
To Appear in

High Performance Computing in

Science and Engineering 2004

Springer, 2004





parpp3d++ – a parallel HPC code for the

incompressible nonstationary Navier–Stokes

equations

Sven H.M. Buijssen and Stefan Turek

University of Dortmund, Institute for Applied Mathematics and Numerics,
Vogelpothsweg 87, 44227 Dortmund, Germany
sven.buijssen@math.uni-dortmund.de, ture@featflow.de

Parallel multigrid methods belong to the most prominent tools for solving huge
systems of (non-)linear equations arising from the discretisation of PDEs, as
for instance in Computational Fluid Dynamics (CFD). However, the quality of
(parallel) multigrid methods in regard of numerical and computational com-
plexity mainly stands and falls with the smoothing algorithms (‘smoother’)
used. Since the inherent highly recursive character of many global smoothers
(SOR, ILU) often impedes a direct parallelisation, the application of block
smoothers is an alternative. However, due to the weakened recursive character,
the resulting parallel efficiency may decrease in comparison to the sequential
performance, due to a weaker total numerical efficiency. Within this paper, we
show the consequences of such a strategy for the resulting total efficiency on
the Hitachi SR8000-F1 if incorporated into the parallel CFD solver parpp3d++

for 3D incompressible flow. Moreover, we analyse the numerical losses of par-
allel efficiency due to communication costs and numerical efficiency on several
modern parallel computer platforms.

1 Numerical and Algorithmic Approach

parpp3d++ is a parallel 3D code for the solution of the incompressible non-
stationary Navier-Stokes equations

ut − ν∆u + (u · ∇)u + ∇p = f , ∇ · u = 0 (1)

This code is an adaptation of the existing sequential FeatFlow solver (see
www.featflow.de). For a detailed description of the numerical methods ap-
plied see [1, 7]. Here we restrict ourselves to a very brief summary of the
mathematical background. Equation (1) is discretised separately in space and
time. First, it is discretised in time by one of the usual second order meth-
ods known from the treatment of ordinary differential equations (Fractional-
Step-θ-scheme, Crank-Nicolson-scheme). Space discretisation is performed by



4 Sven H.M. Buijssen and Stefan Turek

applying a special finite element approach using the non-conforming Q̃1/Q0

spaces (in the non-parametric version). The convective term is stabilised by
applying an upwind scheme (weighted Samarskij upwind). Adaptive time step-
ping for this implicit approach is realised by estimating the local truncation
error. Consequently, solutions at different time steps are compared. Within
each time step the coupled problem is split into scalar subproblems using
the Discrete Projection method. We obtain definite problems in u (Burg-
ers equations) as well as in p (Pressure-Poisson problems). Then we treat
the nonlinear problems in u by a fixed point defect correction method, the
linearised nonsymmetric subproblems are solved with multigrid. For the ill-
conditioned linear problems in p a preconditioned conjugate gradient method
is applied. As preconditioner, multiplicative as well as additive multigrid (us-
ing Jacobi/SOR/ILU smoothers) has been implemented.

In order to parallelise the multigrid method the coarse mesh is split into
parallel blocks by a graph-oriented partitioning tool (Metis [4], PARTY [6]).
Subsequently, each block is uniformly refined. Consistency with the sequential
algorithm (MV application, grid transfer) is guaranteed through local com-
munication between at most two parallel blocks (this is possible because of
the face-oriented Q̃1/Q0 ansatz). The inherent recursive character of global
smoothers impedes a direct parallelisation. Therefore, the global smoothing is
replaced by smoothing within each parallel block only (block smoothers). To
minimise the communication overhead for solving the coarse grid problem, it
is treated on a single processor with an optimised sequential algorithm. The
cost is two global communications (setting up the right side and propagation
of the solution vector).

2 Experiences on Hitachi SR8000-F1

The code has been written in C++ and uses MPI for communication. It has
been tested [1] for many configurations including standard benchmarks like
Lid-Driven-Cavity and the 3D configurations of the ‘1995 DFG-Benchmark’
defined in [9] as well as some problems with industrial background: computa-
tion of drag values on model car surfaces (automotive industry), simulation
of molten steel being poured into a mould (steel industry), design of catalytic
coated ceramic wall reactors which are used as micro reactors for hetero-
geneously catalysed synthetic reactions (chemical engineering). Hexahedral
meshes with aspect ratios up to 500 and problems with 250 million degrees
of freedom in space and up to several thousand time steps have been handled
successfully.

It was not before the completion of the program’s implementation that
access to Hitachi SR8000-F1 at Leibniz-Rechenzentrum Munich was gained.
Moreover, the design of the program has been chosen to incorporate only basic
elements of the ISO92 reference on C++ and to solely rely on the MPI 1.2
specification. This to guarantee the utmost level of portability. As a conse-



parpp3d++ – a parallel HPC code for Navier–Stokes equations 5

quence, none of the SR8000-F1’s vector processing capabilities are explicitly
deployed. The system is merely used as a MPP unit among others. For code
optimisation we rely on the Hitachi C/C++ compiler.

During the first year on Hitachi SR8000-F1, KCC and g++ had been
employed. Having to overcome serious compilation errors with both of them,
the run times we finally observed with g++ were rather disappointing. The
problems with KCC could never be solved.

Since the first beta release of the vendors own C++ compiler (sCC) in
June 2002, things have improved – as have run times. A comparison with Cray
T3E-1200 (Research Centre Jülich) and the Linux PC cluster HELICS (IWR
Heidelberg) is performed in section 3. Annoying but seemingly inevitable1

are sCC’s long compilation times of 8–9 hours whereas g++ needs as less as
ten minutes on a Pentium 4 with 1.8 GHz – despite the fact that the usual
suspects, C++ templates, are rarely used.

3 Comparison of Run Times

This section will deal with a comparison of run times on three different types
of MPP units: a low-cost Linux PC cluster consisting of 256 dual-processor
nodes of AMD Athlon MP 1.4 GHz type (HELICS, IWR Heidelberg), a Cray
T3E-1200 (Research Centre Jülich) and LRZ’s SR8000-F1.

3.1 Definition of Benchmark Problem ‘1995 DFG-3D2Z’

We give merely a brief summary of the test configuration. The complete infor-
mation containing all definitions (and results) can be found in [9]. An incom-
pressible Newtonian fluid is considered for which the conservation equations
of mass and momentum read

∂Ui

∂xi

= 0 , ρ
∂Ui

∂t
+ ρ

∂

∂xj

(UjUi) = ρν
∂

∂xj

(

∂Ui

∂xj

+
∂Uj

∂xi

)

−
∂P

∂xi

.

The notations are: time t, cartesian coordinates (x1, x2, x3) = (x, y, z), pres-
sure P and velocity components (U1, U2, U3) = (U, V,W ). The kinematic vis-
cosity is defined as ν = 10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3. As
problem configuration the flow around a cylinder with circular cross–section
in a channel is considered. See Fig. 1 for geometry and boundary conditions.
The channel height and width is H = 0.41m and D = 0.1m is the cylinder
diameter. The Reynolds number is defined by Re = ŪD/ν with the mean
velocity Ū(t) = 4U(0,H/2,H/2)/9. The inflow condition is

U(0, y, z) = 16Umyz(H − y)(H − z)/H4, V = W = 0

with Um = 2.25m/s.

1 As explained on LRZ’s web pages, see [5].



6 Sven H.M. Buijssen and Stefan Turek

0.16m
1.95m

2.5m

D = 0.1m

0.15m
0.45m0.41m

0.41m
(0,0,0)

Inflow plane

outflow plane

U=V=W=0

U=V=W=0

U=V=W=0

z

y

x

D

Fig. 1. Geometry of 3-d test case ‘1995 DFG-3D2Z’ with boundary conditions

Fig. 2. Resulting Van Kármán vortex shedding behind the cylinder (particle tracing)

Table 1. Run times of benchmark problem ‘1995 DFG-3D2Z’

#procs time comm.

Cray T3E-1200 64 20 h 51’ 17%
128 14 h 06’ 29%
256 14 h 05’ 42%

HELICS 32 20 h 13’ 18%
64 16 h 37’ 25%

128 7 h 42’ 37%
256 9 h 46’ 62%

SR8000-F1 64 42 h 34’ 16%
128 29 h 22’ 19%
256 19 h 41’ 39%



parpp3d++ – a parallel HPC code for Navier–Stokes equations 7

3.2 Results of Benchmark Problem ‘1995 DFG-3D2Z’

A triangulation of the geometry was made leading to a problem size in space
of 32 millions degrees of freedom. For this test suite time steps were fixed a
priori such that exactly 434 time steps with Fractional-Step-θ-scheme were
necessary to simulate T = [0, 1].

Table 1 shows the resulting run times with 64, 128 and 256 processes on
each of the platforms stated above. Additionally, the relative amount of time
spent in communication routines was gathered. From this data it can be easily
seen that the scaling on Hitachi SR8000-F1 is satisfying (relative speedups of
1.4 and 1.5 respectively). The increase in communication loss is least of the
triple. As far as actual run times are concerned, however, things look more
sombre. SR8000-F1 is conspicuously in last position. It needs as much as 256
processes to beat run times on the PC cluster when applying only 32 processes.

This is not an isolated observation, but has been perceived for other com-
piler settings, problem sizes, degrees of parallelism and geometries, too. Nev-
ertheless, we proceed with optimising the code on the Hitachi system; SR8000-
F1 is still used as a host to simulate current research projects like the BMBF
project introduced in the subsequent section.

4 Current Computations

Currently, SR8000-F1 is used to optimise the design of ceramic wall reactors
as part of BMBF project 03C0348A.2 The intension is to develop ceramic
wall reactors and ceramic plate heat exchangers as micro reactors for het-
erogeneously catalysed gas phase reactions. By appropriate calibration of the
catalytic activity, diffusive mass transport and heat removal an optimal tem-
perature distribution can be attained which in turn leads to a significant
increase in performance of the reactor. A general and economical reactor con-
cept demanding low development efforts is strived for.

The outer dimensions of the workpiece are fixed as are inflow and outflow
nozzle. Number, shape and position of the “obstacles” in the interior are
parameters to generate a uniformly distributed flow. Figure 3 gives a general
survey of the geometry.

Refining the initial coarse grid four times leads to problem sizes which are
in the range of 30–80 million degrees of freedom. To reach the stationary limit
between 20 and 40 time steps are necessary. Availing 128 parallel processes,
the computations take 12–18.5 h on SR8000-F1. Figure 5 shows the velocity
distribution in x-direction on a cutplane through the centre of gravity of the
geometry for several of the tested designs.

2 This project is a cooperation with the Institute of Chemical Engineering, Chair
of Reaction Engineering (TCB), University of Dortmund and the Hermsdorfer
Institute for Technical Ceramics.



8 Sven H.M. Buijssen and Stefan Turek

Inflow nozzle

Outflow nozzle
Some obstacles
of a suitable shape

Fig. 3. Sketch of overall geometry of ceramic wall reactors and flow directions

Fig. 4. Typical grid of a ceramic wall reactor (refinement level 2, 2-d top view)

Fig. 5. Some of the two dozen different geometries examined so far

In order to investigate whether a grid-independent solution had been
gained, computations on an even finer level were started (245–670 million
degrees of freedom in space). But it turned out that each time step would
take roughly 2.5 h wall clock time (using 128 processes) such that further in-
vestigations at this problem size were cancelled to not deplete the remaining
CPU quota.



parpp3d++ – a parallel HPC code for Navier–Stokes equations 9

5 Examination of Parallel Efficiency

Over and above that we did some studies on the scalability of the parallel
implementation. As already mentioned in [2] and [1], there are two major ef-
fects which affect the run times for a fixed problem size at varying degrees
of parallelism. First, there is the inevitable contribution of communication
loss to run times. But due to the chosen non-conforming trilinear finite ele-
ment spaces, the communication needs are limited to a near minimal amount
(face–neighbouring elements of at most two parallel blocks only). In general,
communication accounts within this code for half of the losses in parallel effi-
ciency. The second major effect is the deterioration of the multigrid solver for
the Pressure–Poisson problems: the number of iterations necessary to solve
these subproblems usually increases by a factor of 3-6 if stepping from 1 to
256 processes. The factor is problem-dependent, or to state it more precisely,
it is dependent on the triangulation’s aspect ratio. The bigger the aspect
ratios, the worse the deterioration. This dependency is rather simple to ex-
plain: multigrid methods fatefully depend on the smoothing property of their
smoothers applied internally. As mentioned in Sect. 1, the parallel algorithm
replaces global smoothing by block smoothing. This means that with each ad-
ditional parallel block (i.e. each additional parallel process), it will take more
iterations to spread information from one end of the domain to the other. A
process that takes only a single iteration in sequential. Any arbitrary smooth-
ing algorithm applied successfully in sequential multigrid (SOR, ILU etc.) will
suffer from the blocking strategy and in the marginal case end up as a Block-
Jacobi algorithm. But before actually implementing the parallel algorithm,
the impact of this theoretical considerations could not be estimated.

As a consequence of this numerical deterioration more time is spent solving
the Pressure–Poisson problem in each time step, increasing from rougly 10
percent of overall run time for quasi-sequential program runs to more than 50
percent for massive parallel runs.

One aspect about the deterioration (whether to be appraised positive or
negative is left to the reader) is as follows: the deterioration drops as the
number of processes increases. Comparing the total iteration count for the
benchmark problem presented in Sect. 3 reveals that it is basically identi-
cal if a certain degree of parallelism is reached (while maintaining a moderate
problem size for each individual process): 2604 iterations for a 64-process-run,
2606 iterations for 128 processes, 2612 iterations for 256 processes. Similar re-
sults hold for different geometries, too. Thus, for massive parallel runs (≥ 64
processes) the additional losses in parallel efficiency are due to increased com-
munication needs.

6 Conclusion and Outlook

The detailed examinations in [1] show that the realised parallel version of an
optimised sequential 3D-CFD solver has (at least) three sources of parallel in-



10 Sven H.M. Buijssen and Stefan Turek

efficiency: Besides the obvious overhead due to inter-process communication,
the quality of the C++ compilers and the special structure of the Hitachi
is an important factor which requires further research activities. However,
the biggest loss is due to the weakened numerical efficiency since only block-
wise smoothers can be applied. Consequently, the number of multigrid cycles
strongly depends on the anisotropic details in the computational mesh and
the number of parallel processes. As a conclusion, for many realistic config-
urations, more than 10 processors are needed to beat the optimised sequen-
tial version in FeatFlow. Thus, new and improved numerical and algorithmic
techniques have to be developed to exploit the potential of recent parallel
supercomputers and of modern Mathematics at the same time (see [8] for a
discussion).

Therefore, the central point of our present and future research is the de-
velopment of new mathematical components – FEM discretisations, adaptiv-
ity and (parallel) multigrid solvers – and their realisation in software pack-
ages which directly include tools for parallelism and hardware-adapted high-
performance in low level kernel routines. The code generation uses the new
FEAST software in order to achieve highest computational efficiency. These
software developments can be viewed as ‘basic research’ in the field of mathe-
matical software for PDEs. Hence we will continue our work with the parallel
3D adaptation parpp3d++ from the FeatFlow package which is presently ap-
plied on several parallel computers to prototypical configurations similar to
the shown geometries. This parallel 3D code is our candidate for all further
developments which aim to incorporate the high-performance FEAST tech-
niques into this CFD tool in order to achieve highest computational efficiency
on modern computers in combination with the ‘best’ numerical approaches.

References

1. Buijssen, Sven H.M. Numerische Analyse eines parallelen 3-D-Navier-Stokes-
Lösers. Master’s thesis, Universität Heidelberg, October 2002. http://www.

mathematik.uni-dortmund.de/lsiii/php/showpdffile.php?Buijssen2002.
2. Buijssen, Sven H.M. and Turek, Stefan. Sources of parallel inefficiency for incom-

pressible CFD simulation. In Monien, B. and Feldmann, R., editors, Proceedings

8th International Euro-Par Conference, LNCS. Springer, January 2002. Pader-
born, Germany, August 27-30.

3. HELICS – HEidelberg LInux Cluster System. http://www.helics.de/.
4. Karypis, G. and Kumar, V. METIS - A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices. http://www-users.cs.umn.edu/~karypis/metis/

index.html, January 1998.
5. LRZ Munich. System Description. http://www.lrz-muenchen.de/services/

compute/hlrb/system-en/.
6. Preis, R. and Diekmann, R. The PARTY Partitioning - Library, User Guide - Ver-

sion 1.1. http://www.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/

PART/party.html, January 1996.



parpp3d++ – a parallel HPC code for Navier–Stokes equations 11

7. Turek, S. Efficient solvers for incompressible flow problems: An algorithmic and

computational approach. Springer, 1999.
8. Turek, S., Becker, C., and Kilian, S. Hardware-oriented Numerics and cocepts

for PDE software. Technical report, Universität Dortmund, Vogelpothsweg 87,
44227 Dortmund, June 2003. to appear in ICCS.

9. Turek, S. and Schäfer, M. Benchmark computations of laminar flow around cylin-
der. In E.H. Hirschel, editor, Flow Simulation with High-Performance Computers

II, volume 52 of Notes on Numerical Fluid Mechanics. Vieweg, 1996. co. F. Durst,
E. Krause, R. Rannacher.


