The bilinearform c is uniformly ellipti
, 
ontinuous and symmetri
. Thus, an ellipti
 variationalinequality has to be solved in ea
h time step. For solving the inequality (2.4), the te
hniquespresented in [5℄ 
an dire
tly be applied. We give here only a brief overview and refer to [5℄ for thedetails. An e�
ient way for solving variational inequalities is given by their mixed formulation,where the Lagrange multipliers may be interpreted as 
onta
t for
es. We obtain the equivalentmixed problem formulationProblem 2.3. Find (u, λ) with u0 = us, v0 = vs and a0 = as, su
h that (un, λn) ∈ V n × Λn isthe solution of the system
c (un, ϕ) + 〈λn, δn (ϕ)〉 = (Fn

1 , ϕ− un) + (σ (Fn
2 ) , ε (ϕ− un))(2.5)

〈µ− λn, δn (un) − gn〉 ≤ 0(2.6)for all ϕ ∈ V n, all µ ∈ Λn and all n ∈ {1, 2, . . . , N}. Based on the equations (2.1) and (2.2), thefun
tions vn and an are 
al
ulated in a postpro
eesing step.Here, Λn is the dual 
one of the set Gn :=
{

µ ∈ H1/2 (ΓC)
∣

∣µ ≤ 0
}. The dual pairing isexpressed by 〈·, ·〉. The set V n := H1 (Ω,ΓD) is the time dis
retised un
onstrained trial spa
e.2.2.2. Spatial Dis
retisation. A �nite element approa
h is applied to dis
retise the mixed problem2.3. The trial spa
es are Vh and ΛH . Trilinear basis fun
tions on the mesh T are used for the �niteelement spa
e Vh. The dis
rete Lagrange multipliers are pie
ewise 
onstant and are 
ontainedin the set ΛH . The index H indi
ates, that 
oarser meshes may be 
hosen for the Lagrangemultipliers. In our 
al
ulations, we use H = 2h for stability reasons. The spa
e and timedis
rete problem isProblem 2.4. Find (un

h, λ
n
H) ∈ Vh × ΛH with u0

h = Ihus , v0
h = Ihvs and a0

h = Ihas, su
h thatthe system
c (un

h, ϕh) + 〈λn
H , δn (ϕh)〉 =

(

Fn
1,h, ϕ− un

)

+
(

σ
(

Fn
2,h

)

, ε (ϕ− un)
)(2.7)

〈µH − λn
H , δn (un

h) − gn〉 ≤ 0(2.8)is valid for all ϕh ∈ Vh, all µH ∈ ΛH and all n ∈ {1, 2, . . . , N}. Additionally, the equations (2.1)and (2.2) determine vn
h and an

h.
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Figure 2.1. Convergen
e rate w.r.t. k for di�erent time stepping s
hemesHere, Fn
1,h is given by

Fn
1,h :=

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1
h + k ρvn−1

h −
1

4
k3adρa

n−1
hand Fn

2,h by
Fn

2,h :=
1

2
kbd

(

un−1
h −

1

2
k2an−1

h

)

.The pre�x Ih denotes the L2-proje
tion of a fun
tion onto Vh.2.3. Numeri
al Examples. We will investigate three examples for dynami
 
onta
t problems.The �rst one is an obsta
le problem without damping. Then, a 2D linear elasti
 Signorini problemwithout and with damping is 
onsidered.2.3.1. Obsta
le Problem. The main di�eren
e between obsta
le and Signorini problems lies inthe des
ription of the 
onta
t 
onditions. In Signorini problems, the 
onta
t o

urs on theboundary. In obsta
le problems, however, the 
onta
t o

urs in the interior of the domain.Thus, the set of admissible displa
ements is given by K = {ϕ ∈ V |ϕ ≥ ψ on Ω × I } . In whatfollows, a 1d example, whose results are almost the same as for the analogous 2d example (see[26℄), is examined. It holds Ω = I = [0, 1], f = 0, us(x) = sin(πx), vs ≡ 0 and ad = bd = 0. Theobsta
le is given by ψ ≡ 0. The analyti
al solution of this problem is u(x, t) = sin(πx) |cos (πt)|.The 
onvergen
e rates for the Newmark-, the Genralized-α-, the cg(1)cg(1)-, the cg(1)dg(0)-and the dg(0)dg(0) method are shown in Figure 2.1. An uniform mesh width of h = 2−11is 
hoosen in these 
al
ulations and the error is measured in the L∞
(

I;L2 (Ω)
) norm. Theresults are similar for all methods. They all 
onverge of �rst order. For the cg(1)dg(0)- and the

dg(0)dg(0) method, this is expe
ted. But the other methods 
onverge normally of se
ond order.But here, the solution is not regular enough be
ause of the modules in it. It must be mentioned,that the results of the Generalized-α methods are only satisfa
tory in this spe
ial 
ase. In thegeneral 
ase, it is impossible to obtain reasonable results with the Generalized-α method fordynami
 obsta
le problems (see [26℄).2.3.2. Cantilever Beam. As a 2D example for a Signorini problem, we 
onsider a 
antileverbeam in fri
tionless 
onta
t with a �at rigid surfa
e. The length of the beam is l = 0.2m andthe height is h = 0.05m. The domain Ω is given by Ω = [0, 0.05] × [0, 0.2]. The materialparameters of the linear elasti
 plain strain material law are E = 73 · 109 Pa and ν = 0.3,whi
h 
orresponds to aluminium. The density is ρ = 2770 kg/m2. The beam is �xed on the
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Figure 2.2. Geometry of the 
antilever beam (displa
ements s
aled by a fa
tor of 5)
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Figure 2.3. Normalized displa
ement at the tip of the beamset ΓD = {(x, y)x ∈ ∂Ω| y = 0}. Inhomogeneous Neumann boundary 
onditions are assumed on
ΓN = {(x, y) ∈ ∂Ω|x = 0 ∧ 0.15 ≤ y ≤ 0.2}. The surfa
e tra
tion on ΓN is q = 1.25 · 105 N/m.The possible 
onta
t zone ΓC is given by ΓC = {(x, y) ∈ ∂Ω|x = 0.05 ∧ 0.1 ≤ y ≤ 0.2}. The gapbetween the beam and the rigid surfa
e is 
hoosen as g = 2.5·10−5 m, whi
h is approximately themaximal de�e
tion in the un
onstrained 
ase. The geometry of this example is shown in Figure2.2. The initial displa
ement and the initial velo
ity are zero. Here, we 
hoose ad = bd = 0.The time interval is 
hoosen as I =

[

0, 5 · 10−3
]. The length of the time step is k = 5 · 10−6 s.We use 4096 quads to dis
retise the domain Ω. In Figure 2.3, the normalized displa
ement atthe point A = (0.05, 0.2), whi
h 
orresponds to the tip of the beam, is depi
ted for di�erenttime stepping s
hemes. The results for the cg(1)cg(1)-, Newmark- and Generalized-α methodare similar. One gets a somehow periodi
 response, what is expe
ted from the physi
al pointof view. Furthermore, sin
e no damping is assumed, the amplitude should stay 
onstant. Theonly di�eren
e between the methods is in the length of the period. The cg(1)dg(0)- and the

dg(0)dg(0) lead to a smoother and lower reponse be
ause of their damping properties. Theresults are exemplary for the behaviour of the time stepping methods. In what follows, we willonly show the results for the Newmark method. The results of the other methods behave in thesame way as in this example 
ompared with the results for the Newmark method.Now, damping e�e
ts are in
luded. We 
hoose the damping parameters ad = bd = 5 · 10−6.In Figure 2.4, the normalized displa
ement of the 
antilever beam with and without damping is
ompared. The damped response is smoother and the amplitude is de
aying. In parti
ular, thedamped beam hits the surfa
e only two times. Then it vibrates free, whi
h is expe
ted from the
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Figure 2.4. Normalized displa
ement for the Newmark method with and with-out dampingphysi
al point of view. To ease the notation, damping is not in
luded in the following problemformulations, although the in
lusion is easy to realise.3. Dynami
 Signorini Problems with Fri
tionWe extend the problems 
onsidered in the previous se
tion by fri
tional e�e
ts now. In 
ontrastto stati
 fri
tion problems, whi
h are presented in [5℄, the fri
tional 
onstraint is applied on thevelo
ity and not on the displa
ement. Nevertheless, the same solution te
hniques as in the stati

ase 
an be used after dis
retisation in temporal dire
tion.3.1. Continuous Problem Formulation. In this se
tion the strong and the weak formula-tion of the dynami
 Signorini problem with fri
tion are presented. We extend the formulationdes
ribed in se
tion 2.1 here. The displa
ement on the boundary in tangential dire
tion is de-noted by δt(u) and the tangential stress by σnt(u). As in the stati
 
ase, the tangential 
onta
tstresses are bounded by the fri
tional resistan
e s. However, no 
onstraints are pres
ribed onthe tangential displa
ement, but on the tangetial velo
ity.If the solution is su�
iently smooth, we obtain the strong formulation
ρü− div(σ(u)) = f in Ω × I

u = 0 on ΓD × I

σnn(u) = 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I

|σnt(u)| ≤ s on ΓC × I

|σnt(u)| < s ⇒ δt (u̇) = 0

|σnt(u)| = s ⇒ ∃ζ ∈ R≥0 : δt (u̇) = ζσnt.The weak formulation of the dynami
 Signorini problem with fri
tion, see e.g. [12℄, readsProblem 3.1. Find a fun
tion u ∈ K with u (t = 0) = us and u̇ (t = 0) = vs for whi
h
(ρü (t) , ϕ̇ (t) − u̇ (t)) + (σ(u (t)), ε (ϕ̇ (t) − u̇ (t))) + j (ϕ̇ (t)) − j (u̇)

≥ (f (t) , ϕ̇ (t) − u̇ (t))
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Figure 3.1. Finite element mesh of the spring-mass systemholds for all ϕ ∈ K and all t ∈ I.The fri
tional resistan
e is represented by the non-di�erentiable fun
tional j(ϕ) := (s, |δt(ϕ)|)ΓC

,where s(t, x) ≥ 0 is assumed to be 
ontained in L∞
(

I;L2 (ΓC)
). In what follows, we use theCoulomb fri
tion law to spe
ify the fun
tion s, i. e., we 
hoose s = F |σnn (u)|, where F ≥ 0denotes the 
oe�
ient of fri
tion.3.2. Dis
retisation. The dis
retisation of the dynami
 Signorini problem with fri
tion is 
arriedout in the same way as for the fri
tionless 
ase, wi
h was des
ribed in se
tion 2.2. We end upwith the following semi dis
rete problem in mixed form:Problem 3.2. Find (u, λn, λt) with u0 = us, v0 = vs and a0 = as, su
h that (un, λn

n, λt) ∈
V n × Λn

n × Λn
t is the solution of the system

c (un, ϕ) + 〈λn
n, δn (ϕ)〉 + 〈λn

t , δt (ϕ)〉 = (Fn, ϕ)

〈µn − λn
n, δn (un) − gn〉

+
1

k
〈µt − λn

t , δt (un) − rn〉 ≤ 0for all ϕ ∈ V n, all µn ∈ Λn
n, all µt ∈ Λn

t and all n ∈ {1, 2, . . . , N}. Based on the equations (2.1)and (2.2), the fun
tions vn and an are 
al
ulated in a postpro
eesing step.Here, Λn
t is the dual 
one of the set Gn. The fun
tion rn := δt

(

un−1 − 1
2
k2an−1

) is based onthe equations (2.1) and (2.2) with
δt (vn) =

1

k
(δt (un) − rn) .Using the te
hniques des
ribed in [5℄, Problem 3.2 
an be solved approximately. The onlydi�eren
e is the additional term rn, whi
h is 
onstant throughout the solution pro
ess in ea
htime step.3.3. Numeri
al Example. Our model example for fri
tional 
onta
t is a spring-mass system,where the mass is in fri
tional 
onta
t with a rigid surfa
e. The spring is modeled by an elasti
rod of length l1 = 2.0m and height h1 = 0.2m. The following material properties are assumedin a plain strain linear elasti
 material model: E1 = 103 Pa, ν1 = 0 and ρ1 = 0.01 kg/m2. Themass is given by a re
tangular blo
k of length l2 = 0.4m and height h2 = 0.4m with the matrialparameters E2 = 109 Pa, ν2 = 0 and ρ2 = 2.5 kg/m2. By sele
ting ρ1 ≪ ρ2 and E2 ≫ E1, wegain a nearly weightless and �exible spring and an approximately rigid mass. The �nite elementmesh is depi
ted in Figure 3.1, where the spring, the mass and the rigid foundation have di�erent
olours. The domain Ω is given by

Ω = [0, 2.0] × [−0.2, 0] ∪ [2.0, 2.4] × [−0.4, 0].The time interval I is [0, 3]. The spring is �xed at the left end, i.e. homogeneous Diri
h-let boundary 
onditions are assumed on ΓD1
= {(x, y) ∈ ∂Ω |x = 0}. Furthermore, the dis-pla
ement in y dire
tion on ΓD2

= {(x, y) ∈ ∂Ω |y = 0} is 
onstrained. A 
onstant normalstress of q1 = 15N/m is applied on ΓN = {(x, y) ∈ ∂Ω |x = 2.4 ∧ 0 ≥ y ≥ −0.2}. The set
ΓC = {(x, y) ∈ ∂Ω |y = −0.4} is the possible 
onta
t set. The point A, in whi
h we will ob-serve the displa
ement and the velo
ity, is given by A = (2.4,−0.1). We use 14336 quads todis
retise Ω. The time step length is sele
ted as k = 0.001. The gap is 
hoosen as g = −10−10m.Sin
e the mass is modelled nearly rigid and 
annot move up, this results in a high 
onta
t stress.The fri
tion 
oe�
ent is 
hoosen as F = 0.125. The toleran
e of the �xpoint method in thesolver is set to 10−13. It has been a
hieved in 1 − 10 iterations, where the number of iterationswas de
reasing with growing t.In Figure 3.2, the results with and without fri
tion are presented. The displa
ement in thepoint A is 
ompared in Figure 3.2(a). In the fri
tionless 
ase, the displa
ement is a sinusoidal
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tionFigure 3.2. Comparison of displa
ement, velo
ity and energy with and withoutfri
tion for the spring-mass system with Coulomb fri
tionvibration. In the fri
tional 
ase, however, the frequen
e of the os
illation is the same, but theamplitude is de
aying as expe
ted. The 
orresponding results for the velo
ity are shown inFigure 3.2(b). The energy is 
ompared in the Figures 3.2(
) and 3.2(d). In the fri
tional 
ase,the kineti
 energy de
ays to zero and the strain energy attains a �xed value, when the movementstops. In the fri
tionless 
ase, the energy is os
ilatting in agreement with the dipla
ement andthe velo
ity of the spring-mass system. All numeri
al results meet the physi
al expe
tations.4. Dynami
 Thermo-Me
hani
al Conta
t ProblemsDuring fri
tional 
onta
t, energy is dissipated. A portion of this energy generates heat, whi
his indu
ed into the parti
ipating bodies. In this se
tion, we introdu
e a model for this physi
alpro
ess and present a numeri
al solving algorithm based on the te
hniques presented in theprevious se
tions.4.1. Continuous Problem Formulation. We introdu
e the 
ontinuous formulation of themodel for thermo-me
hani
al 
onta
t. First, we present brie�y the linear theory of thermo-elasti
ity, whi
h des
ribes the e�e
ts of heat on an elasti
 body. A detailed presentation may befound in [9℄. Then, the 
oupling of fri
tion and heat is dis
ussed.The linear elasti
 model des
ribed in Se
tion 2.1 is extended by thermal e�e
ts here. The heatof the body is given by the fun
tion θ ∈ Vθ with
Vθ :=

{

ϕ ∈ L2
(

I;H1 (Ω,ΓD)
) ∣

∣ϕ̇ ∈ L2
(

I;H−1 (Ω)
)}

.We assume for notational simpli
ity that homogeneous Diri
hlet boundary 
onditions hold on
ΓD for the heat distribution, too. Possibly nonhomogeneous Neumann boundary 
onditionsare pres
ribed on ΓC , whi
h are spe
i�ed by the fun
tion q ∈ L2

(

I;L2 (ΓC)
). HomogeneousNeumann boundary 
onditions are assumed on ΓN . The inner heat sour
es are des
ribed bythe fun
tion l ∈ L2

(

I;L2 (Ω)
). The initial temperature is θs ∈ H1 (Ω,ΓD). The spe
i�
 heat isgiven by the 
onstant ζ and the 
onstant κ denotes the 
ondu
tivity. Thus, the heat equationreads:
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tion θ ∈ Vθ with θ(0) = θs, whi
h ful�lls the variational equation(4.1) 〈

ζθ̇, ϕ
〉

+ (κ∇θ,∇ϕ) = (l, ϕ) + (q, ϕ)ΓCfor all ϕ ∈ H1 (Ω,ΓD) and all t ∈ I.The 
onne
tion between heat and displa
ement is mainly governed by the 
oe�
ient of thermalexpansion α. For a more 
onvenient des
ription, we use the stress-temperature modulusm, whi
his given by
m = −

αE

1 + ν

(

3ν

1 − 2ν
+ 1

)

.Due to the temperature, thermal stresses, whi
h are modelled by m (θ − θs) I, o

ur in the elasti
body. In the heat equation, an additional internal heat sour
e due to the elasti
 deformation hasto be in
luded. It is spe
i�ed by the term mθstr ε̇(u).During the fri
tional 
onta
t, energy is disspated. This energy is transfered mostly into heat.The generated energy is given by
∫

I

∫

ΓC

σntδt (u̇) dx dt.The heat is transfered into the elasti
 body, the obsta
le and the enviroment. We assume thata �xed portion of the generated energy enters the elasti
 body. The proportionality fa
tor isdenoted by KW ∈ [0, 1]. The heat transfer between the obsta
le and the rigid foundation in the
onta
t zone is negle
ted. The generated heat is in
luded in the heat equation as nonhomogeneousNeumann boundary 
onditions on ΓC , i.e.
q = KWσntδt (u̇) .Together with the formulation of the fri
tional 
onta
t problem in Se
tion 3.1, the strong formu-lation of the thermo-elasti
 
onta
t problem is given by

ρü− div(σ(u) +m (θ − θs) I) = f in Ω × I

ζθ̇ − div (κ∇θ) +mθ0trε̇(u) = l in Ω × I

u = θ = 0 on ΓD × I

σnn(u) =
∂θ

∂n
= 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I

|σnt(u)| ≤ s on ΓC × I

|σnt(u)| < s ⇒ δt (u̇) = 0

|σnt(u)| = s ⇒ ∃ξ ∈ R≥0 : δt (u̇) = ξσnt

∂θ

∂n
= KWσntδt (u̇) on ΓC × I,if u and θ are su�
iently smooth. The weak formulation reads:Problem 4.2. Find a fun
tion (u, θ) ∈ K × Vθ with u(0) = us, u̇(0) = vs and θ(0) = θs, su
hthat

(ρü, ϕ̇− u̇) + (σ(u) +m (θ − θs) I, ε (ϕ̇− u̇))

+j (ϕ̇) − j (u̇) ≥ (f, ϕ̇− u̇)
〈

ζθ̇, χ
〉

+ (κ∇θ,∇χ) + (mθstrε̇(u), χ)

− (KWσntδt (u̇) , χ)ΓC
= (l, χ)holds for all ϕ ∈ K, all χ ∈ Vθ and t ∈ I.
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retisation. The dis
retisation of the fri
tional part of the thermo-elasti
 
onta
t prob-lem is 
arried out as des
ribed in Se
tion 3.2. Here, we fo
us on the dis
retisation of the heatpart and on the solution of the dis
rete system.For the temporal dis
retisation of the heat equation, we use the Crank-Ni
olson s
heme, see,e.g., [16℄. The time dis
retisation of equation (4.1) reads
(ζθn, ϕ) +

1

2
k (κ∇θn,∇ϕ)

=
(

ζθn−1, ϕ
)

+
1

2
k

(

κ∇θn−1,∇ϕ
)(4.2)

+
1

2
k (l (tn) + l (tn−1) , ϕ) +

1

2
k (q (tn) + q (tn−1) , ϕ)ΓC

.By introdu
ing the notation
cθ (ω,ϕ) := (ζω, ϕ) +

1

2
k (κ∇ω,∇ϕ) ,

w
(

tn− 1

2

)

:=
1

2
(w (tn) +w (tn−1)) ,

wn− 1

2 :=
1

2

(

wn + wn−1
)

,

Ln := ζθn−1 + kl
(

tn− 1

2

)

,equation (4.2) simpli�es to(4.3) cθ (θn, ϕ) = (Ln, ϕ) +
1

2
k

(

κ∇θn−1,∇ϕ
)

+ k
(

q
(

tn− 1

2

)

, ϕ
)

ΓC

.Using equation (4.3) and Problem 3.2, we 
an state the time dis
rete version of Problem 4.2:Problem 4.3. Find (u, λn, λt, θ) with u0 = us, v0 = vs, a0 = as, and θ0 = θs, su
h that thefun
tion (un, λn
n, λ

n
t , θ

n) ∈ V n × Λn
n × Λn

t × V n
θ is the solution of the system

c (un, θn, ϕ) + 〈λn
n, δn (ϕ)〉 + 〈λn

t , δt (ϕ)〉 = (Fn, ϕ)(4.4)
〈µn − λn

n, δn (un) − gn〉 +

〈

µt − λn
t ,

1

k
(δt (un) − rn)

〉

≤ 0,(4.5)
cθ (θn, vn, χ) −

KW

k

(

λ
n− 1

2

t v
n− 1

2

t , χ

)

ΓC

−
1

2
k

(

κ∇θn−1,∇χ
)

= (Ln, χ) ,(4.6)for all ϕ ∈ V n, all µn ∈ Λn
n, all µt ∈ Λn

t , all χ ∈ V n
θ , and all n ∈ {1, 2, . . . , N}. The approxima-tions vn and an are 
al
ulated on the basis of the equations (2.1) and (2.2).Here, the bilinear forms c and cθ are de�ned by

c (ω, χ, ϕ) := (ρω, ϕ) +
1

2
k2 (σ(ω) +m (χ− θs) I, ε(ϕ))

cθ (ω, χ, ϕ) := (ζω, ϕ) +
1

2
k (κ∇ω,∇ϕ) +

1

2
k (mθstrε(χ), ϕ) .The term v

n− 1

2

t is given by
v

n− 1

2

t =
1

2k
(δt (un) − rn) + δt

(

vn−1
)

.In many 
ases, the heat indu
ed by the elasti
 deformation may be negle
ted, whi
h simpli�esthe 
al
ulation signi�
antly. The dis
retisation in spa
e of Problem 4.3 leads to a 
oupled system,whi
h is solved by a �xpoint method. The �xpoint approa
h is presented in Algorithm 1. Thefri
tional subproblem in the fourth step of Algorithm 1 is solved with the te
hniques presentedin [5℄.



12 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERAlgorithm 1 Fixpoint method for solving the system (4.4)-(4.6)(1) Assemble all matri
es and all ve
tors with 
onstant values(2) Set un
0,h = un−1

h and θn
0,h = θn−1

h(3) For i = 1, 2, 3, . . . do(4) Solve the system (4.4)-(4.5) with θn
i−1,h(5) Assemble the ve
tor qn

i,h using λn
t,i,H and vn

i,h(6) Solve the equation (4.6) with un
i,h and qn

i,h(7) If ∥

∥

∥
un

i,h − un
i−1,h

∥

∥

∥
+

∥

∥

∥
θn
i,h − θn

i−1,h

∥

∥

∥
< tol then go to (9)(8) Go to (4)(9) Set un

h = un
i,h and θn

h = θn
i,h and stop

(a) n = 10 (b) n = 100

(
) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 2500Figure 4.1. Heat distribution in the spring-mass system with Coulomb fri
tion
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(d) TemperatureFigure 4.2. Displa
ement, velo
ity, energy and temperature for the spring-masssystem with Coulomb fri
tion under 
onsideration of thermal e�e
ts4.3. Numeri
al Example. We examine the same examples as in Se
tion 3.3. In addition, wehave to spe
ify the problem data for the heat part. The start temperature θs is sele
ted as zero.Homogeneous Diri
hlet boundary values are assumed on ΓD. On ∂Ω\ (ΓD ∪ ΓC), homogeneousNeumann boundary 
onditions are sele
ted. Nonhomogeneous Neumann boundary 
onditions,whi
h depend on the fri
tion for
e and on the tangential velo
ity, are given from the des
ribedmodel on ΓC . The spe
i�
 heat of the spring is ζ = 10−3 m
s2K

and the 
ondu
tivity is κ =

10−2 kg m
s3K

. For the mass, we assume ζ = 10−4 m
s2K

and κ = 10−3 kg m
s3K

. In all heat 
oupled
al
ulations, we sele
t KW = 1.5%. The 
oe�
ient of thermal expansion is α = 5 · 10−8K−1.The toleran
e of the outer �xpoint iteration is sele
ted as 10−7. In this example, 10−20 iterationsare needed to rea
h the desired toleran
e. In Figure 4.1, the heat distribution is presented fordi�erent time steps. The maximal temperature is lo
ated in the edges of the mass. The maximummoves from the right to the left and ba
k, when the velo
ity reverses. In Figure 4.2(d), the trendof the temperature over the time interval in the point A is displayed. The temperature ismaximal, when the velo
ity attains is maximum or minimum. This has been expe
ted from thede�nition of the 
oupling between fri
tion and temperature. In Figure 4.2(a), the displa
ementwith heat 
oupling is 
ompared with the displa
ement without heat 
oupling. In the 
ase withheat 
oupling, the amplitude of the displa
ement de
ays faster, sin
e the expansion of the massdue to the heating in
reases the normal for
e on the surfa
e. The same e�e
t is seen in Figure4.2(b) and (
), where the velo
ity and the total energy is 
ompared.5. Rolling Conta
tThe in
lusion of rotational e�e
ts in dynami
 
onta
t problems is a di�
ult task, be
ause thedes
ribtion of the 
onta
t geometry has to 
onsider the rotation. Espe
ially, if a �ner mesh inthe 
onta
t zone is used, the mesh has to be 
hanged a

ordingly to the rotational speed. Onepossibility to over
ome this di�
ulties is to use an ALE ansatz. There, three di�erent 
on�gura-tions are distinguished: the referen
e 
on�guration, the deformed 
on�guration, and an arbitrary
on�guration. The referen
e 
on�guration 
orresponds to the undeformed body. The arbitrary
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(a) Spindle grinding wheel system (b) Workpie
eFigure 5.1. Geometry of the spindle grinding wheel system and of the workpie
e
on�guration 
an be spe
i�ed a

ordingly to the desired properties of the 
al
ulation. A math-emati
al des
ription of the ALE ansatz would go beyond the s
ope of this arti
le. Therefor, wegive only a general overview and refer for a detailed presentation to [22℄. In our 
al
ulations,the arbitrary 
on�guration 
orresponds to the referen
e 
on�guration, but it rotates with thenegative rotational speed of the body. This leads to a �xed 
on�guration for the 
onta
t de-s
ription. Thus, all algorithms presented in this ar
ti
le 
an be used. Furthermore, the mesh
an be be re�ned in the 
onta
t zone and no further 
hanges of the mesh due to the rotation arene
essary. The pri
e, we have to pay for the freedom to 
hoose the 
on�guration, is the transportof information, whi
h has to be 
al
ulated. We use interpolation for realizing the transport ofinformation. If the rotational speed is 
onstant throughout the 
al
ulation, the interpolation
an be expressed by matrix ve
tor multipli
ation, where the matrix does not 
hange during the
al
ulation. The advantage is the small 
omputational e�ort to realize the interpolation. On theother hand, stability problems 
an arise under some 
ir
umstan
es.The ALE ansatz is now illustrated by an example from produ
tion engineering. We 
onsiderthe NC-shape grinding pro
ess of free formed surfa
es with a toroid grinding wheel. As a sub-problem in the simulation of the whole grinding pro
ess, dynami
 thermo-me
hani
al problemswith damping arise. A detailed survey of the engineering pro
ess and the simulation approa
h isgiven in [28℄. The approa
h is extended here by 
onsidering fri
tional and thermo-elasti
 e�e
ts.The grinding wheel and the spindle are expli
itly in
luded in the �nite element analysis. Thesti�ness of the other parts of the grinding ma
hine are 
on
entrated in elasti
 bearings. Thegeometry of the spindle grinding wheel system is depi
ted in Figure 5.1(a). The length of thespindle is 658mm, the radius of the grinding wheel is 100mm, and the radius of the torus is
4.2mm. This values show the di�erent length s
ales, whi
h o

ur in this problem. In parti
ular,the depth of 
ut is in the range of 0.05mm to 0.5mm. The mesh is adaptively re�ned in thepossible 
onta
t zone in order to ensure a reasonable resolution of the 
onta
t 
onditions. Themesh, whi
h 
onsists of 27984 
ells, is shown in Figure 5.1(a). The problem 
omprises 88116unknowns for the elasti
 part and 29372 unknowns for the heat part, 188 degrees of freedomfor the 
onta
t and the fri
tional Lagrange multiplier are 
reated respe
tively. HomogeneousDiri
hlet boundary 
onditions are assumed on the surfa
e of the bearings. Furthermore, all ini-tial fun
tions are 
hosen as zero. The modulus of elasti
ity for the spindle and for the grindingwheel re
eiver is 
hosen as E1 = 2.1 ·1011 kg

m·s2
, for the grinding wheel E2 = 2.1 ·1013 kg

m·s2
, and forthe bearings E3 = 109 kg

m·s2
are 
hosen. The other material parameters are 
onstant throughoutthe domain and are: ν = 0.29, ρ = 7.85 kg

dm3 , α = 10.8 · 10−6 K−1, κ = 16.7 kg·m
K·s3

, ζ = 450 m2

s2·K
,

ad = 0.075, and bd = 0. The 
oe�
ient of fri
tion is 
hosen as F = 0.3 and the heat distribution
oe�
ient as KW = 5%. The rotational speed of the grinding wheel is ω = 170π s−1. We sele
t
T = 0.02 s and k = 10−5 s. The geometry of the workpie
e, whi
h has a sinusoidal pro�le, ispresented in Figure 5.1(b), where the verti
al and horizontal infeed is 
hosen as 0.5mm. Thetoleran
e of the outer �xpoint iteration is 
hosen as 10−8 and of the inner iteration as 10−10.In Figure 5.2, the displa
ement in the 
enter of the grinding wheel orthogonal to the plane,in whi
h the workpie
e lies, is shown. The sinusoidal pro�le of the workpie
e is 
arried over to
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Figure 5.2. Displa
ement in the 
enter of the grinding wheel orthogonal to theworkpie
e-planethe displa
ement of the grinding wheel, as expe
ted. The heat distribution in the 
onta
t zonebetween grinding wheel and workpie
e is depi
ted in Figure 5.3 for di�erent time steps. Thee�e
ts of the rotation are 
lear to see. The heat di�uses mainly in the dire
tion of the rotation.Furthermore, the lo
ation of the highest temperature moves a

ordingly to the 
onta
t zone.The value of the temperature depends on the tangential stresses and 
onsequently on the normalstresses due to the fri
tion law. This dependen
e is observed in the heat distribution, e.g., in themiddle of the 
al
ulation, where the temperature is 
lose to zero, be
ause the grinding wheel ismoving down free. 6. Con
lusions and OutlookIn this arti
le, the approa
h for solving stati
 fri
tional 
onta
t problems, whi
h has beenpresented in [5℄, has been extended to the dynami
 
ase. We have shown, how the dis
retisationof dynami
 
onta
t problems by Rothe's method leads to semi dis
rete problems, whi
h havethe same stru
ture as stati
 
onta
t problems. Consequently, the same solution te
hniques areapplied su

essfully. Thermal and rotational e�e
ts, whi
h lead to sub-problems of known type,
an be 
onsidered, too.The presented dis
retisation approa
h is also suited for a posteriori error estimation andadaptive mesh re�nement. In [3, 7, 8℄, results for dynami
 Signorini and obsta
le problems havebeen presented. Similar results for the fri
tional 
ase and for thermo-me
hani
al problems arebeing developed.In the third part of this series of arti
les [6℄, stati
 and dynami
 two body 
onta
t problemswith fri
tion are 
onsidered. It is shown there, how similar solution te
hniques 
an be used tosolve two body 
onta
t problems, approximately.A
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t zone
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