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Abstract. In this paper, we study mixed variational �nite element
methods for the unilateral problems arising in contact mechanics.The
presented discrete spaces can handle the case of non matching meshes
in the contact area. We �rst state the static problem and then extend
it to the frictional contact case, and end with the dynamic frictional
problem.

1. Introduction

The third part of the article focuses on the unilateral contact between two
elastic bodies. The problem is of interest in engineering applications if, for
example, the interaction of a machine with a workpiece is regarded. The
problems arising from applications often require to work with non matching
meshes on the possible contact zone. There are several technics to cope with
the arising problems like for example the mortar method [1],[8] or stabiliza-
tion technics [7]. The main idea is to formulate the problem as a saddlepoint
problem, which allows to handle the contact restraint in an integral form.
The discretisation technics di�er in the de�nition of the used lagrange mul-
tiplier space. For the contact with a rigid obstacle in [6] piecewise constant
functions an a coarser grid are chosen. This approach has been extended for
the unilateral contact problem by [11] for the frictionless two dimensional
case. For the mortar method there are various publications for the unilat-
eral contact and it's dynamical extention with friction , see [9]. We focus on
the approach with piecewise constant functions for the lagrange multiplier,
that is used for example in[11],[3] and show it's extension to fricional contact
and dynamic contact. The approach has the advantage, that there are no
restrictions to the possible contact zone as in the mortar method. We will
�t the unilateral contact problem into the abstract framework given in part
one in order to apply the solution technics explained there and extend the
dynamic methods of part two to the unilateral problem.
The paper is organised as follows. We will �rst state the static problem and
the discretisation technic and then show the extensions to frictional contact
and dynamic contact. In contrast to the contact problem with a rigid obsta-
cle examined in the �rst parts the constraints di�er because now two domains
have to be taken into account. However, we will see that the problem is of
the same kind as the problems in part one and two so that the same solving
technics can be applied.

1
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2. notation

Let the to bodies be described by the domains Ωl ∈ Rd with l = 1, 2 and
d = 2, 3. The boundary ∂Ωl of the domains is divided in three parts denoted
by Γl

D,Γ
l
N ,Γ

l
C which are assumed to be disjunct and to have positive mea-

sures. We assume dirichlet boundary data on Γl
D and neumann data on Γl

N .

The boundary Γl
C stands for the possible contact surface.

We use a linear elastic material model with small deformations. The lin-
earized strain operator is given by ε(ul) := 1

2

(
∇ul +∇(ul)T

)
, where ∇ul

is the gradient of the displacement ul. Let nl(x) be the outer normal vec-
tor of x ∈ ∂Ωl. The stress operator of linear elasticity, which is de�ned
by the modulus of elasticity El and by Poisson's number νl, is σ(ul). The
displacement on the boundary in normal direction is given by δn(ul) and
σn(ul) = σ(ul) · nl · nl is the stress in normal direction on the boundary. We
de�ne the tangential contact stress by σt(ul) = σ(ul) · nl − σn(ul) · nl, see
[10] for details.
The displacements are assumed to posess weak derivatives in (L2(Ωl))d and
thus are in the Sobolev spaces H1(Ωl) := (H1(Ωl))d.
The subspaces

H1
D(Ωl) =

{
v | v ∈ H1(Ωl), v |Γl

D
= 0

}
are used to apply homogeneous dirichlet boundaries and we set H1

D :=
H1

D(Ω1)×H1
D(Ω2).

Scalar products are written in the form (·, ·)2,Ωl := (·, ·)(L2(Ωl))d and (·, ·)1,Ωl :=
(·, ·)H1(Ωl) with the induced norms

‖v‖2
2,Ωl = (v, v)2,Ωl and ‖v‖2

1,Ωl = (v, v)1,Ωl .

The norm for H1
D is given through

|||u|||2 :=
∥∥u1

∥∥2

1,Ω1 +
∥∥u2

∥∥2

1,Ω2 ,

where u := (u1, u2).
Following the common notation we denote the trace space on Γl

C ⊂ ∂Ωl of

H1(Ωl) as H
1
2 (Γl

C) and dual by H− 1
2 (Γl

C), see [10].
We de�ne the norm for functions λ ∈ H1/2(ΓC) by:

||λ||1/2 = inf{‖u‖1,Ωl | u ∈ H1
D(Ω1) and γn(u) = λ}

and the norm of its dual space is given by

||µ||−1/2 = sup
v∈H1

D(Ωl)

< µ, γn(v) >− 1
2
, 1
2

||v||1,Ωi

,

where < ·, · >− 1
2
, 1
2
is the dual pairing between (H−1/2)(ΓC) and H1/2)(ΓC).

If the two domains are in contact in the reference con�guration then there
exists a common contact boundary ΓC with ΓC = Γ1

C ∩ Γ2
C and the contact

conditions can be directly applied on this part of the boundary: At the con-
tact interface the two bodies may come into contact but must not penetrate
each other which leads to the non-penetration condition

[u · n] (x) = u1(x) · n1(x) + u2(x) · n2(x) ≤ 0.
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Note that for x ∈ ΓC there holds n1(x) = −n2(x).
If the two bodies are not in contact we assume a bijective mapping Φ : Γ1

C →
Γ2

C between the two possible contact surfaces to be given. Further we de�ne

nΦ =

{
Φ(x)−x
|Φ(x)−x| , if x 6= Φ(x)

n1(x) = −n2(x), if x = Φ(x)

as the normal vector in the contact area. The non-penetration condition for
x ∈ Γ1

C then reads as:

[u · n]Φ (x) = u1(x) · nΦ(x)− u2(Φ(x)) · nΦ(x) ≤ g.

Here g de�nes the gap function and is given via Φ by:

Γ1
C 3 x→ g(x) = |x− Φ(x)| ∈ R.

Under certain assumptions on Φ and on the geometry of the deformed con�g-
uration the above de�ned non-penetration condition is a close approximation
of the geometrical non-penetration condition, see [5]. We will call [u · n]Φ
the jump of the displacements.

3. Static contact

This chapter examines the static frictionless contact problem and its dis-
cretisation.

3.1. continuous formulation. With the notation given in chapter one we
are able to state the static unilateral contact problem. As we use the problem
with an initial gap all contact conditions are expressed on the boundary Γ1

C .
The strong formulation is given by

Problem 3.1. The strong formulation of the problem is given by: Find u
with

−div σ(ul) = f l in Ωl

ul = 0 on Γl
D,

σ(ul)nl = pl on Γl
N ,

σt(ul) = 0
σnΦ(u1) = −Φ∗σnΦ(u2) ≤ 0

[u · n]Φ ≤ g on Γl
C

σnΦ(u) · ([u · n]Φ − g) = 0

In this paper we de�ne the multiplier on Γ1
C , the choice is of course arbi-

trary. We will skip the domain index and simply write ΓC if we refer to the
contact conditions.
The strong problem can be formulated as a mixed variational problem where
the contact condition is satis�ed in a weak sense, see e.g. [6]. In the mixed
formulation the Lagrange multiplier can be interpreted as the normal force
in the contact area. Therefore we de�ne the bilinear form a(·, ·) as

(3.1) a(v, w) =
∑

k=1,2

∫
Ωl

σ(vl) : ε(wl) dx, v, w ∈ H1
D
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The weak contact condition is now de�ned by:

(3.2) b(λ, u) =< λ, [u · n]Φ >− 1
2
, 1
2
.

With this notation the mixed formulation of problem 3.1 is given by

Problem 3.2. Find (u, λ) ∈ H1
D ×H

− 1
2

+ (ΓC) with

a(u, v) + b(λ, v) = (f, v) ∀v ∈ H1
D

b(µ− λ, u) ≤ < µ− λ, g >− 1
2
, 1
2

∀µ ∈ H− 1
2

+ (ΓC)

The existence and uniqueness of this problem is given, see e.g. [6]. The
problem has the form that is required for the framework of part one.

3.2. discrete spaces. The choice of the discrete spaces is important for the
stability of the discrete problem; the stability argument can be found in [2].
We recall the discrete spaces de�ned in part 1:
We assume a �nite element mesh T l

h consisting of rectangles in 2d and hex-

adrals in 3d with a meshwidth hl on each domain Ωl. On the contact bound-
ary a �nite element mesh TC,H consisting of lines or rectangles with a mesh-
width H is given.
Let Ψl

T : [−1, 1]d → T ∈ T l
h ,ΨC,TC

: [−1, 1]d−1 → TC ∈ TC,H be bijective and

su�ciently smooth transformations and let pl
T , pC,TC

∈ N be degree distri-

butions on T l
h and TC,H , respectively. Using the polynomial tensor product

space Sq
k of order q on the reference element [−1, 1]d, we de�ne

Sp
l (T l

h) := {v ∈ H1
D(Ωl) | ∀T ∈ T l

h : v|T ◦Ψl
T ∈ SpT

k }.

With this de�nition the space for the displacements in Ωl is given by:

(3.3) V pl
hl

:= {u ∈ H1(Ωl) | ui
|Th

∈ Sp
l (T l

h)}.

For ease of notation we set V p
h := V p1

h1
× V p2

h2
.For the Lagrange multiplier we

have :

(3.4) MpC
H := {ν ∈ L2(ΓC) | ∀TC ∈ TC,H : ν|T ◦ΨC,TC

∈ SpC,TC
k−1 }

In this paper we restrict ourself to Vhl
:= V 1

hl
and MH := M0

H , that means

piecewise (bi-)linear for the displacements and piecewise constant for the
Lagrange multiplier. For higher order discrete spaces the technic stays the
same, some results are shown in [2].
For the given set of discrete spaces the problem reads:

Problem 3.3. Find (uh, λH) ∈ Vh ×MH

a(uh, vh) + b(λH , vh) = fext(vh) vh ∈ Vh

b(νH − λH , uh) ≤ g νH ∈M+
H ,

where M+
H is given by M+

H = {ν ∈MH | ν ≥ 0}.
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We have in Matrix notation:(
A1 0
0 A2

)
·
(
u1

u2

)
+

(
B1

B2

)
λ =

(
f1

f2

)
(
BT

1 BT
2

) (
u1

u2

)
≤ g,

where Al is the sti�ness matrix of Ωl and the constraint matrix is de�ned
via Bij :=

∫
ΓC
ψi(ϕj ·nΦ)dΓ. The basis functions of the multiplier space are

given by ψi ∈ MH . The basis functions of V l
h are given by ϕl

k, 1 ≤ k ≤ N l,
for the constraint matrix we set:

ϕj(x) · nΦ(x) :=
{

ϕ1
n(x) · nΦ(x) for j ≤ N1

ϕ2
m(Φ(x)) · nΦ(x) for j > N1 .

Finally the entries of the gap vector are given by gi :=
∫
g · ψidΓ

remark 1:

The problem can be solved by applying the Schur Complement technic ex-
plained in part 1. The blockstructure can be used for solving the inner
problem parallel.
remark 2:

If we only regard the upper part of the block structure we have the contact
problem with a rigid obstacle.

3.3. Numerical examples. example 1: We consider a hertz contact prob-
lem: A circular disc is being pressed against a plane by a point force on it's
top pole. For this example the contact forces p can be computed analytically
by:

p(x) =
2 · f
π · b2

√
(b2 − x2), b ≤ x, b =

√
f · r · (1− ν2)

E · π
Here b is the half width of the contact surface and x is the distance from
the center of the contact surface which is at the lower pole of the disc. As
material constants for the circle we set E = 7000 and ν = 0.3 and replace
the plane by a rectangular linear elastic body with zero Dirichlet boundary
conditions on the bottom. To contain the properties of the original problem
we use larger Young's modulus on the rectangle than on the disc. We set
E = 1010and ν = 0.45. In order to avoid a strong irregularity on the upper
pole we replace the point force by a surface force. In picture 3.1 (right) the
deformed bodies with the von Mises stress are shown.and on the left the
analytical contact forces against the lagrange multiplier of our solution is
plotted, thus showing a good approximation.
example 2: As a second example we show an application from mechanical

engineering simulating a grinding process. Here the machine work piece in-
teraction is simulated by the contact problem. The grinding tool has homoge-
nous Dirichlet boundary conditions at the end of it's shank. The workpiece
is clamped at it's bottom, thus introducing Dirichlet boundary conditions.
The depth of cut is given by40µm which results in a local overlapping of the
domains. The grinding tool has a diameter of 12 mm.
We see the initial situation in 3.2 on the left and the deformation in x-



englishON SOLVING FRICTIONAL CONTACT PROBLEMS PART III: UNILATERAL CONTACT6

Figure 3.1. problem setting / von Mises stress

Figure 3.2. problem setting at start/ displacement in x-
direction / displacement in z-direction

direction and z-direction in the middle and on the left. As the displace-
ment of the shank wich is mainly in z-direction induces a displacement in
x-direction the resulting contact areas between work piece and grinding tool
di�er from the results of a rigid obstacle simulation. Thus the simulation
becomes more accurate.
The resulting von mises stresses of the contact situation and the are shown
in �gure 3.3(left and middle). The contact stress which is given via the
Lagrange multiplier is plotted on the right.

Figure 3.3. von Mises stress on grinding tool (left), on work
piece (middle) and contact forces

4. static frictional contact

The extension to frictional contact can be done by the abstract framework
described in part one. There is a di�erence though: As now there are two
bodies to be considered, the frictional condition now depends on the con-
tact situation of the two domains. In this chapter we will �rst discuss the
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frictional condition, then state the problem formulation. After that we will
show an example.

4.1. Continuous formulation and discretisation. For frictional contact
we will use Tresca's law which states:

Frictional conditions are modelled by assuming that there is no sliding
when the magnitude of the tangential forces are below a critical value given
by a function s. If the tangential forces reach this critical value, sliding is
obtained in a direction of the tangential forces.

In Coulomb friction the function s is set to the magnitude of the normal
forces times a friction coe�cient. To solve this, the problem is put into a
�xed point scheme. For solving technics we refer to part one.

To state the problem we need to focus on the tangential forces and for-
mulate the interacting of the two bodies. That means we need to �nd the
e�ective tangential force by summing up the forces of the two domains.
Therefore we make again use of the mapping φ and gain a condition which
is similar to the contact condition (number).

With γt : H1(Ωl)d → H1(Γl
C)d−1 we denote γt(ul) the displacement of

ul in tangential direction for each domain, where σnt(ul) are the tangential
stresses of ul. To state the problem we need an extension to the de�nition
of the normal vector de�ned in section 1. We will split every x ∈ Γ1

C into
it's normal and tangential part arccording to {nφ(x), tΦ(x)}, see also part
one (?!). The resulting tangential stress for the frictional contact is given
by σntΦ(u1) = −σntΦ(u2). The e�ective tangential diplacements are given
by γteff

(u) = γtΦ(u1)− γtΦ(u2), where γtΦ is the mapping on the tangential
trace space via Φ, as described for the normal mapping.
The strong formulation of the frictional contact problem reads as:

Problem 4.1. Find u = (u1, u2) with

−div σ(ul) = f l in Ωl

ul = 0 on Γl
D,

σ(ul)nl = pl on Γl
N ,

and

σnΦ ≤ 0 on Γ1
C

[un]Φ ≤ g on Γ1
C

σntΦ(u) · ([un]Φ − g) = 0 on Γ1
C

|σntΦ(u)| ≤ s on Γ1
C

|σntΦ(u)| < s ⇒ γteff
(u) = 0 on Γ1

C

|σntΦ(u)| = s ⇒ ∃ζ ∈ R≥0 : γteff
(u) = −ζσteff

(u) on Γ1
C.

Now, with this de�nition of γteff
we can directly apply the methods of part

one for frictional problems and we gain the variational inequality

a(u, v − u) +
∫

Γ1
C

s
(∣∣γteff

(v)
∣∣− ∣∣γteff

(u)
∣∣) dΓ ≥

(f, v − u) + (p, v − u)ΓN
.
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Figure 4.1. problem setting / von Mises stress

for all v ∈ K.
We de�ne the functional j : V → R by j(v) =

(
s,

∣∣γteff
(v)

∣∣)
0,Γ1

C

, and set

Λt :=
{
µt ∈

(
L2

(
Γ1

C

))d−1 | |µt| ≤ s
}
.

Following part one we de�ne the saddle point problem for frictional contact
as:

Problem 4.2. Find(u, λn, λt) with

∀v ∈ H1
D :

a(u, v) + bn(λn, v) + bt(λt, v) = fext(v)
∀ (µn, µt) ∈ Λn × Λt :

bn(µn − λn, u) + bt(µt − λt, u)− g(µn) ≤ 0 .

where the bilinear form bnis given by bn := b as de�ned in section 2 and
the bilinear form bt is de�ned via

bt(µ, v) :=
(
µ, γteff

(v)
)
0,Γ1

C

.

4.2. Numerical example: As a numerical example we take two three di-
mensional blocks that are in contact in reference con�guration and are de-
formed by opposing surface forces in z-direction. On domain one an addi-
tional force in y-direction is set, as shown in �gure 4.1 (left). On the right
side of �gure 4.1 the deformed blocks in z-direction are shown.
Of more interest are the contact forces represented by λn and the tangetial
forces λtthat show the stick and slip part of the contact zone.illustrated in
�gure 4.2

5. dynamic contact problem

In section two and three we demonstrated how the bilateral contact prob-
lem can be solved via the ideas of part one. For the dynamical contact
problem we use the ideas of part two. The bilateral dynamic contact prob-
lem di�ers from the dynamic rigid contact problem in the de�nition of the
contact constraint. However the structure of the problem remains the same,
so we can apply the time discretisation technics of part two. We will start
with the problem de�nition by the strong and weak formulation. For details
of the time discretisation technics we refer to part two.
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Figure 4.2. normal (left) and tangential (right) stress

5.1. problem formulation. For the dynamic frictional problem we de�ne
a time interval I := {0, T} and search for a solution u ∈ H1

D × I for which
holds the strong formulation:

Problem 5.1. Find u ∈ H1
D × I with

ρlül − div(σ(ul)) = f l in Ωl × I

ul = 0 on Γl
D,

σ(ul)nl = pl on Γl
N ,

and

σnΦ ≤ 0 on Γ1
C

[un]Φ ≤ g on Γ1
C

σntΦ(u) · ([un]Φ − g) = 0 on Γ1
C

|σntΦ(u)| ≤ s on Γ1
C

|σntΦ(u)| < s ⇒ γteff
(u̇) = 0 on Γ1

C

|σntΦ(u)| = s ⇒ ∃ζ ∈ R≥0 : γteff
(u̇) = −ζσnt(u) on Γ1

C.

Here the �rst time derivative is denoted with a dot and the second time
derivative with two dots and ρl is the density of the domain Ωl. Like de-
scribed in part two we use a Rothe's method by �rst dicretising in time via
a Newmark scheme and solving the spatial problems by low order galerkin
methods. This leads to the following quasi static problem which has to be
solved for every time step.

Problem 5.2. Find (u, λn, λt) with u0 = us, v
0 = vs and a

0 = as, such that
(un, λn

n, λt) ∈ V n × Λn
n × Λn

t is the solution of the system

c (un, ϕ) + bn(λn
n, ϕ) + bt(λn

t , ϕ) = (Fn, ϕ)
〈µn − λn

n, [u · n]− gn〉

+
〈
µt − λn

t ,
1
k

(
γteff

(un)− rn
)〉

≤ 0.

The bilinear form c(·, ·), the exterior forces Fn and the function rn depend
on the used time stepping scheme. For the newmark scheme which is used
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in the following example we have according to part 2:

rn := γteff
(un−1 − 1

2
k2an−1)

= γtΦ(u1,n−1 − 1
2
k2a1,n−1)− γtΦ(u2,n−1 − 1

2
k2a2,n−1),

with the de�nition of γteff
from section 3.For the discrete quasi static prob-

lems we use the same spaces as used in the static case. Following Part 2 we
get the saddlepoint problem in Rm:

Problem 5.3. Find (ū, λ̄) ∈ Rm × Rm̃ with:

Aūn +Bnλ̄
n
n +Btλ̄

n
t = F̄n(

µ̄n − λ̄n
n

)T (
BT

n ū
n − ḡn

)
+

1
k

(
µ̄t − λ̄n

t

)T (
BT

t ū
n − r̄n

)
≤ 0,

which must hold for all µ̄n ∈ Rm̃
≤0 and all µ̄t ∈ Rm̄

≤0. Here, A := M+ 1
2k

2K

is the generalised sti�ness matrix, M ∈ Rm×m is the mass matrix and
Kn ∈ Rm×m is the sti�ness matrix. The matrix Bn ∈ Rm×m̃ represents
the the contact conditions and the matrix Bt ∈ Rm×m̄ the friction condi-
tions, respectively.. Of course the matricesM,K,Bn, Bt have the same block
structure as explained in section 2.

Though the quasistatic problem depends on the used time stepping method
the structure of problem remains the same. We see that problem 5.2 �ts into
the abstract framework, so the solution technics can be applied.
remark1:For the twobody contact problem there is often need for stabiliza-
tion because the nonpenetration condition may lead to arti�cial oscillations,
see [4], [8]. These stabilization technics do not change the quasistatic prob-
lem so they can be incorporated into the presented schemes.
remark 2:For the frictionless dynamic contact all parts in the above sceme
that include the tangential multiplier λt can be dropped.

5.2. numerical example. As a numerical example we use a contact be-
tween 2 blocks in 2d where sliding occurs. First we show the frictionless
contact then then the contact under coulomb's law of friction.
For an analysis The initial situation is shown in picture 5.1. The up-

per block is given by Ω1 = [4.1, 12.1] × [0, 8], with a circular bottom which
is de�ned by r = 80,m = (8.1, 80) , the second block is de�ned asΩ2 =
[2, 12] × [−5,−0.02]. The bottom part of the second block has restrictions
in y-direction, thus allowing only movement in x-direction.
Both blocks are given an initial velocity v1 = (0.2,−0.1) for the �rst and
v2 = (−0.1, 0) for the second. The vertical part of v1 leads to a con-
tact.situation which is illustrated in 5.1(right). The contact situation shown
in 5.1(middle) results from frictionless contact.
The time intervall I is given by [0.2], the material parametrs are E = 500,ν =
0.3 and the densities on domain 1 and 2� are ρ1 = 1, ρ2. In �gure 5.2 we
illustrate the energy of the frictionless case. As expected the overall energy
is conserved. The contact stressover time, which is represented by the la-
grangemultiplier is shown on the right.Here we use the the total stress given
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(a) initial situation

(b) contact situation at T=0.52 (c) contact situation at T=0.52

Figure 5.1. Dynamic Contact, initial condi-
tion(left),frictionless contact situation(middle),frictional
contact situation(right)

(a) energy for s = 0 (b) contact stress
T=0.52

Figure 5.2. energy diagram (left) and contact stress (right)
for s = 0

by λtot =
∫
ΓC
λdΓC .

In �gure 5.3 we illustrate the energy of the frictional case (with s = 0.5).
We see the decline of the total energy due to the frictional contact . The
contact stres sover time, which is represented by the lagrangemultiplier is
shown on the right. The total stress over time for s = 0.5 seems to corre-
spond to the frictionless case s = 0. However, the contact forces di�er which
is illustrated in 5.4. Here we see the Lagrange multiplier at T = 0.52 for the
frictionless and the frictional contact. On the right the tangential stress is
illustrated.
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(a) energy for s = 0.5 (b) contact stress
T=0.52

Figure 5.3. energy diagram (left) and contact stress (right)
for s = 0.5

(a) normal stress for s = 0

(b) normal stress for s = 0.5 (c) tangential stress for s = 0.5

Figure 5.4. normal and tangential stress at T = 0.52
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