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1 Introduction and Motivation

Finite Element (FE) codes typically operate on sparse matrices and feature low arith-
metic intensity, resulting in their performance being limited by the available memory
bandwidth rather than the peak compute performance. FEAST (Finite Element Anal-
ysis and Solution Tools) is our toolkit providing FE discretisations and corresponding
optimised parallel multigrid solvers for PDE problems, addressing thismemory wall
problemwith what we call “hardware-oriented numerics” [11]. Thesetechniques al-
low FEAST to exploit a significant share of modern processors’ peak performance
for FE applications while maintaining numerical efficiency, robustness and flexibil-
ity. Last year we reported on our efforts solving Poisson problems with FEAST on
NEC SX-6 and SX-8, JUMP Jülich and commodity based clusters[4]. In this paper,
we address our progress in solving problems from solid mechanics and fluid dynam-
ics with FEAST. We only briefly summarise the main ideas here (cf. Fig. 1), and refer
to previous publications for related work and more details.

The two main principles underlying our approach are:
Logical tensorproduct structure:In FEAST, the discretisation is closely coupled

with the domain decomposition for the parallel solution. The computational domain
Ω̄ is covered with a collection of quadrilateral subdomainsΩ̄i . The subdomains form
an unstructured coarse mesh and are hierarchically refined such as to preserve a log-
ical tensorproduct structure of the mesh cells within each subdomain. Consequently,
FEAST maintains a clear separation of globally unstructured and locally structured
data. The resulting mesh is used for the discretisation withFinite Elements, and
linewise numbering of the unknowns leads to band structuredmatrices.

SBBLAS:Since the underlying data structures store matrix bands as sequential
vectors, there is no need for general storage formats such asCSR. Consequently,
matrix-vector multiplication can be implemented bandwise, entirely without indi-
rect addressing (Sparse Banded BLAS). On cache-based architectures, only slices
of the complete diagonals (cf. Fig. 1) are operated on simultaneously which allows
for a greater part of the result vector being held in cache. Onnon von Neumann
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architectures such as the NEC SX-8, matrix-vector multiplication can be efficiently
vectorised due to this blocking strategy.
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Fig. 1.Grid with logical tensorproduct structure, exemplary one coarse grid cell hierarchically
refined. Matrix vector multiplication in SBBLAS operates only on slices of the corresponding
FE band matrix

2 Computational Solid Mechanics

In Computational Solid Mechanics (CSM), the deformation ofsolid bodies under ex-
ternal loads is simulated. In this report, we prototypically consider a two-dimensional
body covering a domain̄Ω = Ω ∪∂Ω , whereΩ is a bounded, open set with bound-
ary Γ = ∂Ω . The boundary is split into two parts: the Dirichlet partΓD where dis-
placements are prescribed and the Neumann partΓN where surface forces can be
applied (ΓD ∩ΓN = /0 ). Furthermore the body can be exposed to volumetric forces,
e. g. gravity. We treat the simple, but nevertheless fundamental, model problem of
elastic, compressible material under static loading, assuming small deformations.
We use a formulation where the displacementsu(x) =

(

u1(x),u2(x)
)T of a material

pointx∈ Ω̄ are the only unknowns in the equation. The strains can be defined by the

linearised strain tensorεi j = 1
2

(

∂ui
∂xj

+
∂u j
∂xi

)

, i, j = 1,2, describing the linearised

kinematic relation between displacements and strains. Thematerial properties are
reflected by the constitutive law, which determines a relation between the strains and
the stresses. We use Hooke’s law for isotropic elastic materials,σ = 2µε + λ tr(ε)I ,
whereσ denotes the symmetric stress tensor andµ andλ are the so-called Lamé
constants.

The basic physical equations for problems of solid mechanics are determined by
equilibrium conditions. For a body in equilibrium, the inner forces (stresses) and the
outer forces (external loadsf ) are balanced:

−divσ = f , x∈ Ω .

Using Hooke’s law to replace the stress tensor, the problem of linearised elasticity
can be expressed in terms of the following elliptic boundaryvalue problem, called
the Lamé equation:
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−2µ divε(u)−λ graddivu = f , x∈ Ω (1a)

u = g, x∈ ΓD (1b)

σ(u) ·n = t, x∈ ΓN (1c)

Here,g are prescribed displacements onΓD, andt are given surface forces onΓN with
outer normaln. For details on the elasticity problem, see for example Braess [5].

3 Computational Fluid Dynamics

We model problems from Computational Fluid Dynamics (CFD) with the Navier–
Stokes equations, which describe the flow of incompressibleNewtonian fluids (e. g.
water and many other liquids) in a domainΩ .

Confining the domain and imposing boundary conditions, i. e.in- and outflow
conditions on the “artificial” boundaries and no-slip conditions at rigid walls, yields
the following system of equations under the assumption of constant temperatureϑ
and constant kinematic viscosityν > 0:

−ν∆u+(u·grad)u+gradp = f , x∈ Ω (2a)

divu = 0, x∈ Ω (2b)

u = g, x∈ ΓD (2c)

ν∂nu+ p ·n= 0, x∈ ΓN (2d)

wherep denotes pressure,n the outer normal vector andΓD andΓN the boundary
parts with, respectively, Dirichlet and Neumann boundary conditions (i. e. inflow,
outflow and adhesion conditions). For more details on the theoretical background of
this, see for example Ferziger and Perić [7].

4 Solution Strategy

4.1 Parallel Multigrid Solvers in FEAST

For the problems we are concerned with in the (wider) contextof this report, multi-
grid methods are obligatory from a numerical point of view. When parallelising
multigrid methods, numerical robustness, numerical efficiency and (weak) scalabil-
ity are often contradictory properties: A strong recursivecoupling between the sub-
domains, for instance by the direct parallelisation of ILU-like smoothers, is advan-
tageous for the numerical efficiency of the multigrid solver. However, such a cou-
pling increases the communication and synchronisation requirements significantly
and is therefore bound to scale badly. To alleviate this highcommunication over-
head, the recursion is usually relaxed to the application oflocal smoothersthat act
on each subdomain̄Ωi independently. The contributions of the separate subdomains
are combined in an additive manner only after the smoother has been applied to all
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subdomains, without any data exchange during the smoothing. The disadvantage of
such a (in terms of domain decomposition)block-Jacobicoupling is that typical local
smoothers such as Gauss-Seidel are usually not powerful enough to treat, for exam-
ple, local anisotropies. Consequently, the numerical efficiency of the multigrid solver
is dramatically reduced [9, 11].

To address these contradictory needs, FEAST employs a generalised multigrid
domain decomposition concept called SCARC (Scalable Recursive Clustering). The
basic idea is to apply aglobal, data-parallel multigrid algorithm which is smoothed
in an additive manner bylocal multigrids acting on each subdomain independently.
In the nomenclature of the previous paragraph, this means that the application of a
local smoother translates to performing few iterations – sometimes even only one
iteration – of a local multigrid solver, and we can use the terms local smootherand
local multigrid synonymously. This cascaded multigrid scheme is very robust as lo-
cal irregularities are ‘hidden’ from the outer solver, the global multigrid provides
strong global coupling (as it acts on all levels of refinement), and preserves the scal-
ability of data-parallel multigrid methods by design. Obviously, this cascaded multi-
grid scheme is prototypical in the sense that it can only showits full strength for
reasonably large local problem sizes and locally ill-conditioned systems [3].

Instead of keeping all data in one general, homogeneous datastructure, FEAST

stores only the local FE matrices and vectors, corresponding to the local subdo-
mains (which is common in domain decomposition methods). Global matrix-vector
operations are performed by a series of local operations on matrices representing
the restriction of the ‘virtual’ global matrix on each subdomain. These operations
are directly followed by exchanging information via MPI over the boundaries of
neighbouring subdomains. There is only an implicit subdomain overlap; the domain
decomposition is implemented via special boundary conditions in the local matri-
ces [3]. Several subdomains are typically grouped into one MPI process, exchanging
data via shared memory. All global and local coarse grid problems are solved exactly
by a tuned direct LU decomposition solver taken from UMFPACK[6].

global BiCGStab

preconditioned by
global multigrid (V 1+1)
additively smoothed by

for all Ω̄i : local multigrid (C 4+4, S, UMFPACK)
coarse grid solver: UMFPACK

Fig. 2. Illustration of the family of cascaded multigrid solver schemes in FEAST

Figure 2 illustrates a typical solver in FEAST. The notation‘local multigrid (C
4+4, S, UMFPACK)’ denotes a multigrid solver on a single subdomain, config-
ured to perform the cycleC ∈ {V,F,W} with 4 pre- and postsmoothing steps with
the smoothing operatorS∈ {Jacobi, Gauss-Seidel, ILU, . . .}. To improve solver ro-
bustness, the global multigrid solver is used as a preconditioner to a Krylov subspace
solver such as BiCGStab which executes on the global fine grid. As a preconditioner,
the global multigrid performs exactly one iteration without convergence control.
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We finally emphasise that the entire concept – comprising domain decompo-
sition, solver strategies and data structures – is independent of the spatial dimen-
sion of the underlying problem. Implementation of 3D support is tedious and time-
consuming, but conceptually straightforward.

4.2 Scalar and Vector-Valued Problems

The guiding idea to treating vector-valued problems with FEAST is to rely on the
modular, reliable and highly optimised scalar operations,in order to formulate robust
schemes for a wide range of applications rather than using the best suited numerical
scheme for each application and go through the optimisationand debugging process
over and over again. Vector-valued PDEs as they arise, for instance, in the application
domains in the focus on this report, can be rearranged and discretised in such a way
that the resulting discrete systems of equations consist ofblocks that correspond to
scalar problems (for the CSM case see beginning of Sect. 4.3,for CFD see Sect. 4.4).
Due to this special block-structure, all operations required to solve the systems can
be implemented as a series of operations for scalar systems,taking advantage of the
highly tuned linear algebra components in the SBBLAS library. To apply a scalar
local multigrid solver, the set of unknowns corresponding to a global scalar equation
is restricted to the subset of unknowns that correspond to the specific subdomain.

To illustrate the approach, consider a matrix-vector multiplicationy = Ax with
the exemplary block structure:

(

y1

y2

)

=

(

A11 A12

A21 A22

)(

x1

x2

)

As explained above, the multiplication is performed as a series of operations on the
local FE matrices per subdomain̄Ωi , denoted by superscript(·)(i). The global scalar
operators, corresponding to the blocks in the matrix, are treated individually:

For j = 1,2, do

1. For allΩ̄i , computey(i)
j = A(i)

j1x(i)
1 .

2. For allΩ̄i , computey(i)
j = y(i)

j +A(i)
j2x(i)

2 .
3. Communicate entries iny j corresponding to the

boundaries of neighbouring subdomains.

4.3 Solving the Elasticity Problem

In order to solve vector-valued linearised elasticity problems with the application
FEASTSOLID using the FEAST intrinsics outlined in the previous paragraphs, it is
essential to order the resulting degrees of freedom corresponding to the spatial direc-
tions, a technique called separate displacement ordering [2]. In the 2D case where
the unknownsu = (u1,u2)

T correspond to displacements inx andy-direction, rear-
ranging the left hand side of equation (1a) yields:

−

(

(2µ + λ )∂xx+ µ∂yy (µ + λ )∂xy

(µ + λ )∂yx µ∂xx+(2µ + λ )∂yy

)(

u1

u2

)

=

(

f1
f2

)

(3)
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We approximate the domain̄Ω by a collection of several subdomains̄Ωi , each
of which is refined to a logical tensorproduct structure as described in Sect. 4.1. We
consider the weak formulation of equation (3) and apply a Finite Element discreti-
sation with conforming bilinear elements of theQ1 space. The vectors and matrices
resulting from the discretisation process are denoted withupright bold letters, such
that the resulting linear equation system can be written asKu = f. Corresponding to
representation (3) of the continuous equation, the discrete system has the following
block structure,

(

K11 K12

K21 K22

)(

u1

u2

)

=

(

f1

f2

)

, (4)

wheref = (f1, f2)
T is the vector of external loads andu = (u1,u2)

T the (unknown) co-
efficient vector of the FE solution. The matricesK11 andK22 of this block-structured
system correspond to scalar elliptic operators (cf. Equation (3)), i. e. FEAST’s tuned
solvers can be applied to the corresponding subsystems.

We illustrate the details of the solution process with a basic iteration scheme, a
preconditioned defect correction method:

uk+1 = uk + ωK̃−1
B (f −Kuk), k = 1, . . . (5)

This iteration scheme acts on the global system (4) and thus couples the two sets
of unknownsu1 andu2. Theblock-preconditionerK̃ B explicitly exploits the block
structure of the matrixK . In this report, we use ablock-Gauss-Seidelpreconditioner
K̃ BGS. One iteration of the global defect correction scheme consists of the following
three steps:

1. Compute the global defect (cf. Sect. 4.2):
(

d1

d2

)

=

(

f1

f2

)

−

(

K11 K12

K21 K22

)(

uk
1

uk
2

)

2. Apply the block-preconditioner

K̃ BGS :=

(

K11 0
K21 K22

)

(6)

by approximately solving the system̃K BGSc= d. This is performed by two global
scalar solves and one global (scalar) matrix-vector multiplication:
a) SolveK11c1 = d1.
b) Update RHS:d2 = d2−K21c1.
c) SolveK22c2 = d2.

3. Update the global solution with the (eventually damped) correction vector:
uk+1 = uk + ωc

Instead of the illustrative defect correction scheme outlined above, our full solver
is a preconditioned BiCGStab solver. Figure 3 summarises the entire scheme. Note
the similarity to the general template solver in Fig. 2, and that this specialised solu-
tion scheme is entirely constructed from FEAST intrinsics.
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global BiCGStab
with block-Gauss-Seidel preconditioner (Equation (6)):

1) solve K11c1 = d1 by

global multigrid (V 1+1), additively smoothed by
for all Ω̄i : local multigrid (V 4+4, Jacobi, UMFPACK)

coarse grid solver: UMFPACK

2) update RHS: d2 = d2−K21c1
3) solve K22c2 = d2 by

global multigrid (V 1+1), additively smoothed by
for all Ω̄i : local multigrid (V 4+4, Jacobi, UMFPACK)

coarse grid solver: UMFPACK

Fig. 3.Our solution scheme for the elasticity equations, scalar solvers are highlighted

4.4 Solving the Navier-Stokes Equation

The application FEASTFLOW solves the Navier-Stokes equations, a nonlinear and
vector-valued problem, in a similar way as FEASTSOLID solves elasticity problems.
Again, we approximate the domain̄Ω by a collection of quadrilateral subdomains
Ω̄i , each of which is refined to a logical tensorproduct structure. We consider the
weak formulation of equation system (2) and apply a Finite Element discretisation
with conforming bilinear elements of theQ1 space. It is well-known that this pure
Galerkin approach exhibits numeric instabilities which stem from dominating con-
vection and from the violation of the discrete inf-sup or LBB-condition. For stability
on arbitrary meshes, pressure-stabilisation (PSPG) and streamline-upwind stabilisa-
tion (SUPG) is applied, choosing the mesh-dependent parameters in accordance with
Apel et al. [1].

The resulting discrete nonlinear equation system reads




A11 A12 B1

A21 A22 B2

BT
1 BT

2 C









u1

u2

p



 =





f1

f2

g



 , (7)

with

A11 := νL11+N11(u)+ C̃11 A12 := C̃12

A12 := C̃21 A22 := νL22+N22(u)+ C̃22

where the matrixL ii corresponds to the Laplacian operator andNii (u) to the convec-
tion operator.B andBT are discrete analogues of the gradient and divergence opera-
tor whileC andC̃i j stem from the discretisation of the PSPG and SUPG stabilisation
terms, respectively. For the case of an isotropic mesh, we notice the following:C is
identical to a discretisation of the pressure Poisson operator, scaled with the mesh
sizeh2.

The nonlinear problem is reduced to a sequence of linear problems by applying
a fixed point defect correction method, which can be written in a manner similar to
equation (5), wherẽK B can be identified with the solution of linearised subproblems.
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The linearised, but still vector-valued subproblem is subsequently tackled by a
pressure Schur complement approach: We illustrate it with the following basic it-
eration, but – as in the elasticity case – prefer a Krylov subspace solver such as
BiCGStab for increased numerical efficiency in the tests in Sect. 5.2:

(

un+1

pn+1

)

=

(

un

pn

)

+K−1
S

[(

f
g

)

−

(

A B
BT C

)(

un

pn

)]

(9)

Here,A is a block-structured matrix consisting of the linearised matricesA i j , BT is
defined as(BT

1 ,BT
2 ) and the vectorsun andf as the iterates of the solution(u1,u2)

T

and right hand side(f1, f2)
T, respectively. The preconditionerK S is defined as the

block-structured matrix:

K S :=

(

Ã 0
BT −S̃

)

(10)

whereÃ denotes a preconditioner for the matrixA and S̃ a preconditioner for the
pressure Schur complement matrix

S := BTA−1B−C.

We note that solving equation (9) requires the solution of linear systems with the
matrixA as well as some matrix-vector multiplications.

fixed point iteration

solving linearised subproblems with
global BiCGStab (reduce initial residual by 1 digit)
preconditioned by block preconditioner (Equation (10))
1) realise preconditioner Ã as global BiCGstab (1 digit)

with block-Gauss-Seidel preconditioner (Equation (6)):
a) solve A11c1 = d1 by

global multigrid (V 1+1), additively smoothed by
for all Ω̄i : local multigrid (V 4+4, Jacobi, UMFPACK)

coarse grid solver: UMFPACK

b) update RHS: d2 = d2−A21c1
c) solve A22c2 = d2 by

global multigrid (V 1+1), additively smoothed by
for all Ω̄i : local multigrid (V 4+4, Jacobi, UMFPACK)

coarse grid solver: UMFPACK

2) realise preconditioner S̃ as

c3 = M−1
p (d3 +BT

1 c1 +BT
2 c2)

Fig. 4. Excerpt of our solution scheme for the Navier–Stokes equations, scalar solvers are
highlighted

Murphy et al. [8] have pointed out that the square of the iteration matrix of the
preconditioned system

K := I −K−1
S

(

A B
BT C

)

(11)

vanishes. The associated Krylov space, span{r ,Kr ,K2r ,K3r , ...}, has hence dimen-
sion 2 which implies that – with exact numerics – any Krylov subspace iterative
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method terminates in at most two iterations with the solution to the linear system
arising in system (9) if the preconditionerK S is used. A few iterations with a “good”
approximation ofK S therefore suffice to solve (9).

The off-diagonal parts ofA stem from the SUPG stabilisation terms only, they
are of orderO(h2) (and vanish for isotropic grids in the Stokes case). Taking this
into account, the approximation of the upper left block ofK S is straightforward:
The diagonal block matricesA11 and A22 correspond to scalar elliptic operators,
FEAST’s tuned solvers can be applied as in the elasticity case. Turek has shown that
– neglecting the convective terms – the lumped pressure massmatrix M p is a good
preconditioner for the diffusive part of the Schur complement matrix S [10], i. e.
S̃= νM p. Solving in this case is reduced to scaling a right hand side with a diagonal
matrix. Figure 4 summarises the solver scheme we use throughout this report.

5 Experimental Results

The questions we address in this report are: To what extend doFEASTSOLID and
FEASTFLOW benefit from the highly tuned scalar solvers from the FEAST library?
What MFLOP/s rates do we achieve on NEC SX-8? How well do theseFE applica-
tions scale? The following paragraphs are dedicated to these questions.

5.1 Scalar Performance of FEAST

Table 1 lists our results of solving a Poisson problem with FEAST using 2–16 CPUs1

on theBLOCK configuration grid (Fig. 5 (a)), applying Dirichlet conditions on the
whole boundary, though. These results are a significant improvement compared to
those we presented in last year’s report. Every CPU is assigned four subdomains
which are subsequently hierarchically refined. We employ the same scalar solver as
used for solving scalar sub-problems in the CSM and CFD test cases later on, i. e. the
global multigrid (used as a preconditioner to a global BiCGStab iteration) performs
one pre- and postsmoothing step in a V cycle, and the local multigrids use a V cycle
with four smoothing steps. The goal in all tests is to reduce the initial residuals by
six orders of magnitude.

For FE codes, the available system bandwidth is the dominantfactor for perfor-
mance. On the NEC SX-8, each CPU can access main memory at 64 GB/s, while
the IXS crossbar switch provides 16 GB/s per node (each node has 8 CPUs). The
results obtained on 2 and 4 CPUs – on a single node – thus illustrate a monotonic
increase in MFLOP/s rates for increasing level of refinement. For smaller problem
sizes, the performance is inhibited by the sequential partsof the code, while for
larger problem sizes the performance is mainly determined by the fully vectorised,
throughput-oriented operations, and the tuned matrix-vector multiplication pays off.
This is further underlined by the fact that with increasing level of refinement (four
times the amount of unknowns), the time per iteration (Tsolve/iter) increases by less

1 There is always one master process which we do not list explicitly.
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than a factor of four. We reach a stable performance of more than 5 GFLOP/s per
CPU, which is roughly 30% of the peak performance. Detailed analysis reveals that
the single-node performance is close to the peak memory bandwidth. The results
obtained on 8 and 16 CPUs include communication via the interconnect, and thus
exhibit a significant decrease in performance.

# CPU level DOF Tsolve/iter (s) MFLOP/s MFLOP/s/CPU

7 131,841 0.27 1,111 556
8 525,825 0.40 2,806 1,403

2 9 2,100,225 0.80 5,930 2,965
10 8,394,753 1.94 9,098 4,549
11 33,566,721 5.89 10,959 5,480

7 263,425 0.27 2,116 529
8 1,051,137 0.43 5,336 1,334

4 9 4,199,425 0.74 11,049 2,762
10 16,787,457 2.08 17,091 4,273
11 67,129,345 6.36 20,269 5,067

7 525,825 0.30 3,685 461
8 2,100,225 0.50 9,059 1,132

8 9 8,394,753 1.00 18,390 2,299
10 33,566,721 2.57 27,645 3,456
11 134,242,305 8.07 31,959 3,995

7 1,051,137 0.33 6,989 437
8 4,199,425 0.53 17,701 1,106

16 9 16,787,457 1.07 34,408 2,151
10 67,129,345 3.03 46,888 2,931
11 268,476,417 8.96 57,600 3,600

Table 1.Efficiency tests. Solving a scalar Poisson problem on NEC SX-8

5.2 Performance of FEASTSOLID and FEASTFLOW

With FEASTSOLID, we evaluate four configurations that are prototypical for practi-
cal applications. Figure 5 shows the coarse grids, the prescribed boundary conditions
and the partitioning for the parallel execution of each configuration. TheBLOCK con-
figuration (Fig. 5 (a)) is a standard test case in CSM, in whicha block of material
is vertically compressed by a surface load. ThePIPE configuration (Fig. 5 (b)) rep-
resents a circular cross-section of a pipe clamped in a benchvise. It is realised by
loading two opposite parts of the outer boundary by surface forces. With theCRACK
configuration (Fig. 5 (c)) we simulate an industrial test environment for assessing
material properties. A workpiece with a slit is torn apart bya device attached to the
two holes. In this configuration the deformation is induced by prescribed horizon-
tal displacements at the inner boundary of the holes, while the holes are fixed in
the vertical direction. For the latter two configurations weexploit symmetries and
consider only sections of the real geometries. Finally, theSTEELFRAME configura-
tion (Fig. 5 (d)) models a section of a steel frame, which is fixed at both ends and
asymmetrically loaded from above.
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Fig. 5. Coarse grids, boundary conditions and static partition into subdomains for the config-
urations (a)BLOCK, (b) PIPE, (c) CRACK and (d)STEELFRAME

In all the CSM tests we configure the solver scheme (cf. Fig. 3)to reduce the
initial residuals by 6 digits, the global multigrid performs one pre- and postsmoothing
step in a V cycle, and the inner multigrid uses a V cycle with four smoothing steps.

For CFD, we use a standard benchmark case: a lid driven cavityat Reynolds
numberRe= 100. The solver scheme (cf. Fig. 4) is configured to reduce theresiduals
for velocity and pressure to below 10−8.

Fig. 6. Computed displacements and von Mises stresses for the CSM configurations, velocity
streamline plot for Driven Cavity

Figure 6 shows the computed deformations of the four CSM geometries and the
von Mises stresses, which are an important measure for predicting material failure
in an object under load, as well as a streamline plot of the driven cavity velocity
solution.

Absolute Performance of NEC SX-8 and a Commodity Based Cluster

To compare performance across different architectures andto be able to assess the
performance of our code on NEC SX-8, we execute the elasticity solver (cf. Fig. 3)
on 16 nodes of a commodity based Opteron cluster (LiDO, Dortmund) and the NEC
SX-8. The (slightly outdated) cluster consists of two Opteron DP 250 CPUs with
8 GB DDR-400 memory, and is fully connected via Infiniband. For these tests, we
use the four prototypical test cases illustrated in Fig. 5, and refine each subdomain
10 times for a problem size of 134,258,690 degrees of freedom.

Table 2 contains our timing measurements. We first note that the obtained results
are consistent for all four configurations. The longer computation times of the PIPE
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NEC SX-8 LiDO
Configurationlevel Tsolve (s) Tscalar (s) MFLOP/s MFLOP/s/CPU Tsolve (s) Tscalar(s) MFLOP/s MFLOP/s/CPU

7 6.4 6.3 3,533 221 2.6 2.4 8,709 544
BLOCK 8 9.5 9.3 9,434 590 10.9 10.1 8,156 509

9 14.4 14.0 22,008 1,375 39.3 36.3 8,062 503
10 31.3 29.9 40,256 2,516 157.2 145.3 8,025 502

7 6.7 6.6 3,532 221 2.8 2.6 8,582 536
CRACK 8 9.2 9.1 10,122 633 10.8 10.0 8,634 540

9 15.9 15.5 23,250 1,453 46.5 43.5 7,970 498
10 33.5 32.1 39,693 2,481 166.7 155.5 7,966 498

7 11.7 11.5 3,570 223 4.5 4.1 9,281 580
PIPE 8 16.2 15.9 10,155 635 18.6 17.2 8,827 552

9 25.2 24.4 24,454 1,528 77.1 71.7 7,989 499
10 66.4 63.4 41,498 2,594 345.7 321.7 7,969 498

7 13.8 13.6 3,544 221 5.5 5.0 8,914 557
STEEL- 8 20.3 20.0 10,442 653 23.7 21.9 8,958 560
FRAME 9 35.7 34.6 24,647 1,540 103.6 96.4 8,487 530

10 92.1 92.1 41,287 2,580 470.2 438.5 8,090 506

Table 2.Performance results for four prototypical test cases, computed with FEASTSOLID on
16+1 CPUs on LiDO and NEC SX-8

and the STEELFRAME configuration result from the fact that they exhibit a rela-
tively long and thin geometry, while only a relatively smallportion of the boundary
is fixed (cf. Axelsson [2]). As expected from the experimentswith the scalar Pois-
son problem (cf. Table 1), the Opteron cluster outperforms the NEC SX-8 on small
levels of refinement. For larger problem sizes, the NEC SX-8 executes FEASTSOLID

roughly 5 times faster than the Opteron cluster. The comparison between the total
solving timeTsolve and the accumulated times of the scalar solvesTscalarverifies that
our approach of reducing vector-valued problems to sequences of scalar solves works
as expected. Independent of the level of refinement, more than 95% of the total time
to solution is spent inside scalar solvers. Consequently, the MFLOP/s rates for the
solver scheme (cf. Fig. 3) are in the same range as in the scalar case depicted in
Table 1. We expect the gap between the Opteron cluster and NECSX-8 to widen
further when refining the coarse grids more than 10 times (cf.Sect. 5.1), which we
could not do on LiDO due to lack of local memory.

Weak Scalability ofFEASTSOLID

We evaluate weak scalability on NEC SX-8 and LiDO with FEASTSOLID. For these
tests, we employ modifications of theBLOCK configuration (Fig. 5 (a)) such that
each CPU is assigned four subdomains. The number of CPUs (andhence, DOF)
is increased from 2 to 64 (16 Mi to 537 Mi DOF, refinement levelL = 10). Due to
the different geometries, the number of solver iterations until convergence varies,
so we normalise the timings with the iteration numbers to emphasise the scalability
of our approach rather than presenting obscured results dueto the elasticity solver’s
dependence on the geometry (see previous paragraph).

Figure 7 illustrates good scalability of FEASTSOLID on both architectures. On
the NEC SX-8, the bump in performance as soon as more than a single node is
involved is clearly visible (cf. Sect. 5.1), and for larger CPU numbers, performance
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Fig. 7.Weak scalability tests for FEASTSOLID on LiDO and NEC SX-8

reaches a stable 7.9 seconds per iteration. We thus attribute the linear increase in
runtime from 8 to 32 CPUs to granularity effects of the IXS crossbar switch.

When comparing performance between the two architectures,we see that the
speed-up achieved by the NEC SX-8 over the Opteron cluster LiDO slowly decreases
from a factor of 7.7 to a stable factor of 5 when increasing thenumber of CPUs,
consistent with the results in the previous paragraph. We also attribute this to the
interconnects.

Performance Results withFEASTFLOW

Table 3 presents results obtained by FEAST’s CFD application FEASTFLOW, using
the solver shown in Fig. 4 applied to the lid driven cavity benchmark problem. We
only list the time spent in solving the linearised problems,as the assembly process
has not been fully tuned yet and obfuscates the solver timings we are interested
in. The values labeled “Tscalar %” demonstrate that, similar to the elasticity solver
above, more than 90% of the total time is spent inside FEAST’s optimised scalar
solvers. This confirms the feasibility of our solution approach; and accordingly, the
MFLOP/s rates obtained by the simple Poisson solver are preserved (see last column
of Table 3, copied from Table 1).

# CPU level DOF Tsolve (s) Tscalar(s) Tscalar% MFLOP/s MFLOP/s/CPU MFLOP/s/CPU poisson

7 395,523 35.1 33.4 95 1,155 583 556
2 8 1,577,475 59.0 55.5 94 2,894 1,456 1,403

9 6,300,675 117.7 108.2 92 5,931 2,977 2,965
10 25,184,259 345.2 309.1 90 9,137 4,576 4,549

7 789,507 40.7 38.4 94 2,145 541 529
4 8 3,151,875 66.9 62.8 94 5,359 1,348 1,334

9 12,595,203 128.3 118.2 92 11,078 2,779 2,762
10 50,356,227 404.5 363.9 90 17,197 4,306 4,273

Table 3.Performance results of FEASTFLOW
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We did not perform tests on more CPUs and higher problem sizeson the NEC
SX-8 yet. However, these preliminary results convince us that FEASTFLOW will
scale just as well as FEASTSOLID or the simple Poisson solver.

6 Conclusions and Future Work

We have demonstrated the feasibility of our approach to reduce the solution of vector-
valued problems from CSM and CFD to sequences of scalar problems to be treated
with optimised and architecture-aware scalar multigrid solvers. For several prototyp-
ical applications from linearised elasticity and fluid dynamics, the approach main-
tains weak scalability and node performance of the prototypical Poisson problem.
In particular, FEAST applications on NEC SX-8 execute significantly faster than on
commodity based clusters. In future work, we will focus not only on tuning solvers,
but also on the assembly process which turned out to be a bottleneck during our
experiments.
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