
ON SOLVING FRICTIONAL CONTACT PROBLEMSPART II: DYNAMIC CASEHERIBERT BLUM1, HEIKO KLEEMANN1, ANDREAS RADEMACHER1, AND ANDREAS SCHRÖDER2Abstrat. Solution tehniques for dynami ontat problems, namely dynami Signorini prob-lems with and without frition, thermo-mehanial, and rolling ontat problems, are disussed.Rothe's method is used to disretise the problems. After disretisation in time with an adequatetime stepping sheme, e. g. the Newmark method, whih is studied exemplarily in this artile,the semi disrete problems are solved by low order �nite elements. The �nite element disreti-sation is based on the solution tehniques, whih were desribed in the �rst part of this series ofartiles [H. Blum, H. Kleemann, A. Rademaher, A. Shröder: On Solving Fritional ContatProblems, Part I: Abstrat Framework and the Stati ase℄. Numerial results, inluding theappliation of the presented tehniques to an example from prodution engineering, illustratethe performane of the presented tehniques in every onsidered problem type.1. IntrodutionDynami fritional ontat problems are an adequate model for many engineering proesses,e.g., in milling and grinding proesses, vehile design and ballistis. In all of these proesses, themain e�ets emerge from the ontat at the surfae of the bodies under onsideration. E.g. ingrinding proesses, the workpiee interats with the grinding wheel only in a small ontat zone.However, the behaviour of the grinding mahine is strongly a�eted by the resulting ontat andfritional fores, and the thermal e�ets. The reliable simulation of suh a proess has to preditpreisely all mentioned e�ets and their in�uene onto the whole body.In this artile, an appropriate disretisation sheme for dynami ontat problems involvingfritional, thermal, and rotational e�ets is developed. The disretisation sheme is based onRothe's method to disretise time dependent problems. The disretisation is arried out in twosteps. First, the problem is disretised in time by an appropriate time stepping sheme. Here,we use �nite di�erene shemes, like the Newmark [23℄ or the Generalized-α [10℄ method. Thetemporal disretisation of dynami ontat problems is a di�ult task. Several approahes basedon di�erent problem formulations have been presented in literature. Tehniques for smoothingand stabilizing the omputation with speial �nite elements, e.g. Mortar �nite elements, arepresented in [15, 21, 25℄. The Newmark sheme, whih is extended by an additional L2-projetionfor stabilisation, is used in [13℄. In [17, 18℄, a time stepping shme is introdued, whih is basedon the additive splitting of the aeleration into two parts, representing the interior and theontat fores. Algorithms for dynami ontat/impat problems are derived in [1, 20℄. They arebased on the onservation of energy and momentum. Speial ontat elements in ombinationwith Lagrange multipliers are presented in [2℄. The penalty method is used in [30℄ to solve thedisrete problems. The approah, whih is used here, was developed in [12, 26, 27℄. It is basedon variational inequalities and optimization algorithms. A detailed survey of this topi an befound in the monographs [19, 29℄. Espeially in [29℄, all mentioned problem types are introduedand disussed.From the disretisation in time, a sequene of problems arises, whih are ontinuous in spaeand disrete in time. These problems are alled semi disrete. They have the same mathematialstruture as stati ontat problems. Consequently, the same solution tehniques an be applied.In the �rst part of this series of artiles [5℄, an approah to solve stati fritional ontat problemsnumerially has been presented. At �rst, the equivalene of several problem formulations, theKey words and phrases. Fritional Contat problems, Signorini problem, Coulomb frition, Thermo-mehanialontat, Finite element method, Optimization.
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2 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERstrong formulation, the weak formulation as variational inequality, the mixed formulation, andthe formulation as minimisation problem, is disussed. It is shown that the mixed formulation isfavourable as starting point for the disretisation, for whih a stable mixed �nite element methodis used. The arising disrete problems are solved by building the Shur omplement and applyingquadrati optimization tehniques. The assets and drawbaks of this method ompared to othersolution tehniques known from literature are disussed. Here, we rewrite the semi disretevariational inequalities as mixed problems and use a mixed �nite element solution approah.Only small modi�ations on the stati solution algorithms are neessary.The artile is organised as follows: In the next setion, dynami Signorini and obstale prob-lems without frition inluding damping e�ets are disussed. Based on the ontinuous problemformulation, the disretisation is presented. Numerial results illustrate the properties of thesolution algorithm. In Setion 3, the problem formulation is extended by fritional e�ets. Fur-thermore, the neessary modi�ations of the disretisation are disussed. The oupling betweenfrition and heat is the fous of Setion 4. Thermal e�ets are inluded in the problem for-mulation and the disretisation sheme. Rotational e�ets are disussed in Setion 5. Theyare introdued in the disratisation sheme by an arbitrary Lagrangian Eulerian (ALE) ansatz.The approah is applied on an example from prodution engineering, where a damped thermo-mehanial ontat problem involving rotational e�ets ours. The artile onludes with adisussion of the results.2. Dynami Signorini and Obstale ProblemsDynami ontat problems without frition, namely dynami Signorini and obstale problems,are the topi of this setion. This is an extension of setion 3.2 in [5℄, where stati Signorini andobstale problems are onsidered, by inertia terms. Furthermore, visous damping is inludedin the problem formulation. The presented ontinuous formulation and disretisation tehniqueare the basis for all following problems.2.1. Continuous Formulation. The strong and the weak formulation of the dynami Signoriniproblem are presented. Let Ω ⊂ R
3 be the basi domain and I := [0, T ] ⊂ R a time interval. Theboundary ∂Ω of Ω is divided into three mutually disjoint parts ΓD, ΓC and ΓN with positivemeasure. Homogeneous Dirihlet and Neumann boundary onditions are presribed on the losedset ΓD and on ΓN , respetively. Contat may take plae on the su�iently smooth set ΓC ,

Γ̄C ⊂ ∁ΓD. See, e.g., [5℄, Setion 3.2 for more details.We assume a linear elasti material model with small deformations. The linearized strainoperator is given by ε(u) := 1
2

(

∇u+ ∇uT
), where ∇u is the gradient of the displaement uin spae diretion. The �rst and seond time derivatives are denoted by u̇ and ü, respetively.The stress operator of linear elastiity, whih is de�ned by the modulus of elastiity E and byPoisson's number ν, is σ(u). The density of the material is given by ρ.For the desription of the ontat onditions, the tehniques presented in [5℄ are used. Thetime dependent su�iently smooth gap funtion is denoted by g. The displaement on theboundary in normal diretion is given by δn(u) and σnn(u) is the stress in normal diretion onthe boundary. Here, the restrition δn(u) ≤ g on ΓC is onsidered, δn(u) ≥ g an be treatedanalogously.We assume that the damping is proportional to the veloity and use the approah of Rayleighto desribe this proportionality. The damping e�ets are splitted into a mass proportional and asti�ness proportional part. The term adρu̇ reprensents the mass depending damping, where adis some positive onstant. The sti�ness porportional part is given by σ(u) = σ (u+ bdu̇) with aonstant bd ≥ 0.The initial displaement us is in H1 (Ω,ΓD)3 :=

{

v ∈ H1 (Ω)3
∣

∣

∣
γ|ΓD

(v) = 0
} and the initialveloity vs is in L2 (Ω)3. Here, γ denotes the trae operator of funtions in H1 (Ω,Γd)

3 onto theboundary ∂Ω. See, e.g., [14℄ for more details. In what follows, all relations have to be understoodalmost everywhere.We hoose the unonstrained trial spae
V := W 2,∞

(

I;L2 (Ω)3
)

∩ L∞
(

I;H1 (Ω,ΓD)3
)



ON SOLVING FRICTIONAL CONTACT PROBLEMS. PART II: DYNAMIC CASE 3for notational onveniene, although the existene of a solution in V an not be proven, even inthe ontat free ase [14℄. The set of admissible displaements is
K := {ϕ ∈ V |δn (ϕ) ≤ g on ΓC × I } .The L2-salar produt is de�ned by (u, v) =

∫

Ω
uv dx for u, v ∈ L2 (Ω)3. Eventually, if thesolution u is su�iently smooth, the strong formulation of the dynami Signorini problem reads

ρü+ adρu̇− div (σ (u+ bdu̇)) = f in Ω × I

u = 0 on ΓD × I

σnn(u) = 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I.Using integration by parts in spae, we obtain the weak formulationProblem 2.1. Find a funtion u ∈ K with u (t = 0) = us and u̇ (t = 0) = vs for whih
(ρü (t) + adρu̇(t), ϕ (t) − u (t)) + (σ(u (t) + bdu̇(t)), ε (ϕ (t) − u (t)))

≥ (f (t) , ϕ (t) − u (t))holds for all ϕ ∈ K and all t ∈ I.Throughout this artile, we assume f ∈ L∞
(

I;L2 (Ω)
). A detailed derivation of the weakformulation an be found in [24℄.2.2. Disretisation. We use Rothe's method to disretise the dynami Signorini problem. First,the problem is disretised in temporal diretion by the Newmark method (see [23℄). The resultingspatial problems are approximately solved by low order �nite elements. Alternative time steppingshemes are the Generalized-α method, whih was examined in [11, 26℄, and Galerkin spae-timemethods, whih were developed in [4℄.2.2.1. Temporal Disretization. The time interval I is split into N equidistant subintervals In :=

(tn−1, tn] of length k = tn − tn−1 with 0 =: t0 < t1 < . . . < tN−1 < tN := T . The value of afuntion w at a time instane tn is approximated by wn. We use the notation v = u̇ and a = üfor the veloity and the aeleration, respetively.In the Newmark method, v and a are approximated as:
an =

1

βk2

(

un − un−1
)

−
1

βk
vn−1 −

(

1

2β
− 1

)

an−1(2.1)
vn = vn−1 + k

[

(1 − α) an−1 + αan
](2.2)Here, α and β are free parameters in the interval [0, 2]. For seond order onvergene, α = 1

2is required. Furthermore, the inequality 2β ≥ α ≥ 1
2
has to be valid for unonditional stability(see [16℄). For dynami ontat problems, the hoie α = β = 1

2
is reommanded to guaranteeonservation of energy and momentum (see [2, 26℄). For starting the Newmark method the initialaeleration as is needed. It an be alulated on the basis of the inital displaement and veloity(see [16℄). The semi disrete problem then reads as follows:Problem 2.2. Find u with u0 = us , v0 = vs and a0 = as, suh that in every time step

n ∈ {1, 2, . . . , N}, the funtion un ∈ Kn is the solution of the variational inequality(2.3) (ρan + adρv
n, ϕ− un) + (σ (un + bdv

n) , ε (ϕ− un)) ≥ (f (tn) , ϕ − un)for all ϕ ∈ Kn. Moreover un, vn and an have to ful�ll the equations (2.1) and (2.2).



4 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERThe set Kn :=
{

ϕ ∈ H1 (Ω,ΓD)3 |δn (ϕ) ≤ gn on Ω
} is the time disretized set of admissibledisplaements. Substituting the equation (2.1) with α = β = 1

2
in the inequality (2.3) leads to

(

1 +
1

2
kad

)

(ρun, ϕ− un) +
1

2
k (k + bd) (σ (un) , ε (ϕ− un))

≥

(

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1 + k ρvn−1 −
1

4
k3adρa

n−1, ϕ − un

)

+
1

2
kbd

(

σ

(

un−1 −
1

2
k2an−1

)

, ε (ϕ− un)

)

.This an be written as(2.4) c (un, ϕ− un) ≥ (Fn
1 , ϕ− un) + (σ (Fn

2 ) , ε (ϕ− un)) ,where c is de�ned by
c (ω,ϕ) :=

(

1 +
1

2
kad

)

(ρω, ϕ) +
1

2
k (k + bd) (σ(ω), ε(ϕ)) ,

Fn
1 by

Fn
1 :=

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1 + k ρvn−1 −
1

4
k3adρa

n−1and Fn
2 by

Fn
2 :=

1

2
kbd

(

un−1 −
1

2
k2an−1

)

.The bilinearform c is uniformly ellipti, ontinuous and symmetri. Thus, an ellipti variationalinequality has to be solved in eah time step. For solving the inequality (2.4), the tehniquespresented in [5℄ an diretly be applied. We give here only a brief overview and refer to [5℄ for thedetails. An e�ient way for solving variational inequalities is given by their mixed formulation,where the Lagrange multipliers may be interpreted as ontat fores. We obtain the equivalentmixed problem formulationProblem 2.3. Find (u, λ) with u0 = us, v0 = vs and a0 = as, suh that (un, λn) ∈ V n × Λn isthe solution of the system
c (un, ϕ) + 〈λn, δn (ϕ)〉 = (Fn

1 , ϕ− un) + (σ (Fn
2 ) , ε (ϕ− un))(2.5)

〈µ− λn, δn (un) − gn〉 ≤ 0(2.6)for all ϕ ∈ V n, all µ ∈ Λn and all n ∈ {1, 2, . . . , N}. Based on the equations (2.1) and (2.2), thefuntions vn and an are alulated in a postproeesing step.Here, Λn is the dual one of the set Gn :=
{

µ ∈ H1/2 (ΓC)
∣

∣µ ≤ 0
}. The dual pairing isexpressed by 〈·, ·〉. The set V n := H1 (Ω,ΓD) is the time disretised unonstrained trial spae.2.2.2. Spatial Disretisation. A �nite element approah is applied to disretise the mixed problem2.3. The trial spaes are Vh and ΛH . Trilinear basis funtions on the mesh T are used for the �niteelement spae Vh. The disrete Lagrange multipliers are pieewise onstant and are ontainedin the set ΛH . The index H indiates, that oarser meshes may be hosen for the Lagrangemultipliers. In our alulations, we use H = 2h for stability reasons. The spae and timedisrete problem isProblem 2.4. Find (un

h, λ
n
H) ∈ Vh × ΛH with u0

h = Ihus , v0
h = Ihvs and a0

h = Ihas, suh thatthe system
c (un

h, ϕh) + 〈λn
H , δn (ϕh)〉 =

(

Fn
1,h, ϕ− un

)

+
(

σ
(

Fn
2,h

)

, ε (ϕ− un)
)(2.7)

〈µH − λn
H , δn (un

h) − gn〉 ≤ 0(2.8)is valid for all ϕh ∈ Vh, all µH ∈ ΛH and all n ∈ {1, 2, . . . , N}. Additionally, the equations (2.1)and (2.2) determine vn
h and an

h.
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Figure 2.1. Convergene rate w.r.t. k for di�erent time stepping shemesHere, Fn
1,h is given by

Fn
1,h :=

1

2
k2 f (tn) + ρ

(

1 +
1

2
kad

)

un−1
h + k ρvn−1

h −
1

4
k3adρa

n−1
hand Fn

2,h by
Fn

2,h :=
1

2
kbd

(

un−1
h −

1

2
k2an−1

h

)

.The pre�x Ih denotes the L2-projetion of a funtion onto Vh.2.3. Numerial Examples. We will investigate three examples for dynami ontat problems.The �rst one is an obstale problem without damping. Then, a 2D linear elasti Signorini problemwithout and with damping is onsidered.2.3.1. Obstale Problem. The main di�erene between obstale and Signorini problems lies inthe desription of the ontat onditions. In Signorini problems, the ontat ours on theboundary. In obstale problems, however, the ontat ours in the interior of the domain.Thus, the set of admissible displaements is given by K = {ϕ ∈ V |ϕ ≥ ψ on Ω × I } . In whatfollows, a 1d example, whose results are almost the same as for the analogous 2d example (see[26℄), is examined. It holds Ω = I = [0, 1], f = 0, us(x) = sin(πx), vs ≡ 0 and ad = bd = 0. Theobstale is given by ψ ≡ 0. The analytial solution of this problem is u(x, t) = sin(πx) |cos (πt)|.The onvergene rates for the Newmark-, the Genralized-α-, the cg(1)cg(1)-, the cg(1)dg(0)-and the dg(0)dg(0) method are shown in Figure 2.1. An uniform mesh width of h = 2−11is hoosen in these alulations and the error is measured in the L∞
(

I;L2 (Ω)
) norm. Theresults are similar for all methods. They all onverge of �rst order. For the cg(1)dg(0)- and the

dg(0)dg(0) method, this is expeted. But the other methods onverge normally of seond order.But here, the solution is not regular enough beause of the modules in it. It must be mentioned,that the results of the Generalized-α methods are only satisfatory in this speial ase. In thegeneral ase, it is impossible to obtain reasonable results with the Generalized-α method fordynami obstale problems (see [26℄).2.3.2. Cantilever Beam. As a 2D example for a Signorini problem, we onsider a antileverbeam in fritionless ontat with a �at rigid surfae. The length of the beam is l = 0.2m andthe height is h = 0.05m. The domain Ω is given by Ω = [0, 0.05] × [0, 0.2]. The materialparameters of the linear elasti plain strain material law are E = 73 · 109 Pa and ν = 0.3,whih orresponds to aluminium. The density is ρ = 2770 kg/m2. The beam is �xed on the
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Figure 2.2. Geometry of the antilever beam (displaements saled by a fator of 5)
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Figure 2.3. Normalized displaement at the tip of the beamset ΓD = {(x, y)x ∈ ∂Ω| y = 0}. Inhomogeneous Neumann boundary onditions are assumed on
ΓN = {(x, y) ∈ ∂Ω|x = 0 ∧ 0.15 ≤ y ≤ 0.2}. The surfae tration on ΓN is q = 1.25 · 105 N/m.The possible ontat zone ΓC is given by ΓC = {(x, y) ∈ ∂Ω|x = 0.05 ∧ 0.1 ≤ y ≤ 0.2}. The gapbetween the beam and the rigid surfae is hoosen as g = 2.5·10−5 m, whih is approximately themaximal de�etion in the unonstrained ase. The geometry of this example is shown in Figure2.2. The initial displaement and the initial veloity are zero. Here, we hoose ad = bd = 0.The time interval is hoosen as I =

[

0, 5 · 10−3
]. The length of the time step is k = 5 · 10−6 s.We use 4096 quads to disretise the domain Ω. In Figure 2.3, the normalized displaement atthe point A = (0.05, 0.2), whih orresponds to the tip of the beam, is depited for di�erenttime stepping shemes. The results for the cg(1)cg(1)-, Newmark- and Generalized-α methodare similar. One gets a somehow periodi response, what is expeted from the physial pointof view. Furthermore, sine no damping is assumed, the amplitude should stay onstant. Theonly di�erene between the methods is in the length of the period. The cg(1)dg(0)- and the

dg(0)dg(0) lead to a smoother and lower reponse beause of their damping properties. Theresults are exemplary for the behaviour of the time stepping methods. In what follows, we willonly show the results for the Newmark method. The results of the other methods behave in thesame way as in this example ompared with the results for the Newmark method.Now, damping e�ets are inluded. We hoose the damping parameters ad = bd = 5 · 10−6.In Figure 2.4, the normalized displaement of the antilever beam with and without damping isompared. The damped response is smoother and the amplitude is deaying. In partiular, thedamped beam hits the surfae only two times. Then it vibrates free, whih is expeted from the
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Figure 2.4. Normalized displaement for the Newmark method with and with-out dampingphysial point of view. To ease the notation, damping is not inluded in the following problemformulations, although the inlusion is easy to realise.3. Dynami Signorini Problems with FritionWe extend the problems onsidered in the previous setion by fritional e�ets now. In ontrastto stati frition problems, whih are presented in [5℄, the fritional onstraint is applied on theveloity and not on the displaement. Nevertheless, the same solution tehniques as in the statiase an be used after disretisation in temporal diretion.3.1. Continuous Problem Formulation. In this setion the strong and the weak formula-tion of the dynami Signorini problem with frition are presented. We extend the formulationdesribed in setion 2.1 here. The displaement on the boundary in tangential diretion is de-noted by δt(u) and the tangential stress by σnt(u). As in the stati ase, the tangential ontatstresses are bounded by the fritional resistane s. However, no onstraints are presribed onthe tangential displaement, but on the tangetial veloity.If the solution is su�iently smooth, we obtain the strong formulation
ρü− div(σ(u)) = f in Ω × I

u = 0 on ΓD × I

σnn(u) = 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I

|σnt(u)| ≤ s on ΓC × I

|σnt(u)| < s ⇒ δt (u̇) = 0

|σnt(u)| = s ⇒ ∃ζ ∈ R≥0 : δt (u̇) = ζσnt.The weak formulation of the dynami Signorini problem with frition, see e.g. [12℄, readsProblem 3.1. Find a funtion u ∈ K with u (t = 0) = us and u̇ (t = 0) = vs for whih
(ρü (t) , ϕ̇ (t) − u̇ (t)) + (σ(u (t)), ε (ϕ̇ (t) − u̇ (t))) + j (ϕ̇ (t)) − j (u̇)

≥ (f (t) , ϕ̇ (t) − u̇ (t))
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Figure 3.1. Finite element mesh of the spring-mass systemholds for all ϕ ∈ K and all t ∈ I.The fritional resistane is represented by the non-di�erentiable funtional j(ϕ) := (s, |δt(ϕ)|)ΓC

,where s(t, x) ≥ 0 is assumed to be ontained in L∞
(

I;L2 (ΓC)
). In what follows, we use theCoulomb frition law to speify the funtion s, i. e., we hoose s = F |σnn (u)|, where F ≥ 0denotes the oe�ient of frition.3.2. Disretisation. The disretisation of the dynami Signorini problem with frition is arriedout in the same way as for the fritionless ase, wih was desribed in setion 2.2. We end upwith the following semi disrete problem in mixed form:Problem 3.2. Find (u, λn, λt) with u0 = us, v0 = vs and a0 = as, suh that (un, λn

n, λt) ∈
V n × Λn

n × Λn
t is the solution of the system

c (un, ϕ) + 〈λn
n, δn (ϕ)〉 + 〈λn

t , δt (ϕ)〉 = (Fn, ϕ)

〈µn − λn
n, δn (un) − gn〉

+
1

k
〈µt − λn

t , δt (un) − rn〉 ≤ 0for all ϕ ∈ V n, all µn ∈ Λn
n, all µt ∈ Λn

t and all n ∈ {1, 2, . . . , N}. Based on the equations (2.1)and (2.2), the funtions vn and an are alulated in a postproeesing step.Here, Λn
t is the dual one of the set Gn. The funtion rn := δt

(

un−1 − 1
2
k2an−1

) is based onthe equations (2.1) and (2.2) with
δt (vn) =

1

k
(δt (un) − rn) .Using the tehniques desribed in [5℄, Problem 3.2 an be solved approximately. The onlydi�erene is the additional term rn, whih is onstant throughout the solution proess in eahtime step.3.3. Numerial Example. Our model example for fritional ontat is a spring-mass system,where the mass is in fritional ontat with a rigid surfae. The spring is modeled by an elastirod of length l1 = 2.0m and height h1 = 0.2m. The following material properties are assumedin a plain strain linear elasti material model: E1 = 103 Pa, ν1 = 0 and ρ1 = 0.01 kg/m2. Themass is given by a retangular blok of length l2 = 0.4m and height h2 = 0.4m with the matrialparameters E2 = 109 Pa, ν2 = 0 and ρ2 = 2.5 kg/m2. By seleting ρ1 ≪ ρ2 and E2 ≫ E1, wegain a nearly weightless and �exible spring and an approximately rigid mass. The �nite elementmesh is depited in Figure 3.1, where the spring, the mass and the rigid foundation have di�erentolours. The domain Ω is given by

Ω = [0, 2.0] × [−0.2, 0] ∪ [2.0, 2.4] × [−0.4, 0].The time interval I is [0, 3]. The spring is �xed at the left end, i.e. homogeneous Dirih-let boundary onditions are assumed on ΓD1
= {(x, y) ∈ ∂Ω |x = 0}. Furthermore, the dis-plaement in y diretion on ΓD2

= {(x, y) ∈ ∂Ω |y = 0} is onstrained. A onstant normalstress of q1 = 15N/m is applied on ΓN = {(x, y) ∈ ∂Ω |x = 2.4 ∧ 0 ≥ y ≥ −0.2}. The set
ΓC = {(x, y) ∈ ∂Ω |y = −0.4} is the possible ontat set. The point A, in whih we will ob-serve the displaement and the veloity, is given by A = (2.4,−0.1). We use 14336 quads todisretise Ω. The time step length is seleted as k = 0.001. The gap is hoosen as g = −10−10m.Sine the mass is modelled nearly rigid and annot move up, this results in a high ontat stress.The frition oe�ent is hoosen as F = 0.125. The tolerane of the �xpoint method in thesolver is set to 10−13. It has been ahieved in 1 − 10 iterations, where the number of iterationswas dereasing with growing t.In Figure 3.2, the results with and without frition are presented. The displaement in thepoint A is ompared in Figure 3.2(a). In the fritionless ase, the displaement is a sinusoidal
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(d) Energy without fritionFigure 3.2. Comparison of displaement, veloity and energy with and withoutfrition for the spring-mass system with Coulomb fritionvibration. In the fritional ase, however, the frequene of the osillation is the same, but theamplitude is deaying as expeted. The orresponding results for the veloity are shown inFigure 3.2(b). The energy is ompared in the Figures 3.2() and 3.2(d). In the fritional ase,the kineti energy deays to zero and the strain energy attains a �xed value, when the movementstops. In the fritionless ase, the energy is osilatting in agreement with the diplaement andthe veloity of the spring-mass system. All numerial results meet the physial expetations.4. Dynami Thermo-Mehanial Contat ProblemsDuring fritional ontat, energy is dissipated. A portion of this energy generates heat, whihis indued into the partiipating bodies. In this setion, we introdue a model for this physialproess and present a numerial solving algorithm based on the tehniques presented in theprevious setions.4.1. Continuous Problem Formulation. We introdue the ontinuous formulation of themodel for thermo-mehanial ontat. First, we present brie�y the linear theory of thermo-elastiity, whih desribes the e�ets of heat on an elasti body. A detailed presentation may befound in [9℄. Then, the oupling of frition and heat is disussed.The linear elasti model desribed in Setion 2.1 is extended by thermal e�ets here. The heatof the body is given by the funtion θ ∈ Vθ with
Vθ :=

{

ϕ ∈ L2
(

I;H1 (Ω,ΓD)
) ∣

∣ϕ̇ ∈ L2
(

I;H−1 (Ω)
)}

.We assume for notational simpliity that homogeneous Dirihlet boundary onditions hold on
ΓD for the heat distribution, too. Possibly nonhomogeneous Neumann boundary onditionsare presribed on ΓC , whih are spei�ed by the funtion q ∈ L2

(

I;L2 (ΓC)
). HomogeneousNeumann boundary onditions are assumed on ΓN . The inner heat soures are desribed bythe funtion l ∈ L2

(

I;L2 (Ω)
). The initial temperature is θs ∈ H1 (Ω,ΓD). The spei� heat isgiven by the onstant ζ and the onstant κ denotes the ondutivity. Thus, the heat equationreads:



10 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERProblem 4.1. Find a funtion θ ∈ Vθ with θ(0) = θs, whih ful�lls the variational equation(4.1) 〈

ζθ̇, ϕ
〉

+ (κ∇θ,∇ϕ) = (l, ϕ) + (q, ϕ)ΓCfor all ϕ ∈ H1 (Ω,ΓD) and all t ∈ I.The onnetion between heat and displaement is mainly governed by the oe�ient of thermalexpansion α. For a more onvenient desription, we use the stress-temperature modulusm, whihis given by
m = −

αE

1 + ν

(

3ν

1 − 2ν
+ 1

)

.Due to the temperature, thermal stresses, whih are modelled by m (θ − θs) I, our in the elastibody. In the heat equation, an additional internal heat soure due to the elasti deformation hasto be inluded. It is spei�ed by the term mθstr ε̇(u).During the fritional ontat, energy is disspated. This energy is transfered mostly into heat.The generated energy is given by
∫

I

∫

ΓC

σntδt (u̇) dx dt.The heat is transfered into the elasti body, the obstale and the enviroment. We assume thata �xed portion of the generated energy enters the elasti body. The proportionality fator isdenoted by KW ∈ [0, 1]. The heat transfer between the obstale and the rigid foundation in theontat zone is negleted. The generated heat is inluded in the heat equation as nonhomogeneousNeumann boundary onditions on ΓC , i.e.
q = KWσntδt (u̇) .Together with the formulation of the fritional ontat problem in Setion 3.1, the strong formu-lation of the thermo-elasti ontat problem is given by

ρü− div(σ(u) +m (θ − θs) I) = f in Ω × I

ζθ̇ − div (κ∇θ) +mθ0trε̇(u) = l in Ω × I

u = θ = 0 on ΓD × I

σnn(u) =
∂θ

∂n
= 0 on ΓN × I

δn(u) − g ≤ 0 on ΓC × I

σnn(u) ≥ 0 on ΓC × I

σnn(u) (δn(u) − g) = 0 on ΓC × I

|σnt(u)| ≤ s on ΓC × I

|σnt(u)| < s ⇒ δt (u̇) = 0

|σnt(u)| = s ⇒ ∃ξ ∈ R≥0 : δt (u̇) = ξσnt

∂θ

∂n
= KWσntδt (u̇) on ΓC × I,if u and θ are su�iently smooth. The weak formulation reads:Problem 4.2. Find a funtion (u, θ) ∈ K × Vθ with u(0) = us, u̇(0) = vs and θ(0) = θs, suhthat

(ρü, ϕ̇− u̇) + (σ(u) +m (θ − θs) I, ε (ϕ̇− u̇))

+j (ϕ̇) − j (u̇) ≥ (f, ϕ̇− u̇)
〈

ζθ̇, χ
〉

+ (κ∇θ,∇χ) + (mθstrε̇(u), χ)

− (KWσntδt (u̇) , χ)ΓC
= (l, χ)holds for all ϕ ∈ K, all χ ∈ Vθ and t ∈ I.



ON SOLVING FRICTIONAL CONTACT PROBLEMS. PART II: DYNAMIC CASE 114.2. Disretisation. The disretisation of the fritional part of the thermo-elasti ontat prob-lem is arried out as desribed in Setion 3.2. Here, we fous on the disretisation of the heatpart and on the solution of the disrete system.For the temporal disretisation of the heat equation, we use the Crank-Niolson sheme, see,e.g., [16℄. The time disretisation of equation (4.1) reads
(ζθn, ϕ) +

1

2
k (κ∇θn,∇ϕ)

=
(

ζθn−1, ϕ
)

+
1

2
k

(

κ∇θn−1,∇ϕ
)(4.2)

+
1

2
k (l (tn) + l (tn−1) , ϕ) +

1

2
k (q (tn) + q (tn−1) , ϕ)ΓC

.By introduing the notation
cθ (ω,ϕ) := (ζω, ϕ) +

1

2
k (κ∇ω,∇ϕ) ,

w
(

tn− 1

2

)

:=
1

2
(w (tn) +w (tn−1)) ,

wn− 1

2 :=
1

2

(

wn + wn−1
)

,

Ln := ζθn−1 + kl
(

tn− 1

2

)

,equation (4.2) simpli�es to(4.3) cθ (θn, ϕ) = (Ln, ϕ) +
1

2
k

(

κ∇θn−1,∇ϕ
)

+ k
(

q
(

tn− 1

2

)

, ϕ
)

ΓC

.Using equation (4.3) and Problem 3.2, we an state the time disrete version of Problem 4.2:Problem 4.3. Find (u, λn, λt, θ) with u0 = us, v0 = vs, a0 = as, and θ0 = θs, suh that thefuntion (un, λn
n, λ

n
t , θ

n) ∈ V n × Λn
n × Λn

t × V n
θ is the solution of the system

c (un, θn, ϕ) + 〈λn
n, δn (ϕ)〉 + 〈λn

t , δt (ϕ)〉 = (Fn, ϕ)(4.4)
〈µn − λn

n, δn (un) − gn〉 +

〈

µt − λn
t ,

1

k
(δt (un) − rn)

〉

≤ 0,(4.5)
cθ (θn, vn, χ) −

KW

k

(

λ
n− 1

2

t v
n− 1

2

t , χ

)

ΓC

−
1

2
k

(

κ∇θn−1,∇χ
)

= (Ln, χ) ,(4.6)for all ϕ ∈ V n, all µn ∈ Λn
n, all µt ∈ Λn

t , all χ ∈ V n
θ , and all n ∈ {1, 2, . . . , N}. The approxima-tions vn and an are alulated on the basis of the equations (2.1) and (2.2).Here, the bilinear forms c and cθ are de�ned by

c (ω, χ, ϕ) := (ρω, ϕ) +
1

2
k2 (σ(ω) +m (χ− θs) I, ε(ϕ))

cθ (ω, χ, ϕ) := (ζω, ϕ) +
1

2
k (κ∇ω,∇ϕ) +

1

2
k (mθstrε(χ), ϕ) .The term v

n− 1

2

t is given by
v

n− 1

2

t =
1

2k
(δt (un) − rn) + δt

(

vn−1
)

.In many ases, the heat indued by the elasti deformation may be negleted, whih simpli�esthe alulation signi�antly. The disretisation in spae of Problem 4.3 leads to a oupled system,whih is solved by a �xpoint method. The �xpoint approah is presented in Algorithm 1. Thefritional subproblem in the fourth step of Algorithm 1 is solved with the tehniques presentedin [5℄.



12 H. BLUM, H. KLEEMANN, A. RADEMACHER, AND A. SCHRÖDERAlgorithm 1 Fixpoint method for solving the system (4.4)-(4.6)(1) Assemble all matries and all vetors with onstant values(2) Set un
0,h = un−1

h and θn
0,h = θn−1

h(3) For i = 1, 2, 3, . . . do(4) Solve the system (4.4)-(4.5) with θn
i−1,h(5) Assemble the vetor qn

i,h using λn
t,i,H and vn

i,h(6) Solve the equation (4.6) with un
i,h and qn

i,h(7) If ∥

∥

∥
un

i,h − un
i−1,h

∥

∥

∥
+

∥

∥

∥
θn
i,h − θn

i−1,h

∥

∥

∥
< tol then go to (9)(8) Go to (4)(9) Set un

h = un
i,h and θn

h = θn
i,h and stop

(a) n = 10 (b) n = 100

() n = 500 (d) n = 1000

(e) n = 2000 (f) n = 2500Figure 4.1. Heat distribution in the spring-mass system with Coulomb frition
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(d) TemperatureFigure 4.2. Displaement, veloity, energy and temperature for the spring-masssystem with Coulomb frition under onsideration of thermal e�ets4.3. Numerial Example. We examine the same examples as in Setion 3.3. In addition, wehave to speify the problem data for the heat part. The start temperature θs is seleted as zero.Homogeneous Dirihlet boundary values are assumed on ΓD. On ∂Ω\ (ΓD ∪ ΓC), homogeneousNeumann boundary onditions are seleted. Nonhomogeneous Neumann boundary onditions,whih depend on the frition fore and on the tangential veloity, are given from the desribedmodel on ΓC . The spei� heat of the spring is ζ = 10−3 m
s2K

and the ondutivity is κ =

10−2 kg m
s3K

. For the mass, we assume ζ = 10−4 m
s2K

and κ = 10−3 kg m
s3K

. In all heat oupledalulations, we selet KW = 1.5%. The oe�ient of thermal expansion is α = 5 · 10−8K−1.The tolerane of the outer �xpoint iteration is seleted as 10−7. In this example, 10−20 iterationsare needed to reah the desired tolerane. In Figure 4.1, the heat distribution is presented fordi�erent time steps. The maximal temperature is loated in the edges of the mass. The maximummoves from the right to the left and bak, when the veloity reverses. In Figure 4.2(d), the trendof the temperature over the time interval in the point A is displayed. The temperature ismaximal, when the veloity attains is maximum or minimum. This has been expeted from thede�nition of the oupling between frition and temperature. In Figure 4.2(a), the displaementwith heat oupling is ompared with the displaement without heat oupling. In the ase withheat oupling, the amplitude of the displaement deays faster, sine the expansion of the massdue to the heating inreases the normal fore on the surfae. The same e�et is seen in Figure4.2(b) and (), where the veloity and the total energy is ompared.5. Rolling ContatThe inlusion of rotational e�ets in dynami ontat problems is a di�ult task, beause thedesribtion of the ontat geometry has to onsider the rotation. Espeially, if a �ner mesh inthe ontat zone is used, the mesh has to be hanged aordingly to the rotational speed. Onepossibility to overome this di�ulties is to use an ALE ansatz. There, three di�erent on�gura-tions are distinguished: the referene on�guration, the deformed on�guration, and an arbitraryon�guration. The referene on�guration orresponds to the undeformed body. The arbitrary
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(a) Spindle grinding wheel system (b) WorkpieeFigure 5.1. Geometry of the spindle grinding wheel system and of the workpieeon�guration an be spei�ed aordingly to the desired properties of the alulation. A math-ematial desription of the ALE ansatz would go beyond the sope of this artile. Therefor, wegive only a general overview and refer for a detailed presentation to [22℄. In our alulations,the arbitrary on�guration orresponds to the referene on�guration, but it rotates with thenegative rotational speed of the body. This leads to a �xed on�guration for the ontat de-sription. Thus, all algorithms presented in this artile an be used. Furthermore, the meshan be be re�ned in the ontat zone and no further hanges of the mesh due to the rotation areneessary. The prie, we have to pay for the freedom to hoose the on�guration, is the transportof information, whih has to be alulated. We use interpolation for realizing the transport ofinformation. If the rotational speed is onstant throughout the alulation, the interpolationan be expressed by matrix vetor multipliation, where the matrix does not hange during thealulation. The advantage is the small omputational e�ort to realize the interpolation. On theother hand, stability problems an arise under some irumstanes.The ALE ansatz is now illustrated by an example from prodution engineering. We onsiderthe NC-shape grinding proess of free formed surfaes with a toroid grinding wheel. As a sub-problem in the simulation of the whole grinding proess, dynami thermo-mehanial problemswith damping arise. A detailed survey of the engineering proess and the simulation approah isgiven in [28℄. The approah is extended here by onsidering fritional and thermo-elasti e�ets.The grinding wheel and the spindle are expliitly inluded in the �nite element analysis. Thesti�ness of the other parts of the grinding mahine are onentrated in elasti bearings. Thegeometry of the spindle grinding wheel system is depited in Figure 5.1(a). The length of thespindle is 658mm, the radius of the grinding wheel is 100mm, and the radius of the torus is
4.2mm. This values show the di�erent length sales, whih our in this problem. In partiular,the depth of ut is in the range of 0.05mm to 0.5mm. The mesh is adaptively re�ned in thepossible ontat zone in order to ensure a reasonable resolution of the ontat onditions. Themesh, whih onsists of 27984 ells, is shown in Figure 5.1(a). The problem omprises 88116unknowns for the elasti part and 29372 unknowns for the heat part, 188 degrees of freedomfor the ontat and the fritional Lagrange multiplier are reated respetively. HomogeneousDirihlet boundary onditions are assumed on the surfae of the bearings. Furthermore, all ini-tial funtions are hosen as zero. The modulus of elastiity for the spindle and for the grindingwheel reeiver is hosen as E1 = 2.1 ·1011 kg

m·s2
, for the grinding wheel E2 = 2.1 ·1013 kg

m·s2
, and forthe bearings E3 = 109 kg

m·s2
are hosen. The other material parameters are onstant throughoutthe domain and are: ν = 0.29, ρ = 7.85 kg

dm3 , α = 10.8 · 10−6 K−1, κ = 16.7 kg·m
K·s3

, ζ = 450 m2

s2·K
,

ad = 0.075, and bd = 0. The oe�ient of frition is hosen as F = 0.3 and the heat distributionoe�ient as KW = 5%. The rotational speed of the grinding wheel is ω = 170π s−1. We selet
T = 0.02 s and k = 10−5 s. The geometry of the workpiee, whih has a sinusoidal pro�le, ispresented in Figure 5.1(b), where the vertial and horizontal infeed is hosen as 0.5mm. Thetolerane of the outer �xpoint iteration is hosen as 10−8 and of the inner iteration as 10−10.In Figure 5.2, the displaement in the enter of the grinding wheel orthogonal to the plane,in whih the workpiee lies, is shown. The sinusoidal pro�le of the workpiee is arried over to
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Figure 5.2. Displaement in the enter of the grinding wheel orthogonal to theworkpiee-planethe displaement of the grinding wheel, as expeted. The heat distribution in the ontat zonebetween grinding wheel and workpiee is depited in Figure 5.3 for di�erent time steps. Thee�ets of the rotation are lear to see. The heat di�uses mainly in the diretion of the rotation.Furthermore, the loation of the highest temperature moves aordingly to the ontat zone.The value of the temperature depends on the tangential stresses and onsequently on the normalstresses due to the frition law. This dependene is observed in the heat distribution, e.g., in themiddle of the alulation, where the temperature is lose to zero, beause the grinding wheel ismoving down free. 6. Conlusions and OutlookIn this artile, the approah for solving stati fritional ontat problems, whih has beenpresented in [5℄, has been extended to the dynami ase. We have shown, how the disretisationof dynami ontat problems by Rothe's method leads to semi disrete problems, whih havethe same struture as stati ontat problems. Consequently, the same solution tehniques areapplied suessfully. Thermal and rotational e�ets, whih lead to sub-problems of known type,an be onsidered, too.The presented disretisation approah is also suited for a posteriori error estimation andadaptive mesh re�nement. In [3, 7, 8℄, results for dynami Signorini and obstale problems havebeen presented. Similar results for the fritional ase and for thermo-mehanial problems arebeing developed.In the third part of this series of artiles [6℄, stati and dynami two body ontat problemswith frition are onsidered. It is shown there, how similar solution tehniques an be used tosolve two body ontat problems, approximately.AknowledgementThis researh work was supported by the Deutshe Forshungsgemeinshaft (DFG) withinthe Priority Program 1180, Predition and Manipulation of Interation between Struture andProess, and within the Collaborative Researh Center 708, 3D-Surfae Engineering of Tools forSheet Metal Forming - Manufaturing, Modelling, Mahining.Referenes[1℄ F. Armero and E. Pet®z, Formulation and analysis of onserving algorithms for fritionless dynamiontat/impat problems, Comput. Methods Appl. Meh. Engrg., 158 (1998), pp. 269�300.[2℄ K. J. Bathe and A. B. Chaudhary, A solution method for stati and dynami analysis of three-dimensionalontat problems with frition, Computers & Strutures, 24 (1986), pp. 855�873.[3℄ D. Biermann, H. Blum, T. Janse, A. Rademaher, A. Sheidler, A. Shröder, and K. Weinert,Spae adaptive �nite element methods for dynami signorini problems in the simulation of the n-shapegrinding proess, in Proeedings of 1st International Conferene on Proess Mahine Interation, Hannover,2008.[4℄ H. Blum, T. Jansen, A. Rademaher, and K. Weinert, Finite elements in spae and time for dynamiontat problems, Internat. J. Numer. Methods Engrg., to appear (2007).[5℄ H. Blum, H. Kleemann, A. Rademaher, and A. Shröder, On solving fritional ontat problemspart i: Abstrat framework and the stati ase. in preparation, 2008.[6℄ , On solving fritional ontat problems part iii: Two body ontat problems. in preparation, 2008.
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(a) n = 250 (b) n = 500

() n = 750 (d) n = 1000

(e) n = 1250 (f) n = 1500

(g) n = 1750 (h) n = 2000Figure 5.3. Heat distribution in the ontat zone
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