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Abstract

Complementary to a recent experimental study on local generation and propagation of Görtler vor-

tices, direct numerical simulations of wind-tunnel experiments were performed to study stability charac-

teristics of laminar subsonic flows of viscous incompressible fluids. This report describes various compu-

tational aspects and numerical methods implemented the finite element software package FEATFLOW

which was used to solve the incompressible Navier-Stokes equations in this project.

1 Introduction

There is an urgent need for efficient and handy software for three-dimensional numerical simulation of

experiments on stability of laminar subsonic shear flows in low-turbulence wind tunnels. Such a software

would significantly more accurately assess the adequacy of the experimental data and a design of new

fundamental experiments. It would also facilitate the development and verification of various simplified

numerical models developed for parametric computations, bridging experimental data, and comparison

of effects observed in the experiments with the theoretical results.

However, widespread universal commercial packages designed for simulation of non-stationary flows

cannot be used for these purposes directly, because they are not intended for sufficiently precise simula-

tion of evolution of small (in amplitude and extent) flow disturbances. The corresponding extensions of

the packages seem only possible if their codes are open-access.

In 2016, a new project aimed at the development and implementation of advanced numerical methods

for three-dimensional simulation of wind-tunnel experiments on the stability of laminar shear flows

using the open-source FEATFLOW package (http://www.featflow.de/en/index.html) was launched in

the framework of cooperation between the Keldysh Institute of Applied Mathematics of the Russian

Academy of Sciences, the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian

Branch of the Russian Academy of Sciences, and the Faculty of Mathematics of the TU Dortmund

University. To this end, a recent fundamental experiment on excitation of Görtler vortices in a boundary

layer over a slightly concave surface by small localized periodic controlled disturbances was chosen [1, 2].

A numerical simulation of the experiment was performed previously using an original simplified linear

model based on parabolic equations for generation and propagation of the disturbances. This model

was quite adequate for analysis of experimentally observed receptivity of the boundary layer to local

nonuniformities of the surface in generating the Görtler vortices and allowed to build a new theory

of receptivity based on the so-called optimal disturbances [3]. However, this model did not allow to

compute the streamwise component of the disturbance velocity at certain values of parameters under

study with a good accuracy, the reasons of this discrepancy still being unknown.

The second and third sections of this report briefly describe the above mentioned wind-tunnel ex-

periment and the simplified numerical model with a focus on discrepancy of their results. The fourth

section contains a brief overview of the features of the FEATFLOW package, and discusses problems
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encountered when using it for three-dimensional simulation of the experiment as well as their possible

solutions. Preliminary results given in this section indicate that the FEATFLOW package in the current

state is a good starting point to simulate the experiment [1, 2] and apparently other similar experiments,

but to reach this goal it requires some additional features, as summarized in the conclusion.

Thus, this report outlines and substantiates the intention to establish a branch of the FEATFLOW

package designed for the 3D numerical simulation of experiments on stability of laminar subsonic shear

flows in low-turbulence wind tunnels.

2 Wind-tunnel experiment

Görtler instability occurs in a wide range of flow velocities in boundary layers on concave surfaces

under the influence of centrifugal force caused by the surface curvature [4]. This instability leads to a

formation of streamwise vortices growing downstream, to a dramatic change of heat transfer and skin

friction, and to an earlier laminar-turbulent transition, as well as results in other changes in the flow,

which are significant in applications. Thus, the problem of excitation and propagation of stationary

and non-stationary Görtler vortices is actual for aerodynamic facilities and aircrafts with concave flow-

exposed surfaces such as air engine intakes, turbomachine blades, flaps, slats, etc.

Görtler instability has been investigated experimentally, theoretically and numerically for a long

time (see reviews in [5–8]). However, the growth of the Görtler vortices predicted by the linear theory of

hydrodynamic stability has been observed in a wind-tunnel experiment only recently [5, 9]. A reason for

the apparent discrepancy was associated with non-linear effects as the variations of streamwise velocity

caused by the vortices were sufficiently large in the experiments (often about 10% of the free-stream

velocity, as in [10]). Another reason is related to the so-called transient growth of disturbances in the

near-field region of a source of the vortices.

2.1 Experimental setup

The first accurate experimental study of excitation of stationary and non-stationary Görtler vortices

by surface nonuniformities localized in the streamwise direction (roughness and vibrations) have only

been performed relatively recently [1, 2]. The measurements were carried out in the low-turbulence wind

tunnel T–324 of ITAM SB RAS at free-stream velocity 𝑈e = 9.18 m/s, air density 𝜌 = 1.214 kg/m3 and

dynamic viscosity 𝜇 = 1.85 · 10−5 Pa · c. The free-stream turbulence level in the working part of the

wind tunnel did not exceed 0.02% in the frequency range above 1 Hz.

Figure 1 shows the experimental setup in the working part of the wind-tunnel (1 ). The boundary

layer under study was created on the concave acrylic plate (2 ), which is 996 mm wide, 2372 mm long,

8 mm thick and has the radius of curvature 𝑅 = 8370 mm. To install a disturbance source, the plate is

equipped with an insert (3 ), which is 14 mm long and 157 mm wide. The insert is located 290.3 mm

downstream from the leading edge in the central part of the plate. The constant radius of curvature
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Figure 1: Experimental setup [2]: wall of working part of the wind-tunnel (1 ); concave plate (2 ); the

insert for disturbance sources (3 ); adjustable wall bump (4 ); rigid frame made of fixed-radius ribs

(5 ); supports (6 ); hot-wire probe with traversing mechanism (7 ); traversing mechanism handle (8 );

flow-blockage adjuster (9 ).

was ensured by a rigid skeleton of a set of bow-shaped dural ribs (5 ), to which the plate was attached

thoroughly. The leading edge consists of a circle sector of 6 mm in diameter on the test side smoothly

connected to a straight part of 20 mm length on the opposite side of the plate. A required streamwise

pressure gradient over the test side of the plates in the region of measurements was achieved by the

adjustable wall bump (4 ). The bump and the test plate were located in respect to the wind-tunnel walls

in a way to ensure an attached flow near the leading edge of the plate. An additional control over the

position of stagnation line was provided by a flow blockage adjuster (a transverse beam downstream of

the plate) (9 ). In general, these prerequisites allowed to provide a boundary-layer flow over the concave

surface under zero pressure gradient.

The region of measurements was located in the range of the streamwise curved (along the surface

of the plate) coordinate 𝑥 = 290 ÷ 1200 mm. Instantaneous values of the streamwise component of the

velocity vector of the flow were measured with a hot-wire (7 ). It was installed on a three-component

traversing mechanism (8 ), which allowed to position the wire at any point in the region of measurements

with an accuracy of 5 µm in the normal to the surface direction and 200 µm in the streamwise and

spanwise directions.

2.2 Disturbance source

To excite three-dimensional controlled vortical disturbances in the boundary layer, a source shown

schematically in Fig. 2 was used. The source consists of identical round elastic membranes (3 ) made of

latex film with thickness 80÷100 µm located with a constant spacing along the model span. The source

was mounted in place of the insert flush with the plate (with accuracy about 1 µm). The membranes

were excited with the help of a block of 8 closed woofers, which were located outside of the working part
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Figure 2: Disturbance source [2]: concave surface (1 ); insert (2 ); elastic membranes (3 ); pneumatic

lines (4 ).

of the wind tunnel. The woofers were connected to chambers under the membranes by pneumatic lines

(4 ) to create pressure pulsations resulting in membrane oscillations with amplitudes of up to a few tens

of microns in the direction normal to the surface. The frequencies, amplitudes, and relative phases of

the woofer sinusoidal oscillations were controlled by one of eight channels of electronic part of the source

equipped with a special digital-to-analogue converter combined with a power amplifier.

The elastic membranes were glued to the bearing surface of source in a way designed to ensure

uniform, small, and constant membrane tension and to isolate the chambers from one another, thus

creating a homogeneous set of oscillators along the plate span. The deviation of membrane diameters

from one another did not exceed 90 µm, and the variation of amplitudes of membrane oscillations in

surface did not exceed 5%.

Thus, the source created local nonuniformities of the surface with given parameters: spanwise spacing,

frequency and amplitude. The periodic form of nonuniformities in the spanwise direction (in the form

of a standing wave) was chosen to provide an effective generation of periodic vortices in the boundary

layer. Special tests did not detect bending or buckling of the membranes due to a difference of static

pressures in the flow and in the pneumatic lines. However, due to a feature of the process of hardening

of the glue, the membrane surface in neutral position was about 15 µm below the plate surface that

resulted in a small periodic undulation in the spanwise direction 𝑧.

By varying the diameter and the spacing of the membranes, the spanwise wavelength of the surface

disturbances and, consequently, the spanwise wavelength of the generated vortices can be changed. The

sources with a diameter of membranes 3.62 ± 0.04 mm and 5.44 ± 0.05 mm for spacing between their

centers 4 mm and 6 mm, respectively, were used. The neighboring membranes oscillated in antiphase.
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Table 1: Values ℎmax at membrane oscillations (µm).

𝜆𝑧, mm 𝑓 = 2 5 8 11 14 Hz

8 30.0±2.0 36.0±2.2 45.0±2.0 48.1±3.7

12 27.6±0.3 30.9±0.6 37.8±0.5 47.2±1.0 51.7±2.3

As a result, the source created a periodic nonuniformity of the plate surface in the spanwise direction

with transverse periods 𝜆𝑧 = 8 mm and 12 mm respectively. The excited instability disturbances (the

Görtler vortices) were close to the most growing downstream (see, e.g., [11]).

The values ℎmax of the measured maximum deviations of membranes from the neutral position during

oscillations in time at chosen frequencies 𝑓 are presented in Table 1. The measurements were performed

using a non-contact optical displacement measuring device with a precision of 0.1 µm. It has been found

that deviations of points of each membrane from the neutral position (in the cylindrical coordinate

system related to the center of a membrane) with high accuracy can be described by the formula

ℎ(𝑟) = ℎmax

3∑︁
𝑛=0

𝑐𝑛

(︂
2𝑟

𝑑

)︂2𝑛

, |𝑟| ≤ 𝑑/2, (2.1)

where
3∑︁

𝑛=0

𝑐𝑛 =

3∑︁
𝑛=1

𝑛𝑐𝑛 = 0,

𝑟 is the distance from the center of the membrane and 𝑐2 = 1.9375, −0.3101 and 𝑐3 = −0.4591, 0.6534

for the membranes with 𝜆𝑧 = 8 and 12 mm, respectively.

For the numerical model of the source, we assume that the number of membranes in the 𝑧-direction

is infinite, and they oscillate harmonically with the circular frequency 𝜔 = 2𝜋𝑓 in the direction 𝑦 vertical

with respect to the plane of membrane with amplitudes defined by (2.1), the neighboring membranes

being in antiphase. On performing at each 𝑥 a decomposition of the source amplitude in the Fourier

series for 𝑧, we select at each 𝑥 a harmonic with the main wave number 𝛽 = 2𝜋/𝜆𝑧 and assume further

that the source is a strip, points of which oscillate in the vertical direction as

𝑦 = 𝐻𝛽𝜔(𝑥) cos(𝛽𝑧 − 𝜔𝑡) (2.2)

with fixed values of 𝜔 and 𝛽, where 𝐻𝛽𝜔(𝑥) is a nonnegative function in 𝑥.

2.3 Boundary-layer characteristics

The boundary-layer measurements described in [2] have shown that the main characteristics of the

flow over the plate practically do not depend on the spanwise coordinates in the range of several wave-

lenghts 𝜆𝑧, that is, the boundary layer can be treated essentially as two-dimensional. Moreover, due to

a careful selection of the form and location of the adjustable wall bump and the other elements of the

experimental setup described in Sect. 2.1, the streamwise pressure gradient in the boundary layer was

close to zero.
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Figure 3: Comparison of integral boundary-layer characteristics. Experimental data [2]: 𝛿*, mm (∙);

𝛿**, mm (�); 𝛿*/𝛿** (�); numerical data for Blasius boundary layer (—), (−−), (· · · ), respectively; the

effective origin of the Blasius boundary-layer 𝑥v = 21.6 mm.

The measured normal to the surface profiles of the streamwise velocity and corresponding integral

characteristics of the base flow indicate that the boundary layer in the region of measurements was close

to the Blasius one. The displacement thickness 𝛿*, momentum-loss thickness 𝛿**, and the shape factor

𝛿*/𝛿** as functions of 𝑥 are shown in Fig. 3 by symbols. As seen, they are in a good agreement with

predictions for the Blasius boundary layer obtained numerically (shown by lines) if it is assumed that

the Blasius boundary layer is formed downstream from 𝑥 = 𝑥v. This virtual Blasius boundary-layer

origin was obtained by the least squares method to minimize the difference between the characteristics

of the experimental boundary layer and the Blasius boundary layer.

2.4 Generation of controlled disturbances

A preliminary study [11] showed that the streamwise disturbance velocity component generated by the

source has a maximum at a distance from the surface corresponding to the value of the dimensionless

streamwise base velocity 𝑈/𝑈e = 0.6 ± 0.01. Therefore, to minimize efforts, the measurements of

amplitudes and phases of the perturbations were carried out at this distance from the surface.

The values of streamwise disturbance velocity component measured over a period were synchronised

with a reference signal from the disturbance source and then ensemble averaged. The number of periods

taken for the averaging varied from 20 to 210 depending on a regime of measurement (the streamwise

velocity was measured for 10 ÷ 15 s at each point of space). The sampling frequency of an analogue-to-

digital converter was chosen to ensure a sufficiently large and always integer number of points per period

of the generated signal. As a result, all obtained sequences of velocities were mutually synchronized

in time and contained both amplitude and phase information. Then, these sequences were Fourier
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Figure 4: Amplitudes (top) and phases (bottom) of disturbances in 𝑧 for 𝜆𝑧 = 12 mm and 𝑓 = 8 Hz at

𝑥 = 1200 mm): experimental data (∙) and their approximation by a 10th-order polynomial (—) [2].

transformed in time in order to extract the information on amplitudes and phases of disturbances at the

frequency of excitation 𝑓 .

The experiments were carried out at frequencies of the vibrations of membranes 𝑓 = 2, 5, 8, 11, and

14 Hz. The wavelength of excited Görtler vortices in the spanwise direction was either 8 or 12 mm.

Figure 4 shows a typical behavior of the amplitude and phase of the streamwise disturbance velocity in 𝑧

inside the boundary layer far downstream from the source (at the end of the examined interval in 𝑥). The

observed dependencies are characteristic for a standing wave, indicating both the presence of a pair of

Görtler vortices with the spanwise wavenumbers ±𝛽 and having the same frequency 𝑓 and amplitude and

the presence of a small admixture of other perturbations with multiple spanwise wavenumbers generated

by the source. An analysis of disturbances with frequency 2𝑓 conducted to test the linearity of the

source and evolution of disturbances showed the absence of significant deviations from linearity.

Fourier transform of the streamwise disturbance velocity in 𝑧 made it possible to extract the ampli-

tudes and phases of disturbances with the spanwise wavenumbers ±𝛽 as described in Sect. 2.2. These

data are used in Sect. 3 for comparison with numerical results.

Examples of extracted in such a way profiles of amplitudes and phases in 𝑦-direction (at the location

of one of the amplitude maxima in 𝑧 as in Fig. 4) are shown by symbols in Fig. 5 for 𝑥 = 1200 mm.

The results of computations made in [11] for the conditions of the experiment using two variants of
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Figure 5: Amplitude (top) and phase (bottom) profiles obtained experimentally [2] (∙) for 𝜆𝑧 = 12 mm

𝑓 = 8 Hz at 𝑥 = 1200 mm in comparison with the results of computations using linear theory of

hydrodynamic stability with account for (—) and dropping (−−) the terms containing the velocity of

the base flow normal to the surface 𝑉 and streamwise derivatives of the streamwise velocity of the base

flow 𝑈 (see details in [11]).

the linearized evolution equations of Görtler vortex are shown by lines. As seen, the experimental and

computed profiles are in a good agreement with each other.

3 Simulation using parabolic equations

In this section we will describe a simplified theoretical model based on parabolized equations. As

mentioned in Sect. 1, this model is quite adequate for analysis of experimentally observed boundary-

layer receptivity to local nonuniformities of flow-exposed surface at generation of the Görtler vortices

and made it possible to build in [3] a new theory of receptivity based on optimal disturbances. However,

in some cases, this model does not accurately simulate the streamwise disturbance velocity found in the

experiment. The reason for this is still insufficiently understood.

9



3.1 Theoretical model

The controlled disturbances excited in the boundary layer in the experiments have very low ampli-

tudes of several tenths or even hundredths of a percent of the mean flow velocity. Therefore, we assume

that their generation and propagation downstream from the source is described with a good accuracy

by linearized hydrodynamics equations.

Let us consider a slightly concave plate of infinite span placed under zero angle of attack into a

uniform flow of a viscous incompressible fluid with velocity vector of length 𝑈e, which is perpendicular

to the plate leading edge. We assume that the radius 𝑅 > 0 of the plate curvature is constant and

significantly greater than the thickness 𝛿 of the boundary layer formed on the plate under the action

of viscosity. Let us introduce the following notations: 𝑥 ≥ 0 is the streamwise coordinate (arc length

along the plate surface counted from the leading edge), 𝑦 ≥ 0 is the wall-normal coordinate (a distance

from the plate surface), 𝑧 is the spanwise coordinate (along the leading edge of the plate), which is

perpendicular to the (𝑥, 𝑦)-plane, 𝑡 is time. Let the flow which is formed over the plate in the absence

of any disturbances be called the base flow. The velocity component of the base flow in the spanwise

direction is equal to zero. The velocity components 𝑈 and 𝑉 in the 𝑥- and 𝑦-directions, respectively,

and the pressure 𝑃 do not depend on 𝑧 and 𝑡.

Let the disturbance source be an oscillating impermeable membrane of streamwise width 𝑙 extended

infinitely in the 𝑧-direction and located downstream of the plate leading edge between coordinates 𝑥0− 𝑙

and 𝑥0, where 𝑥0 ≫ 𝑙. Let us denote the velocity components and the pressure of the perturbed

flow by 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡), and 𝑝(𝑥, 𝑦, 𝑧, 𝑡), respectively. Using the boundary-layer

normalization, we scale time by 𝑥0/𝑈e; 𝑥 and 𝑙 by 𝑥0; 𝑦, 𝑧, 𝑅 and 𝛿 by 𝑥0/
√

Re; 𝑢 by 𝑈e; 𝑣 and 𝑤 by

𝑈e/
√

Re; 𝑝 by 𝜌𝑈2
e /Re, where Re = 𝑥0𝑈e/𝜈 denotes the Reynolds number, 𝜌 is the fluid density, and 𝜈

is the fluid kinematic viscosity. For dimensionless variables we keep the same notations.

In the considered case, when 𝑅 ≫ 𝛿, the base flow developed over the plate far downstream from its

leading edge is assumed to satisfy the Blasius equations [6, 12, 13]:

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
=

𝜕2𝑈

𝜕𝑦2
,

𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
= 0, (3.3)

with the following no-slip and free-stream boundary conditions:

𝑈(𝑥, 0) = 𝑉 (𝑥, 0) = 0, 𝑈(𝑥,∞) = 1, (3.4)

where, in accordance to the above scaling, 𝑈(𝑥, 𝑦) and 𝑉 (𝑥, 𝑦) are the dimensionless streamwise and

wall-normal velocity components.

The system of linear equations, describing the development of small-amplitude Görtler vortices in
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the two-dimensional boundary layer has the following form:

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑥
+

𝜕𝑈

𝜕𝑥
𝑢′ + 𝑉

𝜕𝑢′

𝜕𝑦
+

𝜕𝑈

𝜕𝑦
𝑣′ =

𝜕2𝑢′

𝜕𝑦2
+

𝜕2𝑢′

𝜕𝑧2
,

𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑥
+

𝜕𝑉

𝜕𝑥
𝑢′ + 𝑉

𝜕𝑣′

𝜕𝑦
+

𝜕𝑉

𝜕𝑦
𝑣′ + 2Gö2𝑈𝑢′ +

𝜕𝑝′

𝜕𝑦
=

𝜕2𝑣′

𝜕𝑦2
+

𝜕2𝑣′

𝜕𝑧2
, (3.5)

𝜕𝑤′

𝜕𝑡
+ 𝑈

𝜕𝑤′

𝜕𝑥
+ 𝑉

𝜕𝑤′

𝜕𝑦
+

𝜕𝑝′

𝜕𝑧
=

𝜕2𝑤′

𝜕𝑦2
+

𝜕2𝑤′

𝜕𝑧2
,

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧
= 0,

where 𝑢′ = 𝑢 − 𝑈 , 𝑣′ = 𝑣 − 𝑉 , 𝑤′ = 𝑤, 𝑝′ = 𝑝 − 𝑃 , and Gö2 =
√︀

Re/𝑅 is the Görtler number. This

system is derived from the full Navier–Stokes equations for viscous incompressible fluid in the curvilinear

coordinates introduced above taking into account the smallness of the curvature and using linearization

and parabolization in the streamwise direction by dropping viscous terms and the streamwise derivative

of pressure, which are relatively small in the case of large Reynolds numbers [11, 14].

We will assume that there are no disturbances of the base flow upstream of the membrane, the no-slip

conditions are satisfied on the plate surface downstream from the membrane, and the disturbances decay

as 𝑦 → ∞. The boundary conditions on the membrane surface at 1− 𝑙 ≤ 𝑥 ≤ 1 require special consider-

ation. Let the oscillating membrane undergo instantaneous shifts 𝜉(𝑥, 𝑧, 𝑡), 𝜂(𝑥, 𝑧, 𝑡), and 𝜁(𝑥, 𝑧, 𝑡) about

its neutral position along 𝑥, 𝑦, and 𝑧-axis, respectively. Then, the dynamic no-slip conditions take the

form

𝜕𝜉

𝜕𝑡
= 𝑢(𝑥 + 𝜉, 𝜂, 𝑧 + 𝜁, 𝑡),

𝜕𝜂

𝜕𝑡
= 𝑣(𝑥 + 𝜉, 𝜂, 𝑧 + 𝜁, 𝑡),

𝜕𝜁

𝜕𝑡
= 𝑤(𝑥 + 𝜉, 𝜂, 𝑧 + 𝜁, 𝑡).

Assuming that both displacements and velocities of points of the membrane surface in the 𝑥- and 𝑧-

directions are negligible, we expand the flow velocity components in the Taylor series near point (𝑥, 0, 𝑧),

setting 𝜉 = 𝜁 = 𝜕𝜉/𝜕𝑡 = 𝜕𝜁/𝜕𝑡 = 0 and deleting the nonlinear (with respect to 𝜂) terms. As a result we

obtain the following system of equations:

0 = 𝑢(𝑥, 0, 𝑧, 𝑡) +
𝜕𝑢

𝜕𝑦
(𝑥, 0, 𝑧, 𝑡)𝜂,

𝜕𝜂

𝜕𝑡
= 𝑣(𝑥, 0, 𝑧, 𝑡) +

𝜕𝑣

𝜕𝑦
(𝑥, 0, 𝑧, 𝑡)𝜂,

0 = 𝑤(𝑥, 0, 𝑧, 𝑡) +
𝜕𝑤

𝜕𝑦
(𝑥, 0, 𝑧, 𝑡)𝜂.

Taking into account that at 𝑦 = 0 the velocity components of the base flow satisfy the equalities

𝑈 = 𝑉 = 0 and 𝜕𝑉 /𝜕𝑦 = −𝜕𝑈/𝜕𝑥 = 0 and deleting terms of the second order of smallness, we get,

finally, the following linearized boundary conditions for the disturbance velocity components:

𝑢′(𝑥, 0, 𝑧, 𝑡) = −𝜕𝑈

𝜕𝑦
(𝑥, 0)𝜂, 𝑣′(𝑥, 0, 𝑧, 𝑡) =

𝜕𝜂

𝜕𝑡
, 𝑤′(𝑥, 0, 𝑧, 𝑡) = 0, 1 − 𝑙 ≤ 𝑥 ≤ 1.
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The substantiation of such boundary conditions can be traced to [15] and, hence, they are called some-

times as Benjamin’s boundary conditions. They are widely used, in particular, for studying various

shear-flow instabilities near compliant coatings [17–19] and other surface nonuniformities in the cases of

parallel and non-parallel flows [20, 21].

In conformity with the previous section, we assume further that the membrane oscillation is harmonic

in 𝑧 and 𝑡, i.e.

𝜂(𝑥, 𝑧, 𝑡) = real𝐻𝛽𝜔(𝑥)ei(𝛽𝑧−𝜔𝑡),

where 𝛽 ̸= 0 and 𝜔 ≥ 0 are the real wavenumber and circular frequency, respectively, and 𝐻𝛽𝜔(𝑥) is a

scalar non-negative function which is identically equal to zero at 𝑥 ≤ 1 − 𝑙 and 𝑥 ≥ 1. In this case, the

solution of system (3.5) can be found in the following form:⎛⎜⎜⎜⎜⎜⎝
𝑢′(𝑥, 𝑦, 𝑧, 𝑡)

𝑣′(𝑥, 𝑦, 𝑧, 𝑡)

𝑤′(𝑥, 𝑦, 𝑧, 𝑡)

𝑝′(𝑥, 𝑦, 𝑧, 𝑡)

⎞⎟⎟⎟⎟⎟⎠ = real

⎛⎜⎜⎜⎜⎜⎝
�̄�(𝑥, 𝑦)

𝑣(𝑥, 𝑦)

�̄�(𝑥, 𝑦)

𝑝(𝑥, 𝑦)

⎞⎟⎟⎟⎟⎟⎠ ei(𝛽𝑧−𝜔𝑡)

and system (3.5) is reduced to a system of equations for the complex amplitudes of disturbances, which

can be written in the following form:

𝜕�̄�

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+ i𝛽�̄� = 0,

𝜕(𝑈𝑣 + 𝑉 �̄�)

𝜕𝑥
+ 2

𝜕𝑉 𝑣

𝜕𝑦
+ i𝛽𝑉 �̄� + 2Gö2𝑈�̄� +

𝜕𝑝

𝜕𝑦
=

𝜕2𝑣

𝜕𝑦2
− 𝛽2𝑣 + i𝜔𝑣, (3.6)

𝜕𝑈�̄�

𝜕𝑥
+

𝜕𝑉 �̄�

𝜕𝑦
+ i𝛽𝑝 =

𝜕2�̄�

𝜕𝑦2
− 𝛽2�̄� + i𝜔�̄�,

𝑉
𝜕�̄�

𝜕𝑦
− 𝜕𝑉

𝜕𝑦
�̄� +

𝜕𝑈

𝜕𝑦
𝑣 − 𝑈

𝜕𝑣

𝜕𝑦
− i𝛽𝑈�̄� =

𝜕2�̄�

𝜕𝑦2
− 𝛽2�̄� + i𝜔�̄�.

Note that the streamwise momentum equation (the last equation in (3.6)) differs from the conventional

one, cf., e.g., eq. (3) in [11]. It was obtained by applying the continuity equations for the base flow and

disturbances to remove 𝑥-derivatives in the streamwise momentum equation.

The initial conditions for the system (3.6) and the boundary conditions at 𝑦 = ∞ have the form

�̄�(1 − 𝑙, 𝑦) = 𝑣(1 − 𝑙, 𝑦) = �̄�(1 − 𝑙, 𝑦) = 𝑝(1 − 𝑙, 𝑦) = 0 (3.7)

and

�̄�(𝑥,∞) = 𝑣(𝑥,∞) = �̄�(𝑥,∞) = 0, 𝑥 ≥ 1 − 𝑙, (3.8)

respectively, and the boundary conditions at 𝑦 = 0 have the form

�̄�(𝑥, 0) = −𝜕𝑈

𝜕𝑦
(𝑥, 0)𝐻𝛽𝜔(𝑥),

𝑣(𝑥, 0) = −i𝜔𝐻𝛽𝜔(𝑥), (3.9)

�̄�(𝑥, 0) = 0, 1 − 𝑙 ≤ 𝑥 ≤ 1,
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and

�̄�(𝑥, 0) = 𝑣(𝑥, 0) = �̄�(𝑥, 0) = 0, 𝑥 > 1.

One has to emphasize that the usage of model (3.6)–(3.9) is justifiable at large Reynolds numbers:

Re ≫ 1/𝐻max, where

𝐻max = max𝐻𝛽𝜔(𝑥),

small amplitudes of oscillations in respect to the boundary-layer thickness: 𝐻max ≪ 𝛿, and at the

boundary-layer thickness much smaller than the characteristic streamwise wavelength of the vortex [15].

All these conditions are satisfied in the present study.

3.2 Numerical model

For a discretization in the 𝑦-direction of system (3.6) with the initial conditions (3.7) and boundary

conditions (3.8) and (3.9) we use the method of collocations. Let us take a sufficiently large 𝑦max ≫ 𝛿

and replace the boundary conditions (3.8) for the amplitudes of the components of disturbance velocity

by

�̄�(𝑥, 𝑦max) = 𝑣(𝑥, 𝑦max) = �̄�(𝑥, 𝑦max) = 0, 𝑥 > 1 − 𝑙.

The adequacy of the choice of 𝑦max will be analyzed a posteriori by the independence (within the specified

accuracy) of the obtained results, as 𝑦max is increased.

Let us make the following change of variables in equations (3.6):

𝑦 = 𝑦(𝑠) = 𝑦max
1 + 𝑠

2 + (1 − 𝑠)𝜎
, −1 ≤ 𝑠 ≤ 1,

where 𝜎 > 0 is a scaling factor, and choose the roots of the Chebyshev polynomial of the second kind

𝑈𝑁 (𝑠) of degree 𝑁 as nodes for interpolating the pressure in 𝑠, i.e.

𝑠𝑗 = cos
𝜋𝑗

𝑁 + 1
, 𝑗 = 1, . . . , 𝑁, (3.10)

and the same points and 𝑠0 = 1 and 𝑠𝑁+1 = −1 for interpolating the velocity components. Substituting

into equations, obtained from (3.6) by means of this change of variables, interpolation polynomials,

which approximate variables �̄�, 𝑣, �̄� and 𝑝, requiring that the obtained equations hold at points (3.10),

and using the methods described in [22] for computing the derivatives of polynomials at these points,

we come to a system of ordinary differential and algebraic equations of the form

𝑣(1 − 𝑙) = 0,
d

d𝑥
𝐷(𝑥)𝑣 = 𝐽(𝑥)𝑣 + 𝐺𝑝 + 𝐻(𝑥)𝑓𝑣(𝑥),

𝐹 (𝑥)𝑣 + 𝐻(𝑥)𝑓𝑝(𝑥) = 0, (3.11)

with a scalar function 𝐻(𝑥) = 𝐻𝛽𝜔(𝑥) such that

𝐻(1 − 𝑙) = 𝐻(𝑥) ≡ 0, 𝑥 ≥ 1, (3.12)

where 𝑣(𝑥) ∈ C𝑛𝑣 and 𝑝(𝑥) ∈ C𝑛𝑝 are the vectors of values of the velocity components and pressure,

respectively, at the internal nodes of the grid, 𝐽(𝑥) ∈ C𝑛𝑣×𝑛𝑣 and 𝐹 (𝑥) ∈ C𝑛𝑝×𝑛𝑣 are matrices, and
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𝑓𝑣(𝑥) ∈ C𝑛𝑣 , 𝑓𝑝(𝑥) ∈ C𝑛𝑝 are vectors that depend smoothly on 𝑥, 𝑛𝑣 = 3𝑁 , 𝑛𝑝 = 𝑁 , and 𝐺 ∈ C𝑛𝑣×𝑛𝑝

is a matrix that is independent of 𝑥. Taking into account that 𝑙 ≪ 1 we consider further the base flow

to be constant in the range of 1 − 𝑙 ≤ 𝑥 ≤ 1, assuming

𝐷(𝑥) ≡ 𝐷(1), 𝐽(𝑥) ≡ 𝐽(1), 𝐹 (𝑥) ≡ 𝐹 (1), 𝑓(𝑥) ≡ 𝑓(1), 1 − 𝑙 ≤ 𝑥 ≤ 1.

The matrices 𝐷(𝑥), 𝐽(𝑥), and 𝐹 (𝑥) include the velocity components 𝑈 and 𝑉 of the base flow and

their derivatives with respect to 𝑦 at grid nodes 𝑦(𝑠𝑗). We compute 𝑈(𝑥, 𝑦(𝑠𝑗)) and 𝑉 (𝑥, 𝑦(𝑠𝑗)) for 𝑥 = 1

and then use these values as initial ones for computing 𝑈 and 𝑉 at the same grid nodes for 𝑥 > 1 by

the delaying coefficients method and the Crank–Nicolson scheme [23].

For computing 𝑈(1, 𝑦(𝑠𝑗)) and 𝑉 (1, 𝑦(𝑠𝑗)) we need to solve the system (3.3), (3.4). Its solution can

be represented in the self-similar form [13]:

𝑈 =
d𝑔

d𝑟
, 𝑉 =

1

2
√
𝑥

(𝑟𝑈 − 𝑔) ,

where 𝑔 is a function of one variable 𝑟 = 𝑦/
√
𝑥, which satisfies the equation

2
d3𝑔

d𝑟3
+ 𝑔

d2𝑔

d𝑟2
= 0

with the boundary conditions

𝑔(0) =
d𝑔

d𝑟
(0) = 0,

d𝑔

d𝑟
(∞) = 1.

For computing 𝑔 at the nodes 𝑟𝑗 = 𝑦(𝑠𝑗) we use the method described in detail in [24, 25].

Applying an algebraic dimension reduction proposed in [26, 27] to the differential-algebraic initial-

value problem (3.11) with the matrices and right-hand side that depend smoothly on 𝑥, one can show

that the following conditions

det𝐷(𝑥) ̸= 0, det𝐹 (𝑥)𝐷(𝑥)−1𝐺 ̸= 0

make it possible to eliminate 𝑝 and guarantee the existence and uniqueness of the solution.

Taking this result into account we will consider separately the generation of the disturbance 𝑣0 = 𝑣(1)

by solving the initial-value problem

𝑣(1 − 𝑙) = 0,
d

d𝑥
𝐷(1)𝑣 = 𝐽(1)𝑣 + 𝐺𝑝 + 𝐻(𝑥)𝑓𝑣(1),

𝐹 (1)𝑣 + 𝐻(𝑥)𝑓𝑝(1) = 0, 1 − 𝑙 < 𝑥 ≤ 1, (3.13)

and the downstream propagation of the disturbance, by solving the initial-value problem

𝑣(1) = 𝑣0,
d

d𝑥
𝐷(𝑥)𝑣 = 𝐽(𝑥)𝑣 + 𝐺𝑝,

𝐹 (𝑥)𝑣 = 0, 𝑥 > 1.

For approximating these initial-value problems in 𝑥, we will use the BDF2 method [28] with a fixed grid

step.
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Figure 6: Computed (—) and measured (∘) amplification curves for amplitudes of the streamwise dis-

turbance velocity at wall-normal distances corresponding to 𝑈/𝑈e = 0.6 for 𝜆𝑧 = 8 mm.

3.3 Comparison with the experiment

Some results of the computations and measurements are presented and compared with each other

in Figs 6 and 7 for two different values of the spanwise wavelength 𝜆𝑧 and for various values of the

disturbance frequency 𝑓 . The experimental and computed amplification curves for amplitudes of the

streamwise disturbance velocity at wall-normal distances corresponding to 𝑈/𝑈e = 0.6 are presented in

the figures. As seen, the slope of amplitude curves far downstream from the source is simulated correctly.

The difference in the amplitudes of the experimental and computed disturbances can be explained, most

probably, by either an incomplete adequacy of the numerical model of the disturbance source or/and by

some possible inaccuracy of the experimental results obtained after the data processing described above.

Note that the underestimation of the computed disturbance amplitudes observed at low frequencies

correlates well with the findings in work [29], in which an application of a linearized source model led

to a similar effect compared with results of direct numerical simulation. Additionally, the boundary
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Figure 7: Computed (—) and measured (∘) amplification curves for amplitudes of the streamwise dis-

turbance velocity at wall-normal distances corresponding to 𝑈/𝑈e = 0.6 for 𝜆𝑧 = 12 mm.
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Table 2: Parameters of computations with 𝜆𝑧 = 8 mm.

𝑓 , Hz 5 8 11 14

𝐻max 0.0421 0.0507 0.0632 0.0677

Gö 3.6278 3.6332 3.6288 3.6308

𝛽 0.5217 0.5202 0.5214 0.5209

𝜔 0.9257 1.4812 2.0366 2.5921

Re × 10−5 1.6583 1.6682 1.6601 1.6638

𝑙 0.0135 0.0135 0.0135 0.0135

Table 3: Parameters of computations with 𝜆𝑧 = 12 mm.

𝑓 , Hz 2 5 8 11 14

𝐻max 0.0426 0.0478 0.0584 0.0730 0.0800

Gö 3.6427 3.6430 3.6430 3.6429 3.6428

𝛽 0.3472 0.3472 0.3472 0.3472 0.3472

𝜔 0.3715 0.9288 1.4861 2.0433 2.6006

Re × 10−5 1.6747 1.6752 1.6752 1.6751 1.6749

𝑙 0.0200 0.0200 0.0200 0.0200 0.0200

conditions (3.9) are very sensitive at zero frequency to a particular state of the boundary layer near

the surface, which can differ from the perfect Blasius boundary layer in the considered wind-tunnel

experiment. As the frequency increases, the second boundary condition in (3.9), whose coefficients are

controlled in the experiment very accurately, becomes dominant, that is, the relative role of 𝜕𝑈/𝜕𝑦

at 𝑦 = 0 in the vortex excitation becomes weaker. In the present case, the apparent ‘attraction’ of

the experimental and numerical amplitude dependencies to each other at higher frequencies (for large

spanwise wavelength, Fig. 7) supports this conjecture and indicates also that the linearized model of the

boundary conditions works probably more accurately in the unsteady situation (at least for 𝜆𝑧 = 12 mm).

The described computations were performed for the following values of parameters: 𝑦max = 30,

𝜎 = 11, the number 𝑁 = 50 of grid points in 𝑦 direction, the number of grid points on the source in 𝑥

direction and from 𝑥 = 1 to 𝑥 = 𝑥max was chosen to be 2000 and 500, respectively, where 𝑥max = 4.3561

for 𝜆𝑧 = 8 and 𝑥max = 4.3419 for 𝜆𝑧 = 12. Reducing the grid size and increasing 𝑦max did not lead to

any visible changes in the results. The parameters of computations are given in Tables 2 and 3.

4 Direct numerical simulation

4.1 The FEATFLOW package

The software package FEATFLOW is a general purpose subroutine collection for simulating viscous
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incompressible fluid flows using high-performance computers. The results described in Sect. 4.2 were

obtained with a version of the package for solving the incompressible Navier–Stokes equations

𝜕u

𝜕𝑡
+ (u · ∇)u = −∇p + 𝜈∆u, (4.14)

∇ · u = 0,

in a bounded domain Ω. In the global Cartesian coordinates u = (u, v,w)
𝑇

is the velocity vector and

its components in x, y and z directions, respectively, p is the normalized pressure (the pressure divided

by the density), 𝜈 is the kinematic viscosity. Equations (4.14) are solved using the initial condition

u(x, 𝑡) = u0(x), x ∈ Ω,

where x = (x, y, z)𝑇 and u0(x) is a given vector function.

On the boundary Γ = Γ1

⋃︀
Γ2

⋃︀
Γ3 of the computational domain Ω the following boundary conditions

are imposed:

u = g1, x ∈ Γ1, (4.15)

n · u = g2, x ∈ Γ2, (4.16)

−pn + 𝜈 (n · ∇)u = g3, x ∈ Γ3, (4.17)

where n is the unit outward normal to Γ, Γ𝑖 (𝑖 = 1, 2, 3) are some non-overlapping subsets of Γ, and g𝑖

are given functions.

The finite element approach based on hexahedral elements is used for spatial discretization of problem

(4.14). Continuous quadratic (P2) elements are used for the approximation of the velocity components,

and discontinuous linear (P1) elements are used to approximate the pressure.

After the discretization in space, the following differential-algebraic system is obtained

𝑀
du

d𝑡
+ 𝑁(u)u− 𝐿u + 𝐵p = 0, (4.18)

𝐵𝑇u = 0,

where u and p are time-dependent discrete analogues of the velocity vector and the normalized pressure

respectively, 𝑀 is the mass matrix, 𝑁(u) is a discrete analogue of the operator u · ∇ in (4.14) being a

matrix that depends on u, and matrices 𝐿, 𝐵 and −𝐵𝑇 are discrete analogues of the Laplace operator

multiplied by 𝜈, the gradient operator and the divergence operator, respectively.

The FEATFLOW package uses one-step-𝜃-schemes (the first-order backward Euler scheme, with

𝜃 = 1, or the second-order Crank–Nicolson scheme, with 𝜃 = 1/2), or fractional-step-𝜃-schemes [30, 31]

for the discretization of time derivatives in (4.18). The use of the backward Euler scheme on each time

step leads to the following nonlinear problem

𝑀
u𝑘 − u𝑘−1

𝜏
+ 𝑁(u𝑘)u𝑘 − 𝐿u𝑘 + 𝐵p𝑘 = 0, (4.19)

𝐵𝑇u𝑘 = 0,
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for u𝑘 and p𝑘, where 𝜏 is a time step. Using the following notation

𝐴(u) = 𝑀 + 𝜏 (𝑁(u) − 𝐿) , (4.20)

problem (4.19) can be written as

𝐴(u𝑘)u𝑘 + 𝜏𝐵p𝑘 = 𝑀u𝑘−1, (4.21)

𝐵𝑇u𝑘 = 0.

To solve (4.21), the FEATFLOW package uses a projection scheme explained, e.g., in [30–32]. Its

main steps are summarized below:

— choose some p̃, e.g., p̃ = p𝑘−1;

— solve for ũ the following nonlinear system

𝐴(ũ)ũ + 𝜏𝐵p̃ = 𝑀u𝑘−1, (4.22)

using, e.g., the Newton method;

— using ũ, solve for p𝑘 − p̃ the following system

𝜏𝐵𝑇𝑀−1
𝐿 𝐵(p𝑘 − p̃) = 𝐵𝑇 ũ (4.23)

with 𝑀𝐿 ≈ 𝐴(ũ);

— set

u𝑘 = ũ− 𝜏𝑀−1
𝐿 𝐵(p𝑘 − p̃).

If necessary, the above steps may be repeated with p̃ = p𝑘. It can be shown that the resulting solution

u𝑘 satisfies the discrete continuity equation 𝐵𝑇u𝑘 = 0.

If 𝜏 is small enough, then (4.20) implies 𝐴(ũ) ≈ 𝑀 . In this case, in the capacity of 𝑀𝐿, the

FEATFLOW package uses a diagonal matrix such that the 𝑖-th nonzero diagonal element is equal to the

sum of the elements of the 𝑖-th row of matrix 𝑀 .

The projection scheme described above is proposed in [33] for solving nonlinear problems of the form

(4.21). At sufficiently small 𝜏 , that is, with a dominance of the mass matrix in the operator (4.20) and

with a good initial guess, the computation of the solution at a new time step requires generally only a

few iterations of this scheme [31, 32] (only one iteration in the computations described in Sect. 4.2). In

applications to non-stationary problems, the solution from the previous time step provides a good initial

guess. A version of the algorithm efficient for quite large time steps is discussed in [31].

The FEATFLOW package uses multigrid solvers for linear subproblems arising in the described pro-

jection scheme. Methods based on Gauss–Seidel or incomplete LU decomposition are used as smoothers.

In particular, in the computations described in Sect. 4.2, the method of successive over-relaxation is

used. To solve linear systems on a coarse mesh the method of successive over-relaxation is used for solv-

ing equation (4.22), while some direct solvers included in UMFPACK and based on the unsymmetrical

multifrontal method [35, 36] are used for solving equation (4.23).
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4.2 Base flow simulation

Let us consider a slightly concave plate with the radius of curvature 𝑅 = 8.370 m placed under

zero angle of attack into a uniform flow of a viscous incompressible fluid with the velocity vector Ue =

(Ue, 0, 0)𝑇 of length Ue = 9.18 m/s which is perpendicular to the plate leading edge and the density

𝜌 = 1.214 kg/m
3
. This subsection is devoted to results of the computation of laminar boundary layers

formed over the plate at different values of the dynamic viscosity 𝜇 and, therefore the kinematic viscosity

𝜈 = 𝜇/𝜌.

Let us introduce the Cartesian coordinates (x, y, z), where x is the longitudinal direction, y is the

vertical direction and z is the transverse direction. Two computational domains with and without buffer

zones were implemented and tested. Figure 8 shows the computational domain with two buffer zones.

The part of the bottom boundary of the computational domain coinciding with the plate surface (marked

by dark-grey color) is denoted by Γ𝑤𝑎𝑙𝑙. In the longitudinal direction x the plate is placed between two

buffer zones. The left face Γ𝑖𝑛 of the computational domain is an inflow boundary where the velocity

vector Ue is imposed, whereas the right face Γ𝑜𝑢𝑡 of the computational domain is an outflow boundary

where the so-called ‘do-nothing’ condition is used (equation (4.17) with g3 = 0). The no-slip (equation

(4.15) with g1 = 0) and the no-penetration (equation (4.16) with g2 = 0) boundary conditions are

satisfied on the plate surface and in the rest of the boundary of the computational domain, respectively.

The main problem, which had been encountered during the computations, was an appearance of

spurious disturbances which developed in time in the vicinity of the plate leading and rear edges (marked

by red dashed lines). To prevent appearance of such disturbances, a significant refinement of the mesh

in the vertical and longitudinal directions near these edges (including the buffer zones) was necessary.

However, even the mesh cells of length about 75 µm in the longitudinal and vertical directions did not

allow to get rid of spurious velocity disturbances at 𝜇 = 10−4 Pa · s.

Figure 9 shows the computational domain without buffer zones. Instead of Ue, the velocity vector

UB = (UB, 0, 0)𝑇 is set on the boundary Γ𝑖𝑛, where UB is the streamwise Blasius boundary-layer velocity

component. The component UB was chosen to be equal to that of the perfect Blasius boundary-layer

at a distance 𝑙B from the leading edge. In addition, the outflow boundary Γ𝑜𝑢𝑡 was replaced by the one

that formed a right angle with the plate Γ𝑤𝑎𝑙𝑙. Numerical experiments have shown that the removal of

the buffer zones, the implementation of the new boundary condition on Γ𝑖𝑛 and the ‘rotation’ of the

outflow boundary Γ𝑜𝑢𝑡 made it possible to significantly reduce the spurious velocity disturbances.

The results of the boundary layer computation at 𝜇 = 5× 10−5 Pa · s and 𝑙B = 100 mm for the plate

of about 1650 mm long and 25 mm wide in the computational domain of 3000 mm height are given

below. The computations were performed using the mesh mentioned in the previous subsection, with

the cell size in the boundary layer approximately equal to 1.6 mm × 75 µm×3 mm in the longitudinal,

vertical and transverse directions, respectively. Figure 10 shows the streamlines and the contour lines

of the flow velocity which has been established over the plate. It is seen that near the plate surface the

streamlines follow the shape of the surface, but at a distance of about 2000 mm they become almost
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Figure 9: The computational domain without buffer zones.
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Figure 10: Streamlines (left), contour lines (right).

horizontal. The behavior of the streamlines and the contour lines indicates some acceleration of the fluid

in the computational domain.

To analyze the computed boundary layer, the curvilinear coordinates 𝑥, 𝑦, 𝑧 associated with the

concave plate and described in Sect. 2.1 were used. At the same time, it was assumed that the Blasius

boundary layer used as a reference flow to compare the results obtained with the FEATFLOW package,

starts to develop at 𝑥 = 0 that corresponds to the point 𝑥 = 𝑥v in the wind-tunnel experiment.

Uniform meshes were used in 𝑥 and 𝑧 with 500 and 5 nodes, respectively. The mesh described in

Sect. 3.2 was used in 𝑦 with the number of inner nodes 𝑁 = 120 and the following parameters: 𝜎 = 8

and 𝑦max ≈ 180 mm. The velocity and pressure fields computed with the FEATFLOW package were

interpolated on the introduced mesh with 500× 122× 5 nodes and the velocity vector components 𝑈 , 𝑉

and 𝑊 in the 𝑥, 𝑦, and 𝑧 directions, respectively, were computed.

Figure 11 shows the streamwise component 𝑈 vs. the self-similar variable

𝑟 = 𝑦

√︃
max

𝑦
(𝑈(𝑥, 𝑦, 𝑧))

2𝜈𝑥
.

The top figure shows the dependencies 𝑈(𝑟) computed at different distances from the plate leading edge

𝑥 for 𝑧 = 0. As seen, at 𝑥 ≤ 900 mm the component 𝑈 is self-similar with a good precision. The bottom

figure shows the dependencies 𝑈(𝑟) at 𝑥 ≈ 700 mm and −12.5 ≤ 𝑧 ≤ 12.5 (mm). It can be seen that the

streamwise velocity component is constant in spanwise direction. So further we will discuss the results

which correspond to 𝑧 = 0.
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Figure 12 shows the dependencies on 𝑥 of squares of the displacement thickness 𝛿* and the momentum

loss thickness 𝛿**, which are computed as follows

𝛿*(𝑥) =

𝑦𝑚(𝑥)∫︁
0

(︂
1 − 𝑈(𝑥, 𝑦, 0)

𝑈𝑚(𝑥)

)︂
d𝑦, 𝛿**(𝑥) =

𝑦𝑚(𝑥)∫︁
0

𝑈(𝑥, 𝑦, 0)

𝑈𝑚(𝑥)

(︂
1 − 𝑈(𝑥, 𝑦, 0)

𝑈𝑚(𝑥)

)︂
d𝑦,

where 𝑦𝑚(𝑥) is a minimum value of 𝑦 at which 𝑈(𝑥, 𝑦, 0) reaches its maximum

𝑈𝑚(𝑥) = max
𝑦

𝑈(𝑥, 𝑦, 0),

as well as squares of the corresponding Reynolds numbers. The dependencies corresponding to the

Blasius boundary layer over a flat plate are highlighted in black while the dependencies corresponding

to the boundary layer over the concave plate at different 𝑙B are highlighted in green and red. It is seen

that at 𝑥 ≤ 750 mm the dependencies associated with the boundary layer over the concave plate are

quite close to linear as it should be in the case of a boundary layer which is close to self-similar one.

Figure 13 shows the dependence of the ratio of the displacement thickness and the momentum

loss thickness (the so-called boundary-layer shape factor) on 𝑥 (left), as well as the dependence of

dimensionless pressure on 𝑥 (right). It is seen that the value of shape factor begins to significantly

deviate from the value 2.59, which is typical for the Blasius boundary layer, at 𝑥 ≈ 600 mm, and the

increase of 𝑙B by a factor of two does not change significantly the interval in which the shape factor is

close to 2.59.
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Thus, the use of the computational domain without buffer zones allows to obtain the flow close to

self-similar in a significant region over the curved plate. Adjusting the shape of the upper wall and the

boundary conditions on it as well as the size of the computational domain, apparently, may expand this

region. At the same time, further increase of 𝑙B is unlikely to be justified.

4.3 Simulation of controlled disturbances

The direct numerical simulation of the considered wind-tunnel experiment along with the appropri-

ate simulation of the base flow requires an adequate simulation of the disturbance source, which is a

rectangular part of the plate surface (the membrane) oscillating according to the law (2.1). To this end,

it is advisable to choose the computational domain (see Fig. 9) of thickness 8 or 12 mm, equal to the

wavelength 𝜆𝑧 = 2𝜋/𝛽 vibrations of the membrane in the transverse direction, and use the periodic

boundary conditions on the side walls.

There is a number of studies, in which small nonuniformities of the surface are modeled by linearized

boundary conditions, similar to those used in Sect. 3, but the adequacy of this approach is questionable.

Among the studies devoted to the modeling of small surface disturbances by the linearized boundary

conditions, the following ones should be noted:

— the pioneering works of Benjamin [15, 37–39], where linearized boundary conditions were proposed

to model surface disturbances;

— work [16], where linearized boundary conditions for a stationary case of Görtler instability are

discussed on pp. 346–347;

— work [40], where this approach is used and its adequacy is analyzed.

No detailed comparison of simulations using the linearized boundary conditions with results of physical

experiments is available to date. Therefore, it seems reasonable to begin with modeling the disturbance

source using the linearized boundary conditions (written in curvilinear coordinates)

𝑢(𝑥, 0, 𝑧, 𝑡) = −𝜕𝑈

𝜕𝑦
(𝑥, 0)𝐻𝛽𝜔(𝑥) cos(𝛽𝑧 − 𝜔𝑡),

𝑣(𝑥, 0, 𝑧, 𝑡) = 𝜔𝐻𝛽𝜔(𝑥) sin(𝛽𝑧 − 𝜔𝑡),

𝑤(𝑥, 0, 𝑧, 𝑡) = 0.

For non-linear simulation of the source, the following three approaches can be used:

— physical displacement of the boundary nodes, using the arbitrary Lagrangian–Eulerian (ALE)

formulation of the Navier–Stokes equations. As the source is small in the longitudinal direction,

one may need to simulate the generation of disturbances by solving local problems on a subgrid

and transmitting forces/residuals to the coarse grid solver. This is feasible but would require major

changes in the FEATFLOW package.
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— the use of wall functions for natural (flux type) boundary conditions to model the source-induced

disturbances in the variational formulation of the Navier–Stokes equations.

— modeling the source by adding extra terms to the continuity equation in boundary elements. The

divergence of the velocity field is described by the volume change. The movement of the membrane

changes the volume of the grid cells adjacent to the source. Instead of moving mesh nodes and

recalculating the matrices obtained with the finite element discretization one can introduce terms

describing the corresponding change of volume and its effect on the flow by ‘blowing’ or ‘sucking’

fluid into/from the boundaries of cells containing the source of disturbances.

5 Conclusion

The main problem with direct numerical simulation of wind-tunnel experiments using the FEAT-

FLOW package is the absence of any stabilization in the version of this package based on high-order

elements, which was used to obtain the results described in the previous section, and the use of low-order

stabilization in the standard version of the package based on low-order elements proposed in [41].

To reach sufficiently high Reynolds numbers and improve robustness, it is necessary to develop

and implement advanced high-order stabilization techniques to eliminate spurious oscillations, while

preserving the physical disturbances under consideration. This is the main mathematical problem to

be solved when it comes to creating a new branch of the FEATFLOW package intended for numerical

simulation of experiments on stability of subsonic laminar shear flows in low-turbulence wind tunnels.

In addition, it may be necessary

— to implement periodic boundary conditions in the transverse direction;

— to implement the slip condition on curved surfaces, which would reduce the computational cost

when using a curved upper wall of the computational domain to eliminate a ‘preload’;

— to investigate how the currently used ‘do-nothing’ outflow boundary conditions affect the flow in

the boundary layer and to look into the possibility of using more adequate outlet conditions, e.g.,

those proposed in [42];

— to develop and implement a model of the source based on the approaches described in Sect. 4.3.
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