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1 Introduction and Motivation

Finite Element (FE) codes typically operate on sparse oeiand feature low arith-
metic intensity, resulting in their performance being tieadi by the available memory
bandwidth rather than the peak compute performaneesk (Finite Element Anal-
ysis and Solution Tools) is our toolkit providing FE disésations and corresponding
optimised parallel multigrid solvers for PDE problems, se$ing thisnemory wall
problemwith what we call “hardware-oriented numerics” [11]. Thésehniques al-
low FEAST to exploit a significant share of modern processors’ peafopeance
for FE applications while maintaining numerical efficienmybustness and flexibil-
ity. Last year we reported on our efforts solving Poissorbfams with FEAST on
NEC SX-6 and SX-8, JUMP Julich and commodity based clugfidrén this paper,
we address our progress in solving problems from solid m@chand fluid dynam-
ics with FEAST. We only briefly summarise the main ideas here (cf. Fig. 1d,rafer
to previous publications for related work and more details.

The two main principles underlying our approach are:

Logical tensorproduct structurdn FEAST, the discretisation is closely coupled
with the domain decomposition for the parallel solutioneTomputational domain
Q is covered with a collection of quadrilateral subdomasThe subdomains form
an unstructured coarse mesh and are hierarchically refuddss to preserve a log-
ical tensorproduct structure of the mesh cells within eadidemain. Consequently,
FEAST maintains a clear separation of globally unstructured awdlly structured
data. The resulting mesh is used for the discretisation Witlite Elements, and
linewise numbering of the unknowns leads to band structoratlices.

SBBLASSince the underlying data structures store matrix bands@sestial
vectors, there is no need for general storage formats su€s& Consequently,
matrix-vector multiplication can be implemented bandwisetirely without indi-
rect addressingSparse Banded BLASON cache-based architectures, only slices
of the complete diagonals (cf. Fig. 1) are operated on samelusly which allows
for a greater part of the result vector being held in cachen@m von Neumann
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architectures such as the NEC SX-8, matrix-vector muttgiion can be efficiently
vectorised due to this blocking strategy.
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Fig. 1. Grid with logical tensorproduct structure, exemplary ooarse grid cell hierarchically
refined. Matrix vector multiplication in SBLAS operates only on slices of the corresponding
FE band matrix

2 Computational Solid Mechanics

In Computational Solid Mechanics (CSM), the deformatiosalfd bodies under ex-
ternal loads is simulated. In this report, we prototypicatinsider a two-dimensional
body covering a domaif? = Q UJQ, whereQ is a bounded, open set with bound-
arylr = 0dQ. The boundary is split into two parts: the Dirichlet pagst where dis-
placements are prescribed and the Neumann lpawhere surface forces can be
applied (o NIy = 0). Furthermore the body can be exposed to volumetric fgrce
e.g. gravity. We treat the simple, but nevertheless fundaahemodel problem of
elastic, compressible material under static loading, ragsy small deformations.
We use a formulation where the displacemerty = (u(x), uz(x))T of a material
pointx € Q are the only unknowns in the equation. The strains can beatkfin the
linearised strain tensag; = %(3—3} + Z—if), i,j = 1,2, describing the linearised
kinematic relation between displacements and strains.rmaterial properties are
reflected by the constitutive law, which determines a refetietween the strains and
the stresses. We use Hooke’s law for isotropic elastic nadseo = 2ue + A tr(e)l,
whereo denotes the symmetric stress tensor anand A are the so-called Lamé
constants.

The basic physical equations for problems of solid meclseenie determined by
equilibrium conditions. For a body in equilibrium, the imrfierces (stresses) and the
outer forces (external load9 are balanced:

—divo = f, xXe Q.

Using Hooke’s law to replace the stress tensor, the problelnearised elasticity
can be expressed in terms of the following elliptic boundadyie problem, called
the Lamé equation:
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—2udive(u) — A graddiwu = f, XeQ (1a)
u=g, Xelp (1b)
o(u)-n=t, xe (1c)

Here,g are prescribed displacementsi@y) andt are given surface forces @R with
outer normah. For details on the elasticity problem, see for example 848].

3 Computational Fluid Dynamics

We model problems from Computational Fluid Dynamics (CFDthwhe Navier—
Stokes equations, which describe the flow of incompressibigtonian fluids (e. g.
water and many other liquids) in a domdmh

Confining the domain and imposing boundary conditions, ineand outflow
conditions on the “artificial” boundaries and no-slip cdratis at rigid walls, yields
the following system of equations under the assumption ostant temperaturé
and constant kinematic viscosity> 0:

—vAu+ (u-gradu+gradp = f, XeQ (2a)
divu=0, xe Q (2b)

u=g, xelp (2¢)

Vohu+p-n=0, xeln (2d)

where p denotes pressure,the outer normal vector anth and/y the boundary
parts with, respectively, Dirichlet and Neumann boundamditions (i. e. inflow,
outflow and adhesion conditions). For more details on therttecal background of
this, see for example Ferziger and Peri¢ [7].

4 Solution Strategy

4.1 Parallel Multigrid Solvers in FEAST

For the problems we are concerned with in the (wider) coraétttis report, multi-
grid methods are obligatory from a numerical point of viewh&d parallelising
multigrid methods, numerical robustness, numerical efficy and (weak) scalabil-
ity are often contradictory properties: A strong recursivepling between the sub-
domains, for instance by the direct parallelisation of Iliké smoothers, is advan-
tageous for the numerical efficiency of the multigrid solugowever, such a cou-
pling increases the communication and synchronisationirepents significantly
and is therefore bound to scale badly. To alleviate this kigmmunication over-
head, the recursion is usually relaxed to the applicatiolocd smootherghat act
on each subdomaif?; independently. The contributions of the separate subdwmnai
are combined in an additive manner only after the smoothgibkan applied to all
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subdomains, without any data exchange during the smoothimgdisadvantage of
such a (in terms of domain decompositit)ck-Jacobroupling is that typical local
smoothers such as Gauss-Seidel are usually not powerfugérto treat, for exam-
ple, local anisotropies. Consequently, the numericalieffiy of the multigrid solver
is dramatically reduced [9, 11].

To address these contradictory needsa&T employs a generalised multigrid
domain decomposition concept calledARC (Scalable Recursive Clustering). The
basic idea is to apply global, data-parallel multigrid algorithm which is smoothed
in an additive manner bipcal multigrids acting on each subdomain independently.
In the nomenclature of the previous paragraph, this meadtie application of a
local smoother translates to performing few iterations meatimes even only one
iteration — of a local multigrid solver, and we can use then&iocal smootherand
local multigrid synonymously. This cascaded multigrid scheme is very Itodmiko-
cal irregularities are ‘hidden’ from the outer solver, tHelgal multigrid provides
strong global coupling (as it acts on all levels of refineneartd preserves the scal-
ability of data-parallel multigrid methods by design. Qdnsly, this cascaded multi-
grid scheme is prototypical in the sense that it can only shevull strength for
reasonably large local problem sizes and locally ill-ctindied systems [3].

Instead of keeping all data in one general, homogeneoussttaizture, EAST
stores only the local FE matrices and vectors, correspgniirthe local subdo-
mains (which is common in domain decomposition methodg)b&lmatrix-vector
operations are performed by a series of local operations atnigas representing
the restriction of the ‘virtual’ global matrix on each sulbdain. These operations
are directly followed by exchanging information via MPI over the bourdarof
neighbouring subdomains. There is only an implicit subdorogerlap; the domain
decomposition is implemented via special boundary comuttiin the local matri-
ces [3]. Several subdomains are typically grouped into oRé¢ pocess, exchanging
data via shared memory. All global and local coarse grid lgrok are solved exactly
by a tuned direct LU decomposition solver taken from UMFPABK

global BiCGStab
preconditioned by
global multigrid (V 1+1)
additively smoothed by
for all Q;: local multigrid (C 4+4, S, UMFPACK)
coarse grid solver: UMFPACK

Fig. 2. lllustration of the family of cascaded multigrid solver sohes in EAST

Figure 2 illustrates a typical solver ineERST. The notationlocal multigrid (C
4+4, S, UMFPACK)' denotes a multigrid solver on a single subdomain, config-
ured to perform the cycl€ € {V,F,W} with 4 pre- and postsmoothing steps with
the smoothing operat@ € {Jacobi, Gauss-Seidel, ILU.}. To improve solver ro-
bustness, the global multigrid solver is used as a predoneitto a Krylov subspace
solver such as BiCGStab which executes on the global fine sid preconditioner,
the global multigrid performs exactly one iteration witlh@onvergence control.



FEASTSOLID and FEASTFLOW 5

We finally emphasise that the entire concept — comprisingaierdecompo-
sition, solver strategies and data structures — is indeggegraf the spatial dimen-
sion of the underlying problem. Implementation of 3D supp®tedious and time-
consuming, but conceptually straightforward.

4.2 Scalar and Vector-Valued Problems

The guiding idea to treating vector-valued problems wittnET is to rely on the
modular, reliable and highly optimised scalar operationsrder to formulate robust
schemes for a wide range of applications rather than usmbéit suited numerical
scheme for each application and go through the optimisatiohdebugging process
over and over again. Vector-valued PDEs as they arise, $taimte, in the application
domains in the focus on this report, can be rearranged ancetised in such a way
that the resulting discrete systems of equations consisiooks that correspond to
scalar problems (for the CSM case see beginning of Sectfot.@FD see Sect. 4.4).
Due to this special block-structure, all operations regglito solve the systems can
be implemented as a series of operations for scalar systakisy advantage of the
highly tuned linear algebra components in th@B&AS library. To apply a scalar
local multigrid solver, the set of unknowns correspondimg global scalar equation
is restricted to the subset of unknowns that correspondetspiecific subdomain.

To illustrate the approach, consider a matrix-vector rplittationy = Ax with
the exemplary block structure:

Y1\ _ (A Ar2) (X1
Y2 A21 Azz) \ X2

As explained above, the multiplication is performed as &sesf operations on the
local FE matrices per subdomaih, denoted by superscript)“). The global scalar
operators, corresponding to the blocks in the matrix, &&téd individually:

Forj=1,2,do
1. Forall(?i,computeyf):Agifx(li).. .
2. ForallQ;, computeyj') = yi') +A5'2>x(2').
3. Communicate entries ity; corresponding to thg
boundaries of neighbouring subdomains.

4.3 Solving the Elasticity Problem

In order to solve vector-valued linearised elasticity peois with the application
FEASTSOLID using the [EAST intrinsics outlined in the previous paragraphs, it is
essential to order the resulting degrees of freedom casreBpg to the spatial direc-
tions, a technique called separate displacement orde2ingnthe 2D case where
the unknownsi = (ug,up)" correspond to displacementsxrandy-direction, rear-
ranging the left hand side of equation (1a) yields:

_((2u+)\)axx+uﬁyy (U+A)dyy )(ul):<f1) @)
(M+A)0yx MO+ (2U+A)dy) \Up f2
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We approximate the domai@ by a collection of several subdomaife, each
of which is refined to a logical tensorproduct structure ascdbed in Sect. 4.1. We
consider the weak formulation of equation (3) and apply at€&iBlement discreti-
sation with conforming bilinear elements of tlg space. The vectors and matrices
resulting from the discretisation process are denoted witight bold letters, such
that the resulting linear equation system can be writteduas- f. Corresponding to
representation (3) of the continuous equation, the dis@gstem has the following

block structure,
K11 K12\ (ug f1
<K21 Kzz) <U2) <f2> “)

wheref = (f1,f,)T is the vector of external loads aoé- (u;,up) " the (unknown) co-
efficient vector of the FE solution. The matridé€s; andK »» of this block-structured
system correspond to scalar elliptic operators (cf. Equg)), i.e. EAST's tuned
solvers can be applied to the corresponding subsystems.

We illustrate the details of the solution process with adé#sration scheme, a
preconditioned defect correction method:

U = Uk R Y F-KuK), k=1, (5)

This iteration scheme acts on the global system (4) and tbuples the two sets
of unknownsu; andu,. The block-preconditioneK , explicitly exploits the block

structure of the matriX. In this report, we use block-Gauss-Seidgreconditioner
K .es. One iteration of the global defect correction scheme ctssif the following

three steps:

1. Compute the global defect (cf. Sect. 4.2):

di) _ (f1) _ (K1u1 Ky u
d> fo K21 Kaz) \ Uk

2. Apply the block-preconditioner

> ._(Ki1 O
KBGS'_ <K21 K22> (6)

by approximately solving the systelfi..c = d. This is performed by two global
scalar solves and one global (scalar) matrix-vector midagon:
a) SolveK 1161 = dj.
b) Update RHSd,; = dy — K21C;.
c) SolveK ¢, = da.
3. Update the global solution with the (eventually dampeafyection vector:
uktt = uk 4+ we

Instead of the illustrative defect correction scheme natiabove, our full solver
is a preconditioned BiCGStab solver. Figure 3 summariseeifiire scheme. Note
the similarity to the general template solver in Fig. 2, amat this specialised solu-
tion scheme is entirely constructed froraA&ST intrinsics.



FEASTSOLID and FEASTFLOW 7

global BiCGStab
with block-Gauss-Seidel preconditioner (Equation (6)):
1) solve K11¢1 = djy by
global multigrid (V 1+1), additively smoothed by
for all Q;: local multigrid (V 444, Jacobi, UMFPACK)
coarse grid solver: UMFPACK
2) update RHS: dy =dy — K161
3) solve K¢ =dj by
global multigrid (V 1+1), additively smoothed by
for all Q;: local multigrid (V 4+4, Jacobi, UMFPACK)
coarse grid solver: UMFPACK

Fig. 3. Our solution scheme for the elasticity equations, scales® are highlighted

4.4 Solving the Navier-Stokes Equation

The application EASTFLOW solves the Navier-Stokes equations, a nonlinear and
vector-valued problem, in a similar way ag /sTSOLID solves elasticity problems.
Again, we approximate the domai@ by a collection of quadrilateral subdomains
Q;, each of which is refined to a logical tensorproduct striectiie consider the
weak formulation of equation system (2) and apply a Finitenfgnt discretisation
with conforming bilinear elements of th@; space. It is well-known that this pure
Galerkin approach exhibits numeric instabilities whicénstfrom dominating con-
vection and from the violation of the discrete inf-sup or Li8Bndition. For stability
on arbitrary meshes, pressure-stabilisation (PSPG) aeanstine-upwind stabilisa-
tion (SUPG) is applied, choosing the mesh-dependent paeasrie accordance with
Apel et al. [1].

The resulting discrete nonlinear equation system reads

A11 A1 B\ [us f1
Ax1Ap By | [ux ] =(f2], (7)
Bl B C/ \p g

with

A11:=vL11+Np(u)+Ci1 Ai=Ci
A:=Cn Az = VLo + Nao(u) + Coz

where the matrix j corresponds to the Laplacian operator &ijdu) to the convec-
tion operatorB andB T are discrete analogues of the gradient and divergence-opera
tor whileC andf:ij stem from the discretisation of the PSPG and SUPG staliilisat
terms, respectively. For the case of an isotropic mesh, wieenthe following:C is
identical to a discretisation of the pressure Poisson éperscaled with the mesh
sizeh?.

The nonlinear problem is reduced to a sequence of linealgrbby applying
a fixed point defect correction method, which can be writtea manner similar to
equation (5), wher& , can be identified with the solution of linearised subprotdem
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The linearised, but still vector-valued subproblem is sgjoently tackled by a
pressure Schur complement approach: We illustrate it vaighfollowing basic it-
eration, but — as in the elasticity case — prefer a Krylov pabs solver such as
BiCGStab for increased numerical efficiency in the testsdot5.2:

Unt+1 Un 1 f A B Un
(pn+1) (pn> R {(g) (BT C) \pn ©
Here,A is a block-structured matrix consisting of the lineariseatmcesA;j, BT is

defined agB],BJ) and the vectors;, andf as the iterates of the solutigny, u)™
and right hand sidéfy,f,)", respectively. The precondition&rs is defined as the

block-structured matrix: 5
A O

whereA denotes a preconditioner for the matAxandS a preconditioner for the
pressure Schur complement matrix

Ss:=B"AB-C.

We note that solving equation (9) requires the solution édir systems with the
matrix A as well as some matrix-vector multiplications.

fixed point iteration
solving linearised subproblems with
global BiCGStab (reduce initial residual by 1 digit)
preconditioned by block preconditioner (Equation (10))
1) realise preconditioner A as global BiCGstab (1 digit)
with block-Gauss-Seidel preconditioner (Equation (6)):
a) solve Aj1c; =dy by
global multigrid (V 1+1), additively smoothed by
for all Q;: local multigrid (V 4+4, Jacobi, UMFPACK)
coarse grid solver: UMFPACK
b) update RHS: d; =d; —Azicp
C) solve AsoCr =do by
global multigrid (V 1+1), additively smoothed by
for all Q;: local multigrid (V 4+4, Jacobi, UMFPACK)
coarse grid solver: UMFPACK

2) realise preconditioner S as
c3=M El(dg aF BIcl A BgCZ)

Fig. 4. Excerpt of our solution scheme for the Navier—Stokes eqnafiscalar solvers are
highlighted

Murphy et al. [8] have pointed out that the square of the fienamatrix of the

preconditioned system
. 1(AB
K:=1-K; BT C (11)

vanishes. The associated Krylov space, §pafr ,K?r,K3r, ...}, has hence dimen-
sion 2 which implies that — with exact numerics — any Krylobspace iterative
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method terminates in at most two iterations with the sofutio the linear system
arising in system (9) if the preconditioni€g is used. A few iterations with a “good”
approximation oK ¢ therefore suffice to solve (9).

The off-diagonal parts ofA stem from the SUPG stabilisation terms only, they
are of orderO(h?) (and vanish for isotropic grids in the Stokes case). Taking t
into account, the approximation of the upper left blockkaf is straightforward:
The diagonal block matrice&A1; and Ay, correspond to scalar elliptic operators,
FEAST's tuned solvers can be applied as in the elasticity caseKThas shown that
— neglecting the convective terms — the lumped pressure mass M is a good
preconditioner for the diffusive part of the Schur complemeatrix S [10], i. e.
S= VM. Solving in this case is reduced to scaling a right hand sitleavdiagonal
matrix. Figure 4 summarises the solver scheme we use thootigiis report.

5 Experimental Results

The questions we address in this report are: To what exterfEedsTSOLID and
FEasTFLOW benefit from the highly tuned scalar solvers from theaBT library?
What MFLOP/s rates do we achieve on NEC SX-8? How well do tRé&sapplica-
tions scale? The following paragraphs are dedicated t@ thesstions.

5.1 Scalar Performance of EAST

Table 1 lists our results of solving a Poisson problem wigh&T using 2—-16 CPUs
on theBLOCK configuration grid (Fig. 5 (a)), applying Dirichlet conditis on the
whole boundary, though. These results are a significantawgment compared to
those we presented in last year’s report. Every CPU is asdifour subdomains
which are subsequently hierarchically refined. We empleysiime scalar solver as
used for solving scalar sub-problems in the CSM and CFD test<later on, i. e. the
global multigrid (used as a preconditioner to a global Bi€G&hSteration) performs
one pre- and postsmoothing step in a V cycle, and the locaignids use a V cycle
with four smoothing steps. The goal in all tests is to redeeinitial residuals by
six orders of magnitude.

For FE codes, the available system bandwidth is the domfaatdr for perfor-
mance. On the NEC SX-8, each CPU can access main memory at/64@fle
the IXS crossbar switch provides 16 GB/s per node (each naede8HCPUSs). The
results obtained on 2 and 4 CPUs — on a single node — thugdtast monotonic
increase in MFLOP/s rates for increasing level of refinemEat smaller problem
sizes, the performance is inhibited by the sequential peHrtbe code, while for
larger problem sizes the performance is mainly determinethé fully vectorised,
throughput-oriented operations, and the tuned matrixevenultiplication pays off.
This is further underlined by the fact that with increasiegdl of refinement (four
times the amount of unknowns), the time per iterati@pa¢/iter) increases by less

1 There is always one master process which we do not list éttplic
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than a factor of four. We reach a stable performance of mae §5GFLOP/s per
CPU, which is roughly 30% of the peak performance. Detailealysis reveals that
the single-node performance is close to the peak memorywidtid The results
obtained on 8 and 16 CPUs include communication via thedaterect, and thus
exhibit a significant decrease in performance.

# CPU|level DOF Tsolve/iter (s)| MFLOP/s| MFLOP/s/CPU

7 131,841 0.27 1,111 556
8 525,825 0.40 2,806 1,403
2 9 2,100,225 0.80 5,930 2,965
10 || 8,394,753 1.94 9,098 4,549
11 || 33,566,721 5.89 10,959 5,480
7 263,425 0.27 2,116 529
8 1,051,137 0.43 5,336 1,334

4 9 4,199,425 0.74 11,049 2,762
10 || 16,787,457 2.08 17,091 4,273
11 || 67,129,349 6.36 20,269 5,067

7 525,825 0.30 3,685 461

8 2,100,225 0.50 9,059 1,132
8 9 8,394,753 1.00 18,390 2,299
10 || 33,566,721 2.57 27,645 3,456
11 ||134,242,30% 8.07 31,959 3,995

7 1,051,137 0.33 6,989 437

8 4,199,425 0.53 17,701 1,106
16 9 || 16,787,457 1.07 34,408 2,151
10 || 67,129,345 3.03 46,888 2,931
11 ||268,476,417 8.96 57,600 3,600

Table 1. Efficiency tests. Solving a scalar Poisson problem on NEG3SX-

5.2 Performance of EASTSOLID and FEASTFLOwW

With FEASTSOLID, we evaluate four configurations that are prototypical f@acg-
cal applications. Figure 5 shows the coarse grids, the pbestboundary conditions
and the partitioning for the parallel execution of each apmfation. TheBLOCK con-
figuration (Fig. 5 (a)) is a standard test case in CSM, in wiaidiiock of material
is vertically compressed by a surface load. Pa@E configuration (Fig. 5 (b)) rep-
resents a circular cross-section of a pipe clamped in a beisehlt is realised by
loading two opposite parts of the outer boundary by surfacee. With theCRACK
configuration (Fig. 5 (c)) we simulate an industrial testiemvment for assessing
material properties. A workpiece with a slit is torn apartébgtevice attached to the
two holes. In this configuration the deformation is inducgdpbescribed horizon-
tal displacements at the inner boundary of the holes, whigehioles are fixed in
the vertical direction. For the latter two configurations @sploit symmetries and
consider only sections of the real geometries. Finally,ShEELFRAME configura-
tion (Fig. 5 (d)) models a section of a steel frame, which isdixat both ends and
asymmetrically loaded from above.
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Fig. 5. Coarse grids, boundary conditions and static partition snbdomains for the config-
urations (aBLOCK, (b) PIPE, (c) CRACK and (d)STEELFRAME

In all the CSM tests we configure the solver scheme (cf. Figo3kduce the
initial residuals by 6 digits, the global multigrid perfosrane pre- and postsmoothing
step in a V cycle, and the inner multigrid uses a V cycle withrfemoothing steps.

For CFD, we use a standard benchmark case: a lid driven catviReynolds
numberRe= 100. The solver scheme (cf. Fig. 4) is configured to reduceetsiduals
for velocity and pressure to below 19

Fig. 6. Computed displacements and von Mises stresses for the CBfiguamtions, velocity
streamline plot for Driven Cavity

Figure 6 shows the computed deformations of the four CSM géoes and the
von Mises stresses, which are an important measure forgireglimaterial failure
in an object under load, as well as a streamline plot of theedrcavity velocity
solution.

Absolute Performance of NEC SX-8 and a Commodity BasedeClust

To compare performance across different architectures@abeé able to assess the
performance of our code on NEC SX-8, we execute the elastoiier (cf. Fig. 3)
on 16 nodes of a commodity based Opteron cluster (LiDO, Dantthand the NEC
SX-8. The (slightly outdated) cluster consists of two OpteDP 250 CPUs with
8 GB DDR-400 memory, and is fully connected via Infinibandr fese tests, we
use the four prototypical test cases illustrated in Fig.rnel eefine each subdomain
10 times for a problem size of 134,258,690 degrees of freedom

Table 2 contains our timing measurements. We first note lfeadbtained results
are consistent for all four configurations. The longer cotapon times of the PIPE
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NEC SX-8 LiDO
Configuratior)level|| Tsoive (S)| Tscatar (S)| MFLOP/S MFLOP/S/CPU)| Tsolve (S)| Tscatar (S)| MFLOP/s| MFLOP/s/CPU

7 6.4 6.3 3,633 221 2.6 2.4 8,709 544

BLOCK 8 9.5 9.3 9,434 590 10.9 10.1 8,156 509
9 14.4 14.0 | 22,008 1,375 39.3 36.3 8,062 503

10 31.3 29.9 | 40,256 2,516 157.2 | 1453 | 8,025 502

7 6.7 6.6 3,632 221 2.8 2.6 8,582 536

CRACK 8 9.2 9.1 10,122 633 10.8 10.0 8,634 540
9 15.9 155 | 23,250 1,453 46.5 43.5 7,970 498

10 33.5 32.1 | 39,693 2,481 166.7 | 155.5 | 7,966 498

7 11.7 115 3,570 223 4.5 4.1 9,281 580

PIPE 8 16.2 15.9 10,155 635 18.6 17.2 8,827 552
9 25.2 24.4 | 24,454 1,528 77.1 717 7,989 499

10 66.4 63.4 | 41,498 2,594 345.7 | 321.7 | 7,969 498

7 13.8 13.6 3,544 221 55 5.0 8,914 557

STEEL- 8 20.3 20.0 10,442 653 23.7 21.9 8,958 560
FRAME 9 35.7 34.6 | 24,647 1,540 103.6 | 96.4 8,487 530
10 92.1 92.1 | 41,287 2,580 470.2 | 438.5 | 8,090 506

Table 2. Performance results for four prototypical test cases, ectetpwith FEASTSOLID on
16+1 CPUs on LiDO and NEC SX-8

and the STEELFRAME configuration result from the fact thaytlexhibit a rela-
tively long and thin geometry, while only a relatively smadirtion of the boundary
is fixed (cf. Axelsson [2]). As expected from the experimenith the scalar Pois-
son problem (cf. Table 1), the Opteron cluster outperfoilmsNEC SX-8 on small
levels of refinement. For larger problem sizes, the NEC SXefetes EASTSOLID
roughly 5 times faster than the Opteron cluster. The coraparbetween the total
solving timeTsoe and the accumulated times of the scalar solgga,verifies that
our approach of reducing vector-valued problems to seaseofcscalar solves works
as expected. Independent of the level of refinement, mored6%o of the total time
to solution is spent inside scalar solvers. ConsequeliéyMFLOP/s rates for the
solver scheme (cf. Fig. 3) are in the same range as in therszada depicted in
Table 1. We expect the gap between the Opteron cluster and $¥=8 to widen
further when refining the coarse grids more than 10 timesSett. 5.1), which we
could not do on LiDO due to lack of local memory.

Weak Scalability oFEASTSOLID

We evaluate weak scalability on NEC SX-8 and LiDO withASTSOLID. For these
tests, we employ modifications of tfB.0CK configuration (Fig. 5 (a)) such that
each CPU is assigned four subdomains. The number of CPUsh@mk, DOF)
is increased from 2 to 64 (16 Mi to 537 Mi DOF, refinement lelvet 10). Due to
the different geometries, the number of solver iterationsl wonvergence varies,
so we normalise the timings with the iteration numbers to leasfse the scalability
of our approach rather than presenting obscured resultsodhe elasticity solver’s
dependence on the geometry (see previous paragraph).

Figure 7 illustrates good scalability ofeRsTSOLID on both architectures. On
the NEC SX-8, the bump in performance as soon as more thangke siode is
involved is clearly visible (cf. Sect. 5.1), and for largeP\@ numbers, performance
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Fig. 7. Weak scalability tests forEASTSOLID on LiDO and NEC SX-8

reaches a stable 7.9 seconds per iteration. We thus agtribatlinear increase in
runtime from 8 to 32 CPUs to granularity effects of the IXSssioar switch.

When comparing performance between the two architectwessee that the
speed-up achieved by the NEC SX-8 over the Opteron clustgIslowly decreases
from a factor of 7.7 to a stable factor of 5 when increasingrtbmber of CPUs,
consistent with the results in the previous paragraph. \&& attribute this to the
interconnects.

Performance Results witREASTFLOW

Table 3 presents results obtained yaAST's CFD application EASTFLOW, using
the solver shown in Fig. 4 applied to the lid driven cavity tlemark problem. We
only list the time spent in solving the linearised probleassthe assembly process
has not been fully tuned yet and obfuscates the solver tignimg are interested
in. The values labeledTscqar %" demonstrate that, similar to the elasticity solver
above, more than 90% of the total time is spent insidga$T's optimised scalar
solvers. This confirms the feasibility of our solution apgeb; and accordingly, the
MFLOP/s rates obtained by the simple Poisson solver arepred (see last column
of Table 3, copied from Table 1).

# CPU|level DOF | Tsolve (S)| Tscalar (S)| Tscalar % | MFLOP/s| MFLOP/s/CPU | MFLOP/s/CPU poisson

7 395,523 | 35.1 33.4 95 1,155 583 556

2 8 || 1,577,475 59.0 55.5 94 2,894 1,456 1,403
9 || 6,300,675/ 117.7 | 108.2 92 5,931 2,977 2,965
10 [|25,184,259 345.2 | 309.1 90 9,137 4,576 4,549
7 789,507 | 40.7 38.4 94 2,145 541 529

4 8 || 3,151,875 66.9 62.8 94 5,359 1,348 1,334
9 |[12,595,203 128.3 | 118.2 92 11,078 2,779 2,762
10 ||50,356,227 404.5 | 363.9 90 17,197 4,306 4,273

Table 3. Performance results ofdASTFLOW
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We did not perform tests on more CPUs and higher problem sizeébe NEC
SX-8 yet. However, these preliminary results convince &g fEASTFLOW will
scale just as well as#ASTSOLID or the simple Poisson solver.

6 Conclusions and Future Work

We have demonstrated the feasibility of our approach toaethe solution of vector-
valued problems from CSM and CFD to sequences of scalargmabio be treated
with optimised and architecture-aware scalar multigristess. For several prototyp-
ical applications from linearised elasticity and fluid dyries, the approach main-
tains weak scalability and node performance of the protosg?oisson problem.
In particular, EAST applications on NEC SX-8 execute significantly faster than o
commodity based clusters. In future work, we will focus niolycon tuning solvers,
but also on the assembly process which turned out to be abettk during our
experiments.
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