ON SOLVING FRICTIONAL CONTACT PROBLEMS
PART II: DYNAMIC CASE
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ABSTRACT. Solution techniques for dynamic contact problems, namely dynamic Signorini prob-
lems with and without friction, thermo-mechanical, and rolling contact problems, are discussed.
Rothe’s method is used to discretise the problems. After discretisation in time with an adequate
time stepping scheme, e. g. the Newmark method, which is studied exemplarily in this article,
the semi discrete problems are solved by low order finite elements. The finite element discreti-
sation is based on the solution techniques, which were described in the first part of this series of
articles [H. Blum, H. Kleemann, A. Rademacher, A. Schréder: On Solving Frictional Contact
Problems, Part I: Abstract Framework and the Static case]. Numerical results, including the
application of the presented techniques to an example from production engineering, illustrate
the performance of the presented techniques in every considered problem type.

1. INTRODUCTION

Dynamic frictional contact problems are an adequate model for many engineering processes,
e.g., in milling and grinding processes, vehicle design and ballistics. In all of these processes, the
main effects emerge from the contact at the surface of the bodies under consideration. E.g. in
grinding processes, the workpiece interacts with the grinding wheel only in a small contact zone.
However, the behaviour of the grinding machine is strongly affected by the resulting contact and
frictional forces, and the thermal effects. The reliable simulation of such a process has to predict
precisely all mentioned effects and their influence onto the whole body.

In this article, an appropriate discretisation scheme for dynamic contact problems involving
frictional, thermal, and rotational effects is developed. The discretisation scheme is based on
Rothe’s method to discretise time dependent problems. The discretisation is carried out in two
steps. First, the problem is discretised in time by an appropriate time stepping scheme. Here,
we use finite difference schemes, like the Newmark [23] or the Generalized-o [10] method. The
temporal discretisation of dynamic contact problems is a difficult task. Several approaches based
on different problem formulations have been presented in literature. Techniques for smoothing
and stabilizing the computation with special finite elements, e.g. Mortar finite elements, are
presented in [15, 21, 25]. The Newmark scheme, which is extended by an additional L?-projection
for stabilisation, is used in [13]. In [17, 18], a time stepping schme is introduced, which is based
on the additive splitting of the acceleration into two parts, representing the interior and the
contact forces. Algorithms for dynamic contact/impact problems are derived in [1, 20]. They are
based on the conservation of energy and momentum. Special contact elements in combination
with Lagrange multipliers are presented in [2|. The penalty method is used in [30] to solve the
discrete problems. The approach, which is used here, was developed in [12, 26, 27]. It is based
on variational inequalities and optimization algorithms. A detailed survey of this topic can be
found in the monographs [19, 29|. Especially in [29], all mentioned problem types are introduced
and discussed.

From the discretisation in time, a sequence of problems arises, which are continuous in space
and discrete in time. These problems are called semi discrete. They have the same mathematical
structure as static contact problems. Consequently, the same solution techniques can be applied.
In the first part of this series of articles [5], an approach to solve static frictional contact problems
numerically has been presented. At first, the equivalence of several problem formulations, the
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strong formulation, the weak formulation as variational inequality, the mixed formulation, and
the formulation as minimisation problem, is discussed. It is shown that the mixed formulation is
favourable as starting point for the discretisation, for which a stable mixed finite element method
is used. The arising discrete problems are solved by building the Schur complement and applying
quadratic optimization techniques. The assets and drawbacks of this method compared to other
solution techniques known from literature are discussed. Here, we rewrite the semi discrete
variational inequalities as mixed problems and use a mixed finite element solution approach.
Only small modifications on the static solution algorithms are necessary.

The article is organised as follows: In the next section, dynamic Signorini and obstacle prob-
lems without friction including damping effects are discussed. Based on the continuous problem
formulation, the discretisation is presented. Numerical results illustrate the properties of the
solution algorithm. In Section 3, the problem formulation is extended by frictional effects. Fur-
thermore, the necessary modifications of the discretisation are discussed. The coupling between
friction and heat is the focus of Section 4. Thermal effects are included in the problem for-
mulation and the discretisation scheme. Rotational effects are discussed in Section 5. They
are introduced in the discratisation scheme by an arbitrary Lagrangian Eulerian (ALE) ansatz.
The approach is applied on an example from production engineering, where a damped thermo-
mechanical contact problem involving rotational effects occurs. The article concludes with a
discussion of the results.

2. DYNAMIC SIGNORINI AND OBSTACLE PROBLEMS

Dynamic contact problems without friction, namely dynamic Signorini and obstacle problems,
are the topic of this section. This is an extension of section 3.2 in [5], where static Signorini and
obstacle problems are considered, by inertia terms. Furthermore, viscous damping is included
in the problem formulation. The presented continuous formulation and discretisation technique
are the basis for all following problems.

2.1. Continuous Formulation. The strong and the weak formulation of the dynamic Signorini
problem are presented. Let 2 C R? be the basic domain and I := [0,7] C R a time interval. The
boundary 0f2 of €2 is divided into three mutually disjoint parts I'p, I'c and I'y with positive
measure. Homogeneous Dirichlet and Neumann boundary conditions are prescribed on the closed
set I'p and on I'y, respectively. Contact may take place on the sufficiently smooth set I'c,
I'c cCTp. See, e.g., [5], Section 3.2 for more details.

We assume a linear elastic material model with small deformations. The linearized strain
operator is given by e(u) := % (Vu + VuT), where Vu is the gradient of the displacement w
in space direction. The first and second time derivatives are denoted by @ and i, respectively.
The stress operator of linear elasticity, which is defined by the modulus of elasticity £ and by
Poisson’s number v, is o(u). The density of the material is given by p.

For the description of the contact conditions, the techniques presented in [5] are used. The
time dependent sufficiently smooth gap function is denoted by g. The displacement on the
boundary in normal direction is given by d,(u) and o, (u) is the stress in normal direction on
the boundary. Here, the restriction d,(u) < g on I'c is considered, §,(u) > g can be treated
analogously.

We assume that the damping is proportional to the velocity and use the approach of Rayleigh
to describe this proportionality. The damping effects are splitted into a mass proportional and a
stiffness proportional part. The term agpt reprensents the mass depending damping, where ag4
is some positive constant. The stiffness porportional part is given by o(u) = o (u + bgit) with a
constant by > 0.

The initial displacement us is in H' (2,Tp)® := {v cH' (9)3( Yirp ) = o} and the initial
velocity v is in L2 (2)®. Here, v denotes the trace operator of functions in H' (€, T)* onto the
boundary 0f). See, e.g., [14] for more details. In what follows, all relations have to be understood

almost everywhere.
We choose the unconstrained trial space

Vo= W2 (1; r? (9)3) A L™ (I; H! (Q,FD)3)



for notational convenience, although the existence of a solution in V' can not be proven, even in
the contact free case [14]. The set of admissible displacements is

K:={peV|(p)<gonTcxI}.

The L?-scalar product is defined by (u,v) = [,uvdz for u,v € L? (Q)®. Eventually, if the
solution w is sufficiently smooth, the strong formulation of the dynamic Signorini problem reads

pii+ agpu — div (o (u+ bgu)) =f inQxI

u =0 onI'p x 1T
omm(u) =0 on 'y x T
p(u) —g <0 onTexI
) >0 on 'o x 1
—g) =0 onTexI.

Unn(

Using integration by parts in space, we obtain the weak formulation

Problem 2.1. Find a function v € K with u (t = 0) = us and @ (¢t = 0) = v for which

(pii (t) + aapu(t), ¢ (t) —u (t)) + (o(u (t) + bau(t)), € (¢ (t) = u(t)))
> (F (), @) —u(?))

holds for all p € K and all t € I.

Throughout this article, we assume f € L> (I;L?(£2)). A detailed derivation of the weak
formulation can be found in [24].

2.2. Discretisation. We use Rothe’s method to discretise the dynamic Signorini problem. First,
the problem is discretised in temporal direction by the Newmark method (see [23|). The resulting
spatial problems are approximately solved by low order finite elements. Alternative time stepping
schemes are the Generalized-a method, which was examined in |11, 26|, and Galerkin space-time
methods, which were developed in [4].

2.2.1. Temporal Discretization. The time interval [ is split into /N equidistant subintervals I, :=
(tn—1,tp] of length k = t, —t,—1 with 0 =: g < t; < ... < ty—1 < tny := T. The value of a
function w at a time instance t, is approximated by w™. We use the notation v = % and a = i
for the velocity and the acceleration, respectively.

In the Newmark method, v and a are approximated as:

n 1 n n— 1 n— 1
(21) a = W (U —Uu 1) — @U T <% — 1) -1
(2.2) " = " k[ - a)d" ! + aa]

Here, o and [ are free parameters in the interval [0,2]. For second order convergence, o = %

is required. Furthermore, the inequality 20 > o > % has to be valid for unconditional stability
(see [16]). For dynamic contact problems, the choice o = 8 = 3 is recommanded to guarantee
conservation of energy and momentum (see |2, 26]). For starting the Newmark method the initial
acceleration ag is needed. It can be calculated on the basis of the inital displacement and velocity

(see [16]). The semi discrete problem then reads as follows:

Problem 2.2. Find u with v = u, , v = v, and a = a, such that in every time step
n € {1,2,..., N}, the function v € K™ is the solution of the variational inequality

(2.3) (pa”™ + agpv”™, ¢ — u") + (o (W +bg0") e (p — ")) = (f (tn) ;o — ")

for all ¢ € K™. Moreover u", v™ and a" have to fulfill the equations (2.1) and (2.2).



The set K" := {go € HY(Q,Tp)? |6, (¢) < g™ on Q} is the time discretized set of admissible

displacements. Substituting the equation (2.1) with a = 8 = 1 in the inequality (2.3) leads to

(1 + %kd) (o — ™) g (k + b) (7 (u") 2 (i — ™)

1 1 1
> <§k2 ftn) +p <1 + §k‘ad) W kpont — Zk‘?’adpa"_l, Y — u”)

1 1
+§k:bd (0’ <u”_1 — 51{:261"_1) € (p— u”)) .

This can be written as
(2.4) c(u",p—u") > (F' o —u") + (o (Fy) e (p —u")),

where ¢ is defined by

1 1
w9 = (1 5h0) (ar ) + 3 (-4 80) (010, ()
FT by
1 1 1
F' = §k2 ftn) +p <1 + §kad> w4k pont — Zk:?’adpa"*l
and F3' by
1 1
= Skbg <u"1 — §k2a"1) :

The bilinearform ¢ is uniformly elliptic, continuous and symmetric. Thus, an elliptic variational
inequality has to be solved in each time step. For solving the inequality (2.4), the techniques
presented in [5] can directly be applied. We give here only a brief overview and refer to [5] for the
details. An efficient way for solving variational inequalities is given by their mixed formulation,
where the Lagrange multipliers may be interpreted as contact forces. We obtain the equivalent
mixed problem formulation

Problem 2.3. Find (u, \) with u® = ug, v° = v, and a® = as, such that (u™, \") € V" x A" is
the solution of the system

(2.5) c(us o)+ A0 (9) = (Fihe—u")+ (0 (Fy),e(p—u"))
(2.6) (=A% 0 (u") —g") < 0

forall p € V™ all p € A" and all n € {1,2,..., N}. Based on the equations (2.1) and (2.2), the
functions v™ and a™ are calculated in a postproceesing step.

Here, A™ is the dual cone of the set G" := {u e HY/? (I‘C)| < 0}. The dual pairing is
expressed by (-,-). The set V" := H! (€, T'p) is the time discretised unconstrained trial space.

2.2.2. Spatial Discretisation. A finite element approach is applied to discretise the mixed problem
2.3. The trial spaces are V, and Ap. Trilinear basis functions on the mesh T are used for the finite
element space V. The discrete Lagrange multipliers are piecewise constant and are contained
in the set Ay. The index H indicates, that coarser meshes may be chosen for the Lagrange
multipliers. In our calculations, we use H = 2h for stability reasons. The space and time
discrete problem is

Problem 2.4. Find (u},\};) € Vi x Ag with u(})l = lhus , 1)2 = Ipvs and a% = Ipag, such that
the system

(2.7) c(upon) + (Niy0n (0n)) = (Flpop —u") + (0 (F3) e (¢ —u™))

2.8) (i = Ny, b0 (u)) —g™) < 0

is valid for all 5, € V,, all pg € Ay and all n € {1,2,..., N}. Additionally, the equations (2.1)
and (2.2) determine v}’ and a}.
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FIGURE 2.1. Convergence rate w.r.t. k for different time stepping schemes
Here, F"), is given by
n 1 2 1 n—1 n—1 1 3 n—1
Yy, o= 5/{: fn)+p( 1+ §kad up +kpvyT — Zk aqgpay
and FQ’"jh by
1 _ 1 _

Fgy, = 5hba <u2 t— 51&12 1> :

The prefix Ij, denotes the L?-projection of a function onto Vj.

2.3. Numerical Examples. We will investigate three examples for dynamic contact problems.
The first one is an obstacle problem without damping. Then, a 2D linear elastic Signorini problem
without and with damping is considered.

2.3.1. Obstacle Problem. The main difference between obstacle and Signorini problems lies in
the description of the contact conditions. In Signorini problems, the contact occurs on the
boundary. In obstacle problems, however, the contact occurs in the interior of the domain.
Thus, the set of admissible displacements is given by K = {9 € V' [p > on Q x [ }. In what
follows, a 1d example, whose results are almost the same as for the analogous 2d example (see
[26]), is examined. It holds @ =1 =[0,1], f =0, us(z) = sin(7z), vs = 0 and ag = bg = 0. The
obstacle is given by ¢ = 0. The analytical solution of this problem is u(z,t) = sin(7x) |cos (7t)].

The convergence rates for the Newmark-, the Genralized-a-, the cg(1)cg(1)-, the cg(1)dg(0)-
and the dg(0)dg(0) method are shown in Figure 2.1. An uniform mesh width of h = 271!
is choosen in these calculations and the error is measured in the L (I ;L2 (Q)) norm. The
results are similar for all methods. They all converge of first order. For the cg(1)dg(0)- and the
dg(0)dg(0) method, this is expected. But the other methods converge normally of second order.
But here, the solution is not regular enough because of the modules in it. It must be mentioned,
that the results of the Generalized-a methods are only satisfactory in this special case. In the
general case, it is impossible to obtain reasonable results with the Generalized-a method for
dynamic obstacle problems (see [26]).

2.3.2. Cantilever Beam. As a 2D example for a Signorini problem, we consider a cantilever
beam in frictionless contact with a flat rigid surface. The length of the beam is [ = 0.2m and
the height is A = 0.05m. The domain Q is given by Q = [0,0.05] x [0,0.2]. The material
parameters of the linear elastic plain strain material law are £ = 73 - 10° Pa and v = 0.3,
which corresponds to aluminium. The density is p = 2770kg/m?. The beam is fixed on the
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FIGURE 2.2. Geometry of the cantilever beam (displacements scaled by a factor of 5)
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FiGURE 2.3. Normalized displacement at the tip of the beam

set I'p = {(z,y)z € 09|y = 0}. Inhomogeneous Neumann boundary conditions are assumed on
Iy = {(z,y) € 90|z =0A0.15 <y < 0.2}. The surface traction on I'y is ¢ = 1.25 - 10° N/m.
The possible contact zone I'¢ is given by I'c: = { (z,y) € 92|z = 0.05 A 0.1 < y < 0.2}. The gap
between the beam and the rigid surface is choosen as g = 2.5-107° m, which is approximately the
maximal deflection in the unconstrained case. The geometry of this example is shown in Figure
2.2. The initial displacement and the initial velocity are zero. Here, we choose agq = by = 0.
The time interval is choosen as I = [0, - 10_3]. The length of the time step is k = 5- 107,
We use 4096 quads to discretise the domain 2. In Figure 2.3, the normalized displacement at
the point A = (0.05,0.2), which corresponds to the tip of the beam, is depicted for different
time stepping schemes. The results for the cg(1)cg(1)-, Newmark- and Generalized-o method
are similar. One gets a somehow periodic response, what is expected from the physical point
of view. Furthermore, since no damping is assumed, the amplitude should stay constant. The
only difference between the methods is in the length of the period. The cg(1)dg(0)- and the
dg(0)dg(0) lead to a smoother and lower reponse because of their damping properties. The
results are exemplary for the behaviour of the time stepping methods. In what follows, we will
only show the results for the Newmark method. The results of the other methods behave in the
same way as in this example compared with the results for the Newmark method.

Now, damping effects are included. We choose the damping parameters ag = bg = 5 - 1075,
In Figure 2.4, the normalized displacement of the cantilever beam with and without damping is
compared. The damped response is smoother and the amplitude is decaying. In particular, the
damped beam hits the surface only two times. Then it vibrates free, which is expected from the
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FIGURE 2.4. Normalized displacement for the Newmark method with and with-
out damping

physical point of view. To ease the notation, damping is not included in the following problem
formulations, although the inclusion is easy to realise.

3. DYNAMIC SIGNORINI PROBLEMS WITH FRICTION

We extend the problems considered in the previous section by frictional effects now. In contrast
to static friction problems, which are presented in [5], the frictional constraint is applied on the
velocity and not on the displacement. Nevertheless, the same solution techniques as in the static
case can be used after discretisation in temporal direction.

3.1. Continuous Problem Formulation. In this section the strong and the weak formula-
tion of the dynamic Signorini problem with friction are presented. We extend the formulation
described in section 2.1 here. The displacement on the boundary in tangential direction is de-
noted by d;(u) and the tangential stress by o,¢(u). As in the static case, the tangential contact
stresses are bounded by the frictional resistance s. However, no constraints are prescribed on
the tangential displacement, but on the tangetial velocity.

If the solution is sufficiently smooth, we obtain the strong formulation

pii—div(o(u)) =f inQxI

u =0 onI'p x 1

onn(u) =0 on 'y x T

on(u)—g <0 on e x I

omm(u) >0 onTo x 1T

onn(u) (On(u) —g) =0 onTexI

lone(u)] <'s on e x I

lont(u)] <s =6 (u) =0

lont(u)] =s =3 € R : 0 (1) = (o

The weak formulation of the dynamic Signorini problem with friction, see e.g. [12], reads

Problem 3.1. Find a function v € K with u (t = 0) = us and @ (¢t = 0) = vs for which

(pii (), () = (1)) + (o(u(t),e (@ (8) —u(t)) + 7 () —J ()
> (f (), @) —a(t)



FIGURE 3.1. Finite element mesh of the spring-mass system

holds for all p € K and all t € I.

The frictional resistance is represented by the non-differentiable functional j(¢) := (s, [6:(#)|)p,

where s(t,z) > 0 is assumed to be contained in L> (I; L? (I'¢)). In what follows, we use the
Coulomb friction law to specify the function s, i. e., we choose s = F |op, (u)|, where F > 0
denotes the coefficient of friction.

3.2. Discretisation. The discretisation of the dynamic Signorini problem with friction is carried
out in the same way as for the frictionless case, wich was described in section 2.2. We end up
with the following semi discrete problem in mixed form:

Problem 3.2. Find (u, A, A¢) with u® = u,, v¥ = v, and a” = ay, such that (u™, \?, \;) €
V™ x Al x A} is the solution of the system

c(u”; @) + (An: 0n (9)) + (A, 01 ()

(= Ay O (u™) — g")

1
e (e — ALy 6 (u™) —r") <0

for all o € V" all p, € A}, all puy € A} and all n € {1,2,..., N}. Based on the equations (2.1)
and (2.2), the functions v and a™ are calculated in a postproceesing step.

(F™, )

Here, A7 is the dual cone of the set G". The function r" := § (u"~! — 2k%a""!) is based on
the equations (2.1) and (2.2) with

5, (") = % (6, (u) — 1)

Using the techniques described in [5], Problem 3.2 can be solved approximately. The only
difference is the additional term 7™, which is constant throughout the solution process in each
time step.

3.3. Numerical Example. Our model example for frictional contact is a spring-mass system,
where the mass is in frictional contact with a rigid surface. The spring is modeled by an elastic
rod of length 1 = 2.0m and height h; = 0.2m. The following material properties are assumed
in a plain strain linear elastic material model: E; = 10%Pa, v; = 0 and p; = 0.01kg/m?. The
mass is given by a rectangular block of length o = 0.4 m and height hy = 0.4m with the matrial
parameters Fy = 10° Pa, 15 = 0 and py = 2.5kg/m?. By selecting p; < p2 and Ey > Ep, we
gain a nearly weightless and flexible spring and an approximately rigid mass. The finite element
mesh is depicted in Figure 3.1, where the spring, the mass and the rigid foundation have different
colours. The domain 2 is given by

Q= [0,2.0] x [—0.2,0] U[2.0,2.4] x [—0.4,0].

The time interval [ is [0,3]. The spring is fixed at the left end, i.e. homogeneous Dirich-
let boundary conditions are assumed on I'p, = {(z,y) € 9Q|xr =0}. Furthermore, the dis-
placement in y direction on I'p, = {(z,y) € 92|y =0} is constrained. A constant normal
stress of ¢ = 15N/m is applied on I'y = {(z,y) € 02|z =24AN0>y > —0.2}. The set
I'c = {(z,y) € 92|y = —0.4} is the possible contact set. The point A, in which we will ob-
serve the displacement and the velocity, is given by A = (2.4,—0.1). We use 14336 quads to
discretise 2. The time step length is selected as k = 0.001. The gap is choosen as g = —10~"m.
Since the mass is modelled nearly rigid and cannot move up, this results in a high contact stress.
The friction coefficent is choosen as F = 0.125. The tolerance of the fixpoint method in the
solver is set to 107!, It has been achieved in 1 — 10 iterations, where the number of iterations
was decreasing with growing ¢.

In Figure 3.2, the results with and without friction are presented. The displacement in the
point A is compared in Figure 3.2(a). In the frictionless case, the displacement is a sinusoidal
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FiGURE 3.2. Comparison of displacement, velocity and energy with and without
friction for the spring-mass system with Coulomb friction

vibration. In the frictional case, however, the frequence of the oscillation is the same, but the
amplitude is decaying as expected. The corresponding results for the velocity are shown in
Figure 3.2(b). The energy is compared in the Figures 3.2(c) and 3.2(d). In the frictional case,
the kinetic energy decays to zero and the strain energy attains a fixed value, when the movement
stops. In the frictionless case, the energy is oscilatting in agreement with the diplacement and
the velocity of the spring-mass system. All numerical results meet the physical expectations.

4. DYNAMIC THERMO-MECHANICAL CONTACT PROBLEMS

During frictional contact, energy is dissipated. A portion of this energy generates heat, which
is induced into the participating bodies. In this section, we introduce a model for this physical
process and present a numerical solving algorithm based on the techniques presented in the
previous sections.

4.1. Continuous Problem Formulation. We introduce the continuous formulation of the
model for thermo-mechanical contact. First, we present briefly the linear theory of thermo-
elasticity, which describes the effects of heat on an elastic body. A detailed presentation may be
found in [9]. Then, the coupling of friction and heat is discussed.

The linear elastic model described in Section 2.1 is extended by thermal effects here. The heat
of the body is given by the function 6 € Vj with

Vo ={peL?(I;H' (Q,Tp)) |¢p € L* (;H ' (Q)}.

We assume for notational simplicity that homogeneous Dirichlet boundary conditions hold on
I'p for the heat distribution, too. Possibly nonhomogeneous Neumann boundary conditions
are prescribed on I'c, which are specified by the function ¢ € L? (I L2 (Fc)). Homogeneous
Neumann boundary conditions are assumed on I'yy. The inner heat sources are described by
the function | € L? (I; L? (Q)) The initial temperature is 6, € H' (2,I'p). The specific heat is
given by the constant ¢ and the constant x denotes the conductivity. Thus, the heat equation
reads:



Problem 4.1. Find a function 6 € Vj with §(0) = 6, which fulfills the variational equation

(4.1) (¢B:0) + (590, 9) = (1,¢) + (0, 9)r,
for all p € H' (,Tp) and all t € 1.

The connection between heat and displacement is mainly governed by the coefficient of thermal
expansion «. For a more convenient description, we use the stress-temperature modulus m, which

is given by
alb 3v 1
m=— .
1+v \1-2v

Due to the temperature, thermal stresses, which are modelled by m (6 — ) I, occur in the elastic
body. In the heat equation, an additional internal heat source due to the elastic deformation has
to be included. It is specified by the term méstré(u).

During the frictional contact, energy is disspated. This energy is transfered mostly into heat.

The generated energy is given by
// Gntét (U) dx dt.
1JTe

The heat is transfered into the elastic body, the obstacle and the enviroment. We assume that
a fixed portion of the generated energy enters the elastic body. The proportionality factor is
denoted by Ky € [0,1]. The heat transfer between the obstacle and the rigid foundation in the
contact zone is neglected. The generated heat is included in the heat equation as nonhomogeneous
Neumann boundary conditions on I'¢, i.e.

q = Kwonid (U) .

Together with the formulation of the frictional contact problem in Section 3.1, the strong formu-
lation of the thermo-elastic contact problem is given by

pi—divio(u)+m @ —05)I) =f inQxI
CO — div (kV0) + mbptre(u) =1  inQxIT

u=60 =0 onI'p x1

0
ann(u):% =0 on 'y x T

op(u)—g <0 on g x T
Onn(u) >0 on e x T
Onn (1) (0p(u) —g) =0 on e x I
lone(u)] <s on e x I
lont(u)] <s =6 (u) =0
lone(u)] =s =3EE€R50: 0 (0) =Eone
06
on

if u and @ are sufficiently smooth. The weak formulation reads:

= Kwopds (i) onTe x 1,

Problem 4.2. Find a function (u,0) € K x Vp with «(0) = us, @(0) = vs and 6(0) = 65, such
that

(pii, ¢ — @) + (o(u) +m (0 = 05) Le (& — @)
+i(@)—ja) = (f,¢—1)
<§9, x> + (kVO,VXx) + (mbstré(u), x)
— (Kwontde (@), xX)r, = (LX)
holds for all p € K, all y e Vyand t € I.



4.2. Discretisation. The discretisation of the frictional part of the thermo-elastic contact prob-
lem is carried out as described in Section 3.2. Here, we focus on the discretisation of the heat
part and on the solution of the discrete system.

For the temporal discretisation of the heat equation, we use the Crank-Nicolson scheme, see,
e.g., [16]. The time discretisation of equation (4.1) reads

1
(4.2) = (0" ¢) + gk (VO V)

gk (L) + (1), 0) + 3 (4 (tn) + 4 (1) P -

By introducing the notation

1
Co (wv 90) = (va 80) + §k (va, VSD) ;
1
w (tn—%) = 5 (w (tn) +w (tn—l)) 5
_1 1 _
’LUn 2 = §(w"—|—wn 1),
noo._ n—1

e e A (Y

equation (4.2) simplifies to
1
n _ n - n—1

(4.3) oo (0" 0) = (L") + 5h (V0" V) +k (g (1 3) 0) -

Using equation (4.3) and Problem 3.2, we can state the time discrete version of Problem 4.2:

Problem 4.3. Find (u, Ay, A¢,0) with u® = u,, 10 = vy, a = a,, and 0° = 6, such that the
function (u™, A\, A\, 0™) € V™ x A7 x AP x V' is the solution of the system

A\

(4.4) c(u, 0", 0) + (An, 0n (0)) + (A, 00 (9)) = (F™,9)
49 A =g+ (A G - ) < o
non _K_W n_%v”_%
Co (9 y Uy X) A <)‘t t ’ X> I
(4.6) —%k(mw"“l,vx) = (L"x),

for all ¢ € V", all u, € A7, all py € AP, all x € V', and all n € {1,2,...,N}. The approxima-
tions v™ and a™ are calculated on the basis of the equations (2.1) and (2.2).

Here, the bilinear forms ¢ and ¢y are defined by
1
c(wx,0) = (pw, ) + 5k (o(w) +m (x = 0:) L, e(¢))

1 1
Co (w7 X5 SO) = (Cw7 SD) + ik (va7 VSO) + ik (m@stre(x), SO) .

_1
The term v? 2 is given by

1
v 2= 1 (8¢ (u™) — 1) + 6 (v"71).
2k

In many cases, the heat induced by the elastic deformation may be neglected, which simplifies
the calculation significantly. The discretisation in space of Problem 4.3 leads to a coupled system,
which is solved by a fixpoint method. The fixpoint approach is presented in Algorithm 1. The
frictional subproblem in the fourth step of Algorithm 1 is solved with the techniques presented
in [5].



Algorithm 1 Fixpoint method for solving the system (4.4)-(4.6)

(1) Assemble all matrices and all vectors with constant values
Set ug ), = u’g_l and 67, = 92_1
Forv=1,2,3,... do

Solve the system (4.4)-(4.5) with 67", ,
Assemble the vector qi'y, using A, g and vl

(2)
(3)
(4)
(5)
(6) Solve the equation (4.6) with ujy, and g;',
(7)
(8)
(9)

If ‘ uZh — “?—1,11“ + ‘
Go to (4)
Set up = v, and 0y = 03,1 and stop

07 — zn—l,hH < tol then go to (9)

——————

(a) n=10 (b) n =100

Cells heat

——————

(c) n =500 (d) n = 1000

(e) n = 2000 (f) n = 2500

FIGURE 4.1. Heat distribution in the spring-mass system with Coulomb friction
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FIGURE 4.2. Displacement, velocity, energy and temperature for the spring-mass
system with Coulomb friction under consideration of thermal effects

4.3. Numerical Example. We examine the same examples as in Section 3.3. In addition, we
have to specify the problem data for the heat part. The start temperature 6, is selected as zero.
Homogeneous Dirichlet boundary values are assumed on I'p. On 99\ (I'p UT'¢), homogeneous
Neumann boundary conditions are selected. Nonhomogeneous Neumann boundary conditions,
which depend on the friction force and on the tangential velocity, are given from the described

model on I'c. The specific heat of the spring is ¢ = 1073 2 and the conductivity is £ =
1072 l;%f{n For the mass, we assume ¢ = 1074 o and Kk = 1073 1;%:;(“ In all heat coupled

calculations, we select Ky = 1.5%. The coefficient of thermal expansion is @ = 5- 1078 K 1.
The tolerance of the outer fixpoint iteration is selected as 10~7. In this example, 10— 20 iterations
are needed to reach the desired tolerance. In Figure 4.1, the heat distribution is presented for
different time steps. The maximal temperature is located in the edges of the mass. The maximum
moves from the right to the left and back, when the velocity reverses. In Figure 4.2(d), the trend
of the temperature over the time interval in the point A is displayed. The temperature is
maximal, when the velocity attains is maximum or minimum. This has been expected from the
definition of the coupling between friction and temperature. In Figure 4.2(a), the displacement
with heat coupling is compared with the displacement without heat coupling. In the case with
heat coupling, the amplitude of the displacement decays faster, since the expansion of the mass
due to the heating increases the normal force on the surface. The same effect is seen in Figure
4.2(b) and (c), where the velocity and the total energy is compared.

5. ROLLING CONTACT

The inclusion of rotational effects in dynamic contact problems is a difficult task, because the
describtion of the contact geometry has to consider the rotation. Especially, if a finer mesh in
the contact zone is used, the mesh has to be changed accordingly to the rotational speed. One
possibility to overcome this difficulties is to use an ALE ansatz. There, three different configura-
tions are distinguished: the reference configuration, the deformed configuration, and an arbitrary
configuration. The reference configuration corresponds to the undeformed body. The arbitrary



(a) Spindle grinding wheel system (b) Workpiece

FiGURE 5.1. Geometry of the spindle grinding wheel system and of the workpiece

configuration can be specified accordingly to the desired properties of the calculation. A math-
ematical description of the ALE ansatz would go beyond the scope of this article. Therefor, we
give only a general overview and refer for a detailed presentation to [22|. In our calculations,
the arbitrary configuration corresponds to the reference configuration, but it rotates with the
negative rotational speed of the body. This leads to a fixed configuration for the contact de-
scription. Thus, all algorithms presented in this arcticle can be used. Furthermore, the mesh
can be be refined in the contact zone and no further changes of the mesh due to the rotation are
necessary. The price, we have to pay for the freedom to choose the configuration, is the transport
of information, which has to be calculated. We use interpolation for realizing the transport of
information. If the rotational speed is constant throughout the calculation, the interpolation
can be expressed by matrix vector multiplication, where the matrix does not change during the
calculation. The advantage is the small computational effort to realize the interpolation. On the
other hand, stability problems can arise under some circumstances.

The ALE ansatz is now illustrated by an example from production engineering. We consider
the NC-shape grinding process of free formed surfaces with a toroid grinding wheel. As a sub-
problem in the simulation of the whole grinding process, dynamic thermo-mechanical problems
with damping arise. A detailed survey of the engineering process and the simulation approach is
given in [28]. The approach is extended here by considering frictional and thermo-elastic effects.
The grinding wheel and the spindle are explicitly included in the finite element analysis. The
stiffness of the other parts of the grinding machine are concentrated in elastic bearings. The
geometry of the spindle grinding wheel system is depicted in Figure 5.1(a). The length of the
spindle is 658 mm, the radius of the grinding wheel is 100 mm, and the radius of the torus is
4.2mm. This values show the different length scales, which occur in this problem. In particular,
the depth of cut is in the range of 0.05mm to 0.5mm. The mesh is adaptively refined in the
possible contact zone in order to ensure a reasonable resolution of the contact conditions. The
mesh, which consists of 27984 cells, is shown in Figure 5.1(a). The problem comprises 88116
unknowns for the elastic part and 29372 unknowns for the heat part, 188 degrees of freedom
for the contact and the frictional Lagrange multiplier are created respectively. Homogeneous
Dirichlet boundary conditions are assumed on the surface of the bearings. Furthermore, all ini-
tial functions are chosen as zero. The modulus of elasticity for the spindle and for the grinding
wheel receiver is chosen as By = 2.1-10!! mkaQ, for the grinding wheel Fy = 2.1-10'3 %, and for

the bearings F3 = 10° HIEQ are chosen. The other material parameters are constant throughout

the domain and are: v = 0.29, p = 7.85 dk%, a=108-10"K! k=167 1;5';?, ¢ =450 %,
aq = 0.075, and by = 0. The coefficient of friction is chosen as 7 = 0.3 and the heat distribution
coefficient as Ky = 5%. The rotational speed of the grinding wheel is w = 1707 s~1. We select
T = 0.02s and k = 1075s. The geometry of the workpiece, which has a sinusoidal profile, is
presented in Figure 5.1(b), where the vertical and horizontal infeed is chosen as 0.5mm. The
tolerance of the outer fixpoint iteration is chosen as 10~® and of the inner iteration as 10719,
In Figure 5.2, the displacement in the center of the grinding wheel orthogonal to the plane,

in which the workpiece lies, is shown. The sinusoidal profile of the workpiece is carried over to
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FIGURE 5.2. Displacement in the center of the grinding wheel orthogonal to the
workpiece-plane

the displacement of the grinding wheel, as expected. The heat distribution in the contact zone
between grinding wheel and workpiece is depicted in Figure 5.3 for different time steps. The
effects of the rotation are clear to see. The heat diffuses mainly in the direction of the rotation.
Furthermore, the location of the highest temperature moves accordingly to the contact zone.
The value of the temperature depends on the tangential stresses and consequently on the normal
stresses due to the friction law. This dependence is observed in the heat distribution, e.g., in the
middle of the calculation, where the temperature is close to zero, because the grinding wheel is
moving down free.

6. CONCLUSIONS AND OUTLOOK

In this article, the approach for solving static frictional contact problems, which has been
presented in [5], has been extended to the dynamic case. We have shown, how the discretisation
of dynamic contact problems by Rothe’s method leads to semi discrete problems, which have
the same structure as static contact problems. Consequently, the same solution techniques are
applied successfully. Thermal and rotational effects, which lead to sub-problems of known type,
can be considered, too.

The presented discretisation approach is also suited for a posteriori error estimation and
adaptive mesh refinement. In [3, 7, 8|, results for dynamic Signorini and obstacle problems have
been presented. Similar results for the frictional case and for thermo-mechanical problems are
being developed.

In the third part of this series of articles [6], static and dynamic two body contact problems
with friction are considered. It is shown there, how similar solution techniques can be used to
solve two body contact problems, approximately.
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