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Abstract
The time dependent Ginzburg-Landau (TDGL) equation is a typical model in phase field theory for

many applications like two phase flow simulations and phase transitions. In this paper, we develop effective
algorithms so that the solution of the TDGL model can be accurately approximated. Specifically, we
adopt finite element methods for the spatial discretization and study different algorithms for handling
the nonlinear and diffusion terms in the TDGL model. We show that the fully implicit Backward Euler
scheme and the Crank-Nicolson scheme exhibit high accuracy and allow for large time step size. Since
high resolution is needed in the interfacial region when the interfacial thickness is small, we apply newly
developed moving grid deformation techniques [10] to improve both the accuracy and the efficiency. The
advantages of the applied moving grid deformation algorithm over the existing works are highlighted.

Keywords: time dependent Ginzburg-Landau model, Allen-Cahn equation, phase field, moving grid
deformation, multigrid solver, mean curvature, finite element.

1 Introduction.
Scientific works on phase field methods arouse increasing interest recently [4, 5, 7, 13, 15]. Many

physical processes like microstructure evolution in material science [4], alloy melting and solidification,
grain growth [4] and binary fluids dynamics [15], can be described by using phase field theory. In phase
field models, an order parameter ϕ(x, t) ∈ [−1, 1] is introduced to characterize different phases. Typically,
a point x in the domain Ω belongs to one phase if ϕ(x, t) = 1 and it is in another phase if ϕ(x, t) = −1, the
region where ϕ(x, t) changes rapidly from 1 to −1 is the interfacial region. Generally speaking, phase field
theory emphasizes on modeling the total free energy in terms of ϕ, and the governing equation for ϕ then
follows from the minimization of the free energy. In this paper, we consider the following form of the total
free energy

F =

∫
Ω

(
1

2
|∇ϕ|2 + F (ϕ)

)
dΩ.

Here, F (ϕ) = (ϕ2−1)2

4ϵ2 is the the double well potential with ϵ being the interfacial thickness. The time
dependent Ginzburg-Landau model is obtained by the following energy minimization argument [2, 13]:

∂ϕ

∂t
= −δF

δϕ
= −

(
−∆ϕ+

1

ϵ2
f(ϕ)

)
, ∀x ∈ Ω, t ∈ [0, T ], (1)
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where 1
ϵ2 f(ϕ) = 1

ϵ2 (ϕ
3 − ϕ) is the derivative of F (ϕ). Moreover, ϕ satisfies the Neumann boundary

condition
∇ϕ · n = 0, ∀x ∈ ∂Ω, t ∈ [0, T ].

The TDGL model and its derivative forms are fundamental in phase field theory [5, 7, 15]. For instance,
if a convective term is added to the left hand side of (1), then it leads to the following Allen-Cahn equation:

∂ϕ

∂t
+ u · ∇ϕ = −

(
−∆ϕ+

1

ϵ2
f(ϕ)

)
. (2)

Equation (2) has been used in many real applications like two phase flow dynamics and solidification pro-
cesses for binary alloys [5, 13, 15]. In addition, both (1) and (2) are highly connected with geometric
problems of moving surface (curves in two dimensional case). It was formally proved that, as ϵ tends to 0,
the zero level set of ϕ (denoted by Γϵ

t = {x ∈ Ω|ϕ(x, t) = 0}) approaches to a surface Γt, which evolves
with the normal velocity (denoted by Vn) being equal to its mean curvature (denoted by κ) , i.e.,

Vn = κ. (3)

In general, it is not easy to solve the diffusive interface model (1) analytically. People usually compare the
numerical results with the solution of the sharp interface model (3). However, it is difficult to analyze the nu-
merical error because how to analyze the error from the model approximation, say eϵ, and the discretization
error, say eϵ,∆t,h, is a very delicate issue [19]. Existing rigorous analysis requires some strong assumptions
on the time step size ∆t and the mesh size h. For instance, it is proved in [14] that if the P1 conforming
element is used for spatial discretization and the forward Euler scheme is used for time discretization, the
zero level set of the diffusive model (1) converges to the zero level set of the sharp interface model, provided
that ∆t, h2 = o(ϵ4). For backward Euler scheme, the constraint relaxes to ∆t, h2 = o(ϵ3). The purpose of
this paper is to propose and compare different algorithms so that we have more information on the choices
of the discretization parameters. Moreover, we use an adapted moving grid algorithm to improve both the
accuracy and the efficiency.

From (1), we note that the governing equation consists of a time derivative, a diffusion term and a
nonlinear term of polynomial type. Therefore, how to properly handle all these terms is crucial for designing
numerical algorithms. It easy to see that the following explicit scheme [5]

ϕ(tn+1)− ϕ(tn)

∆t
= −

(
−∆ϕ(tn) +

1

ϵ2
f(ϕ(tn))

)
(4)

is time consuming because of the stability constraint from the diffusion term. Therefore, it is natural to treat
the diffusion term implicitly. In the present work, we search for proper ways for handling the nonlinear term.
Specifically, we examine the following 3 ways:

1. Explicitly treating the nonlinear term.

2. Linearizing the nonlinear term by using the solution of the previous time step.

3. Utilizing a fully nonlinear solver.

We try to understand all these algorithms and discuss the choices of the discretization parameters. We
compare all these algorithms by testing benchmark problems, for instance, circular bubble shrinking under
the mean curvature force. It is observed that the numerical shrinking speed of the bubble based on algorithm
1 and algorithm 2 is highly affected by the discretization parameters like the time step size, the finite element
used and the mesh size. Numerical results show that algorithm 3 performs much better and allows for relative
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large time step size. Furthermore, we highlight some points on how to choose various parameters based on
the numerical experiments.

The obvious difficulty in numerical methods for phase field models is that high resolution is needed in
the interfacial region to achieve high accuracy. For equation (1) and equation (2), it is notable that when
ϵ is small, if a uniform mesh is used, the mesh has to be very fine. Therefore, an adaptive mesh, which is
concentrated around the interfacial region, is a good remedy for dealing with these issues. Moreover, since
the governing equation is a time dependent partial differential equation, the mesh should move according to
the dynamics of the interface. This calls for moving grids in numerical implementation. In this paper, we
adopt the moving grid deformation algorithm developed recently [10] to improve the numerical accuracy.
There are two basic types of grid generation methods, one is calculating the new mesh coordinates x by
minimizing a variational form [15, 18], the other is calculating the mesh velocity Vmesh = xt by using
a Lagrangian like formulation [6, 10, 12]. The moving grid deformation method in this paper belongs to
the velocity based methods [6, 12]. Numerical experiments are given to show that the applied moving grid
deformation technique can greatly improve the accuracy and efficiency of the numerical algorithms. The
applied moving grid algorithm has several advantages: only linear Poisson problems on fixed meshes are
needed to be solved, monitor functions can be obtained directly from distance functions or error distributions,
mesh tangling can be prevented, and the data structure for the mesh nodes is always the same as for the
starting mesh.

The organization of this paper is as follows. In section 2, we present different algorithms for handling the
nonlinear term, the finite element discretization, and the linear and nonlinear solvers for the deduced systems.
In section 3, the moving grid deformation algorithm is introduced. In section 4, numerical experiments are
conducted to compare the different algorithms. Conclusions are drawn in the last section.

2 Numerical Algorithms.

2.1 Time Stepping Schemes.
Since the explicit treatment of the diffusion term leads to stability problems, we will use implicit schemes

for the diffusion term. Therefore, we mainly discuss on how to handle the nonlinear term. Note that f(ϕ) is
a cubic polynomial, one may approximate it by the following ways.

Algorithm 2.1. Solve for ϕ(tn+1) by implicitly treating the Laplacian term and explicitly treating the
nonlinear term:

ϕ(tn+1)− ϕ(tn)

∆t
− θ∆ϕ(tn+1) = (1− θ)∆ϕ(tn)−

1

ϵ2
f(ϕ(tn)). (5)

Here and thereafter θ ∈ [0, 1] is an adjustable parameter.
Algorithm 2.2. By using the solution of the previous time step and applying the linear approximation

f(ϕ(tn+1)) = (ϕ2(tn+1)− 1)ϕ(tn+1) ≈ (ϕ2(tn)− 1)ϕ(tn+1),

we have the following scheme:

ϕ(tn+1)− ϕ(tn)

∆t
+ θ

[
−∆ϕ(tn+1) +

1

ϵ2
(ϕ(tn)

2 − 1)ϕ(tn+1)

]
= −(1− θ)

[
−∆ϕ(tn) +

1

ϵ2
f(ϕ(tn))

]
. (6)
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Algorithm 2.3. Find ϕ(tn+1) by the following completely implicit and nonlinear solver:

ϕ(tn+1)− ϕ(tn)

∆t
+ θ

[
−∆ϕ(tn+1) +

1

ϵ2
f(ϕ(tn+1))

]
= −(1− θ)

[
−∆ϕ(tn) +

1

ϵ2
f(ϕ(tn))

]
. (7)

It is easy to see that when θ = 0, (5) and (7) degenerate to the Forward Euler scheme (4); when θ = 1.0,
(7) is the Backward Euler scheme; when θ = 0.5, (7) is the second order accurate Crank-Nicolson scheme.
Here and thereafter, θ will be set as 0.5 or 1.0 for discussions and comparisons. We comment here that the
parameter θ is included in all algorithms not only because it may improve the numerical accuracy, but also
because θ is a flexible parameter and the above one step θ schemes can be naturally extended to fractional θ
schemes [1], in particular when one needs to couple the TDGL model or the Allen-Cahn model (2) with the
Navier-Stokes equations [1].

Actually, some of the above algorithms have been used as sub-solvers in several applications like mov-
ing contact line and two phase flow dynamics. However, it seems that there is no systematic comparison
and benchmark test for all these algorithms. We note that the time error can be analyzed based on Taylor
expansion [19]. For illustration, the local truncation error of the Algorithm 2.3 with θ = 0.5 is

error = ϕ(tn+1)−ϕ(tn)
∆t − 1

2

(
∂ϕ(tn+1)

∂t + ∂ϕ(tn)
∂t

)
= O

(
∆t2 ∂3ϕ

∂t3

)
.

Moreover, it is reasonable to assume that, in the interfacial region [19],

∂mϕ

∂tm
∼ 1

ϵm
, m = 1, 2, 3, ...

Therefore, the leading order of the time error is

error = O
(
∆t2

ϵ3

)
.

In comparison, if θ = 1.0 in Algorithm 2.3, the leading order of the time error is O
(
∆t
ϵ2

)
. For Algorithm

2.1 with θ = 1.0, the leading order time error analysis can be obtained by using the same way [19]:

error = ∂ϕ(tn+1)
∂t − ϕ(tn+1)−ϕ(tn)

∆t + 1
ϵ2 [f(ϕ(tn+1))− f(ϕ(tn))]

= ∆t
2

∂2ϕ(tn+1)
∂t2 + ∆t

ϵ2
∂ϕ(tn+1)

∂t f
′
(ϕ(tn+1)) +O

(
∆t2 ∂3ϕ

∂t3 + ∆t2

ϵ2
∂2ϕ
∂t2

)
= O

(
∆t
ϵ3

)
.

This implies that the error from the explicit treatment of the nonlinear term is dominant. Similarly, for Algo-
rithm 2.1 with θ = 0.5, the time error, to leading order, again comes from the nonlinear term 1

ϵ2 [f(ϕ(tn+1))−
f(ϕ(tn)))]. More precisely,

error = ϕ(tn+1)−ϕ(tn)
∆t − 1

2

(
∂ϕ(tn+1)

∂t + ∂ϕ(tn)
∂t

)
+ 1

2ϵ2 [f(ϕ(tn))− f(ϕ(tn+1))]

= O
(
∆t2 ∂3ϕ

∂t3

)
+O

(
∆t
ϵ3

)
= O

(
∆t
ϵ3

)
.

From the analysis, we note that although the corresponding time errors (to the leading order) are of the same
order for θ = 1.0 and θ = 0.5, but the magnitude of the error for the case θ = 0.5 is much smaller (since
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there is a scaling factor 0.5 in front of the nonlinear term) than the case θ = 1.0. This observation is further
verified by the numerical experiments. For Algorithm 2.2, the time error can be analyzed in the same way.
The leading order of time error for Algorithm 2.2 is again O

(
∆t
ϵ3

)
, no matter θ = 0.5 or θ = 1.0. The

scaling factor θ will lead to different magnitude of the time error. One can expect that the algorithm with
θ = 0.5 outperforms better than the case θ = 1.0.

By comparing the leading order of the time errors, we see that Algorithm 2.3 is much better than
Algorithm 2.1 and Algorithm 2.2. Algorithm 2.3 can achieve the same accuracy as Algorithm 2.1, even
the time step size used is much larger than that for Algorithm 2.1 and Algorithm 2.2. Furthermore, even
for the same algorithm, the choices of θ will affect the total numerical errors. We further justify these points
by the numerical experiments in Section 4.

2.2 Finite Element Approximation.
Let L2(Ω) be the space of square integrable functions with norm denoted by || · || and inner product (·, ·).

We denote Th as a quasi-uniform quadrilateral decomposition of Ω and assume that Ω̄ = ∪K∈Th
K̄. In this

work, Q1 elements or Q2 elements are used for discretiazation and the corresponding finite element space
is denoted as Φh.

With the notations defined as above, the full discrete scheme based on (7) reads as: Given the solution
ϕ(tn) ∈ Φh, find ϕ(tn+1) ∈ Φh such that

(ϕ(tn+1), ψ) + θ∆t

[
(∇ϕ(tn+1),∇ψ) +

1

ϵ2
(f(ϕ(tn+1)), ψ)

]
= (ϕ(tn), ψ)

−(1− θ)∆t

[
(∇ϕ(tn),∇ψ) +

1

ϵ2
(f(ϕ(tn)), ψ)

]
, ∀ψ ∈ Φh. (8)

Similarly, the full discrete schemes of (5) and (6) are

(ϕ(tn+1), ψ) + θ∆t(∇ϕ(tn+1),∇ψ) = (ϕ(tn), ψ)

−(1− θ)∆t(∇ϕ(tn),∇ψ) + ∆t
1

ϵ2
(f(ϕ(tn)), ψ), ∀ψ ∈ Φh (9)

and

(ϕ(tn+1), ψ) + θ∆t

[
(∇ϕ(tn+1),∇ψ) +

1

ϵ2
(ϕ(tn)

2 − 1)(ϕ(tn+1), ψ)

]
= (ϕ(tn), ψ)

−(1− θ)∆t

[
(∇ϕ(tn),∇ψ) +

1

ϵ2
(f(ϕ(tn)), ψ)

]
, ∀ψ ∈ Φh. (10)

For the full discrete schemes, the error analyses are not easy. Some convergence analyses of the full
discrete scheme (8) are established based on an abstract argument (for instance, [7, 8]). We are interested
in the results which can provide information for the choice of h in connection with ϵ. The authors of [7]
consider a coupled Allen-Cahn-Navier-Stokes model. For the semi-discrete scheme (the discretization is
only applied for spatial variable, not for the time variable) used in [7], it is proved that if h = o(ϵ2), then
the scheme with the first order spatial accuracy converges (Theorem 3.1 in [7]). However, it seems that the
assumption h = o(ϵ2) is still too strong. It is notable that Zhang and Du in [19] provide some tentative
analysis based on a different approach. By conducting numerical experiments and the analysis of the error
for the bending energy approximation, it is argued that one can choose h to be of order O (ϵα), where α > 1
and depends on the order of the spatial accuracy (More clearly, α will be closer to 1 if higher order elements
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are used). This means that the mesh should be refined as ϵ gets smaller and smaller. Indeed, all these
investigations provide some arguments of the error analysis. However, it is still not easy to tell under what
condition which error is dominant. The error from the model approximation, the spatial error and the time
error all contribute to the total error. We conduct numerical experiments to provide some information.

Let Nϕ be the dimension of the space Φh. The finite element solution at tn can be expressed as

ϕ(tn) =

Nϕ∑
i=1

ϕni bi(x),

where Φn = (ϕn1 , ϕ
n
2 , ..., ϕ

n
Nϕ

)T is the set of coefficients for the phase field variable, and b = (b1, b2, ..., bNϕ
)T

is the set of basis functions. We introduce the following matrices and vectors: mass matrix M, stiffness ma-
trix L, a vector N(Φn+1), and the right hand side F, with the following components:

M(i, j) =

∫
Ω

bibjdΩ, L(i, j) =

∫
Ω

∇bi · ∇bjdΩ, 1 ≤ i, j ≤ Nϕ,

N(Φn+1)(i) =

∫
Ω

f(ϕ(tn+1))bidΩ, 1 ≤ i ≤ Nϕ,

F(i) =

∫
Ω

ϕ(tn)bidΩ− (1− θ)∆t

∫
Ω

∇ϕ(tn) · ∇bi +
1

ϵ2
f(ϕ(tn))bidΩ, 1 ≤ i ≤ Nϕ.

Then, the global system for (8) can be written as

[M+ θ∆tL]Φn+1 + θ∆t
1

ϵ2
N(Φn+1) = F. (11)

Similarly, the algebraic systems for (9) and (10) are

[M+ θ∆tL]Φn+1 = F̄ (12)

with
F̄(i) =

∫
Ω

ϕ(tn)bidΩ− (1− θ)∆t

∫
Ω

∇ϕ(tn) · ∇bi +
∫
Ω

1

ϵ2
f(ϕ(tn))bidΩ

and
[(1 + θ∆t

1

ϵ2
(ϕ(tn)

2 − 1))M+ θ∆tL]Φn+1 = F̃ (13)

with
F̃(i) =

∫
Ω

ϕ(tn)bidΩ− (1− θ)∆t

∫
Ω

∇ϕ(tn) · ∇bi +
1

ϵ2
f(ϕ(tn))bidΩ.

2.3 Linear and Nonlinear Solvers.
For the algebraic system (11), the nonlinear solver is a Newton iteration. We implement it as a special

case of the defect correction method [16]. Specifically, for a given nonlinear system

T(x)x = g,

we apply the iteration
x(n+1) = x(n) + ωnT̃−1(x(n))(g − T (x(n))x(n)),
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where T̃−1(x(n)) can be an approximation of the Frechét-derivative of T to the last iterate x(n), and ωn is
a relaxation parameter in each step of the iteration. More precisely, we take

T̃(Φ(n)) = M+ θ∆tL+ θ∆t
1

ϵ2
N

′
(Φ(n))

with

N
′
(Φ(n))(i, j) =

∫
Ω

((3

Nϕ∑
k=1

Φ
(n)
k bk)

2 − 1)bibjdΩ,

where Φ(n) = (Φ
(n)
1 ,Φ

(n)
2 , ...,Φ

(n)
Nϕ

)T is the set of coefficients of the solution at the n-th step of the nonlinear
iteration. We stop the Newton iteration if a maximum iteration counter is exhausted, n ≥ NMAX , or if the
norm of the nonlinear residual is sufficiently small:

||T(x(n+1))x(n+1) − g||l2 < 1.0× 10−8.

The linear solvers for (12), (13), and each step of the Newton iteration are all based on a geometric
multigrid algorithm [16]. In each multigrid iteration, several steps of incomplete LU decomposition are
used for presmoothing and postsmoothing since Gauss-Seidel iteration or Jacobi iteration will not work for
the TDGL model with small ϵ. Gauss elimination is used as the coarsest grid solver. We stop the multigrid
iteration if the l2− norm of the relative residual is smaller than 1.0× 10−6.

3 Moving Grid Deformation Based Algorithms.
In many PDE problems, adaptive grids are necessary. For some particular problems, locally adapted grids

can improve both the accuracy and the efficiency. In this work, we adopt the grid deformation algorithm
newly developed in [10, 11]. It is a generic approach for generating computational grids and has been
successfully applied to both stationary and time dependent partial differential equations [6, 10, 12, 17]. In
this section, we first introduce the detailed algorithm, then describe on how to combine the adaptive grid
with the algorithms in Section 2.

3.1 Grid Deformation Algorithm.
Generally speaking, grid deformation is constructing a transformation B, from computational space Ω

(with coordinate xc) to physical space Ω̂ (with coordinate x), x = B(xc). For simplicity, we assume
that Ω̂ = Ω is a two dimensional domain, although the deformation algorithm [10, 11] is valid for both
two dimensional and three dimensional problems. To introduce the algorithm, we import the notations: a
weighting function g(x) > 0, a monitor function m(x) > 0, and the Jacobian matrix of the transformation
∂x
∂xc

.
The proposed grid deformation algorithm in [10] is to construct a bijection B satisfying

g(xc)

∣∣∣∣det
(
∂x

∂xc

)∣∣∣∣ = m(B(xc)), xc ∈ Ω, (14)

and
B : ∂Ω → ∂Ω. (15)
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It is easy to see that (15) means that the bijection B maps the boundary nodes again to boundary nodes. To
have a deeper understanding of (14), we apply integration on an element T ⊂ Ω

S(B(T )) :=

∫
B(T )

1dx =

∫
T

∣∣∣∣det
(
∂x

∂xc

)∣∣∣∣ dxc,

where S(B(T )) is the area of the mapped element. Using the 1× 1 quadrature rule in the above integral and
using (14), we see that

g(x∗)
S(B(T ))

S(T )
= m(B(x∗)) +O(h). (16)

Here S(T ) is the area of T and x∗ is the center of T . From (16), we observe that m(x) actually describes
the relative growth or shrinkage of the element with respect to the undeformed mesh if g ≡ 1 (This special
case has been investigated by Liao in [12].). While, both g and m can be more general. In the following
algorithm, we consider g to be the area distribution on the undeformed mesh and m shall be the absolute
mesh size distribution of the target grid. The basic idea for grid deformation is calculating the mesh velocity
by using a Lagrangian-like formulation [10, 12]. The construction of the transformation B is realized via
the following four steps:

Algorithm 3.1.
1. Calculate the scaling factors cm and cg such that

cm

∫
Ω

1

m(x)
dx = cg

∫
Ω

1

g(x)
dx = |Ω|.

Denote the reciprocals of the scaled functions m and g by m̃ and g̃ respectively, i.e.,

m̃ =
cm
m
, g̃ =

cg
g
.

2. Compute a grid-velocity vector field v : Ω → R2 by satisfying the following linear Poisson problem

−∇ · v(x) = m̃(x)− g̃(x) and v(x) · n = 0, x ∈ ∂Ω. (17)

Here v = ∇w withw being a scalar function and n is the outer normal vector of the domain boundary.

3. For each grid point x, solve the following ODE system

∂G(x, t)

∂t
= η(G(x, t), t), 0 ≤ t ≤ 1, G(x, 0) = x, (18)

with

η(y, s) :=
v(y)

sm̃(y) + (1− s)g̃(y)
, y ∈ Ω, s ∈ [0, 1] .

4. Get the new grid points via
B(x) := G(x, 1).

The most time consuming part of the above algorithm is the second step. (17) defines a Poisson problem
with pure Neumann boundary condition. We solve the Poisson problem by using a state of the art multigrid
algorithm. Therefore the whole algorithm is very efficient. The third step of the above algorithm can be
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solved by existing ODE solvers like Runge-Kutta method. We apply explicit Euler scheme to (18) and it
will not affect the global efficiency too much [10, 11].

The grid deformation algorithms proposed in [10, 11] has several advantages over the existing works.
Fisrstly, it is a generalization of Liao’s and Moser’s work [6, 12], and it prevents mesh tangling and offers
precise control over the element volumes. Secondly, it can be applied for any kind of discretizations, finite
element, finite difference, finite volume, or whatever. Thirdly, its numerical realization requires only a
Poisson problem and an initial value problem. Many other deformation methods, in contrast, involve the
solution of complicated nonlinear partial differential equations. Fourthly but not lastly, the data structure for
the mesh nodes is always the same as for the starting mesh.

As an example, we show an adaptive mesh concentrated at an elliptic interface in Figure 1. The domain

Figure 1: A 32 × 32 uniform grid of the computational domain is deformed into an adaptive grid with grid
points concentrated near the elliptic interface.

Ω = [0, 1] × [0, 1] is triangulated by an equidistant tensor product mesh. The ellipse is defined by the
following parameterized form:

x(s) = 0.5 + 0.12cos(s), y(s) = 0.5 + 0.22sin(s), s ∈ [0, 2π].

Here, the monitor function is defined as

m(x) = min {1,max {d, δ}} , d :=
√
(x− x(s))2 + (y − y(s))2, x = (x, y) ∈ Ω.

We set δ = 0.01. It means that on the deformed grid, the largest cell has 100 times the area of the smallest
one. In this example, the monitor function is chosen according to the distance to the given ellipse. Thus, the
grid is concentrated around its contours. Actually, one may add more parameters to the distance function.
For instance, one can use Cdβ to replace the distance function d, where C and β are used to control the
magnitude of mesh concentration. It is true that the monitor function should be problem dependent. We try
to give some discussions on the monitor function for the model studied in this paper. One may also try other
choices of monitor functions, for instance, one can determine the monitor function according to the solution
error or the boundary curvature [3, 18].
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3.2 Moving Mesh PDE Formulation.
When time dependent problems are solved, in particular those problems with the evolution of singulari-

ties or large variations, moving grids are necessary for improving the accuracy. Basically, there are two ways
in the implementations of moving grid techniques for time dependent problems. One is using moving mesh
PDE (MMPDE) formulation, incorporating the mesh velocity into the original PDE [15]. The other is using
the original governing equation, while interpolating the solutions between the old mesh and the new mesh in
each time step of the computation [20]. The first one is equivalent to variable substitution. The second one
is based on the mapping between different meshes. To avoid the interpolation between old mesh and new
mesh, our algorithms are based on the MMPDE formulation.

To have a clear picture of the MMPDE formulation of (1), we write the governing equation in the new
coordinate (xc, t) through the transform x = x(xc, t). Denote ϕ((x(xc, t), t) as ψ(xc, t), then

∂ψ(xc, t)

∂t
=
∂ϕ((x(xc, t), t)

∂t
=
∂ϕ((x(xc, t))

∂t
+ ẋ · ∇ϕ(x, t),

where ẋ = ∂x
∂t represents the derivative of x with respect to t. To simplify the notation, we shall use the

same notations to denote the functions ϕ, before and after the transformation. Therefore, the moving mesh
PDE formulation for (1) is as follows [15],

∂ϕ

∂t
− ẋ · ∇ϕ = −(−∆ϕ+

1

ϵ2
f(ϕ)). (19)

Now, let us design algorithms based on the MMPDE formulation (19). Note that ẋ is also a time deriva-
tive, we shall not scale θ or 1−θ for the term ẋ ·∇ϕ. Thus, the algorithm based on the MMPDE formulation
is as follows

ϕ(tn+1)− ϕ(tn)

∆t
− ẋn+1 · ∇ϕ(tn+1) + θ

[
−∆ϕ(tn+1) +

1

ϵ2
f(ϕ(tn+1))

]
=

−(1− θ)

[
−∆ϕ(tn) +

1

ϵ2
f(ϕ(tn))

]
, (20)

where ẋn+1 is an approximation of the velocity speed at time step tn+1. More precisely, we calculate the
mesh speed at tn+1 by

ẋn+1 ≈ xn+1 − xn

∆t
. (21)

Similarly, the corresponding MMPDE formulation based algorithms for Algorithm 2.1 and Algorithm
2.2 are

ϕ(tn+1)− ϕ(tn)

∆t
− ẋn+1 · ∇ϕ(tn+1)− θ∆ϕ(tn+1) = (1− θ)∆ϕ(tn)−

1

ϵ2
f(ϕ(tn)) (22)

and

ϕ(tn+1)− ϕ(tn)

∆t
− ẋn+1 · ∇ϕ(tn+1) + θ

[
−∆ϕ(tn+1) +

1

ϵ2
(ϕ(tn)

2 − 1)ϕ(tn+1)

]
= −(1− θ)

[
−∆ϕ(tn) +

1

ϵ2
f(ϕ(tn))

]
. (23)

In sum, the complete algorithm is using Algorithm 3.1 to generate a new mesh xn+1 and using (21) to
calculate the mesh speed, then solving for ϕ(tn+1) by one of (20), (22) and (23).
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4 Numerical Experiments.
In this section, we compare the accuracy and efficiency of the different algorithms. The benchmark

problems concern the shrinkage of circular bubbles. Under the mean curvature force, the circular interface
will shrink and eventually vanish. However, the numerical vanishing speed will be affected by the numerical
scheme used, the time stepsize and the spatial approximations. Therefore, we will first check which algo-
rithm can accurately capture the vanishing speed on the uniform mesh. Later, we show that the accuracy
and the efficiency of the algorithms can be greatly improved by the moving grid deformation technique.
Comparisons with the numerical results obtained by using the uniform grid are also reported to verify the
advantages of the moving grid deformation based algorithm.

Example 1. This example is a well-known benchmark problem which has been tested in [5] and [15].
In [5], the computational domain is [0, 256]× [0, 256] and the interface thickness ϵ = 1. The initial solution
is given by

ϕ(x, 0) = −tanh

(√
(x− 128)2 + (y − 128)2 − 100

ϵ

)
. (24)

This initial solution represents a circular bubble centered at (128, 128) with radius being equal to 100. The
order parameter values inside the circle are +1 and −1 outside. Compared with the domain size, the interface
thickness is very small. The solution of equation (1) is unstable and the bubble will shrink [2]. Note that the
TDGL model is an approximation of the sharp interface model, by the theory of the sharp interface model,
the shrinking speed of the sharp interface is given by

dR

dt
= − 1

R
, (25)

where R is the radius of the circle at a given time. The negative sign means that the circle shrinks towards
its center. Furthermore, the vanishing speed (25) gives the area of the circle at the given time t,

A = πR2
0 − 2πt,

where R0 = 100 is the initial radius. Therefore, the circular bubble, with the initial solution given by (24),
vanishes at t = 5000. After mapping the domain to [−1, 1]× [−1, 1] and scaling the time variable t with ϵ2,

we obtain equation (1) and the initial profile is given by ϕ(x, 0) = −tanh
(√

x2+y2−r0
ϵ

)
, where ϵ = 1

128

and r0 = 100
128 . Then the bubble will vanish at t = 5000ϵ2.

For comparing the different algorithms, we measure the numerical results by computing the accumulated
error. More precisely, if the numerical bubble does not vanish at t = 5000ϵ2 and the area is Anum, then the
accumulated error is defined as

error =
Anum

πr20
.

We calculate Anum by

Anum =
1

2

∫
Ω

[ϕh(x, 5000ϵ
2) + 1]dΩ. (26)

If the numerical results give that the bubble vanishes at a time t = tnum < 5000ϵ2, then the accumulated
error is computed by

error = −πr
2
0 − 2πtnum
πr20

.
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El θ ∆t(ϵ2) h(ϵ) Err(%)

Q1

1 1.0 1 −4.64
0.5 1.0 1 −4.6
1 0.25 1 −4.59
1 0.5 0.5 −1.31
0.5 0.5 0.5 −1.29
0.5 0.25 0.5 −1.28

Q2

1 1.0 2 0.80
0.5 1.0 2 0.93
1 0.5 2 0.89
0.5 1.0 1 −0.26
1 0.25 1 −0.22
0.5 0.25 1 −0.2

Table 1: Numerical results based on Algorithm 2.3.

El θ ∆t(ϵ2) h(ϵ) Err(%) Time Err (%)

Q1

1 0.25 1 −14.38 −9.79
1 0.125 1 −9.48 −4.89
0.5 0.25 1 −9.47 −4.88
0.5 0.125 1 −7.03 −2.44

Q2

1 0.25 2 −9.4 −10.29
0.5 0.25 2 −4.25 −5.14
1 0.125 1 −5.2 −5.0
0.5 0.125 1 −2.69 −2.49

Table 2: Numerical results based on Algorithm 2.2.

Here, the negative sign means that the numerical bubble shrinks faster than the sharp interface.
We first use uniform grids to compare different algorithms. Different time step sizes and mesh sizes

are used for configurations. Recall that the leading order of the local truncation error is of order O(∆t
ϵ3 ) for

Algorithm 2.1 and Algorithm 2.2 and note that the quantity defined by (26) involves an integral over the
domain. The time error based on these two algorithms, to leading order, should be O(∆t

ϵ2 ). Although the
leading order of time error for Algorithm 2.3 is better, however we note that the linear system for 2D or 3D
problem is too stiff to solve if the time step size is of order O(ϵ). Therefore, the time step sizes are set to be
proportional to ϵ2 for all algorithms, and the mesh sizes are chosen to be proportional to ϵ.

We first analyze the results obtained by Algorithm 2.3. We note that, for fixed mesh size, the error will
not improve too much by reducing the time step size. The error gets saturated because the time step size is
very small and the spatial errors are dominant for all the configurations. This observation coincides with the
numerical results obtained by Zhang and Du [19]. They test a similar one dimensional benchmark problem
and note that the spatial error is dominant if the time step size is small enough. Another observation is that,
Q2 element based results are much better than Q1 element based results. For instance, when ∆t = ϵ2 and
θ = 1.0, the accumulated error is 0.81%. This clearly shows that high order discretization can reduce the
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El θ ∆t(ϵ2) h(ϵ) Err(%) Time Err (%)

Q1

1 0.5 1 12.2 16.79
1 0.25 1 4.45 9.04
1 0.125 1 0.03 4.62
0.5 0.5 1 2.34 6.93
0.5 0.25 1 −0.1 4.49
0.5 0.125 1 −1.3 3.29

Q2

1 0.25 2 9.92 9.03
1 0.125 2 5.65 4.76
1 0.25 1 8.94 9.14
1 0.125 1 4.62 4.82
0.5 0.25 1 2.39 2.59
0.5 0.125 1 0.93 1.13

Table 3: Numerical results based on Algorithm 2.1.

accumulated error. For Algorithm 2.3, there seems to be no significant difference for the results by using
different θ (because time step size is very small, spatial error is dominant). However, we do find that when
θ = 0.5, it allows larger time step size than the case θ = 1.0. We report here that if Q1 is used and h = ϵ,
∆t can be as large as 2.0ϵ2 when θ = 0.5, but this setting is unstable for the case θ = 1.0. In addition, we
mention here that the maximum ∆t = 0.5ϵ2 is applied for the semi-implicit Fourier spectral method in [5].

For Algorithm 2.2, we observe that the linearization technique tends to make the bubble vanishing faster
than expected. The numerical results reported here show that all the accumulated errors have negative sign.
However, we do see that by setting θ = 0.5, one can get better results than those based on θ = 1.0. Given
a time step size, if the spatial error is small (for instance, Q2 element is used), the numerical error based
on θ = 0.5 is almost half of that based on θ = 1.0. We also see that the time error is reduced to be half if
the time step size is refined once. Therefore, we conclude that one can improve the numerical accuracy by
taking θ = 0.5, using a higher order element and setting a smaller time step size for this algorithm.

For algorithm Algorithm 2.1, for relative large time step size, if the element and the mesh size are fixed,
then the results based on θ = 0.5 are much better than those based on θ = 1.0. This clearly shows that
the numerical results may be improved by choosing proper . Secondly, for fixed mesh size, by reducing
the time step size, the numerical accuracy can be improved. For Algorithm 2.1 and Algorithm 2.2, we
calculate the approximate time error by deducting the corresponding spatial error from the total error. For
instance, when h = and Q1 element is used, the spatial error is around 4.59%. We therefore deduct this
number for Algorithm 2.1 and Algorithm 2.2 if h = and Q1 elements are used. By this way, we see that
the approximate time errors based on these two algorithms seem to be proportional to ∆t

ϵ2 . We also note that
if the time step size is properly selected, the total error by using Algorithm 2.1 is very small. The total error
is very small perhaps because the spatial error is well balanced with the time error.

We report here that it only takes 2 to 4 steps for the nonlinear iteration in Algorithm 2.3 to converge,
because the nonlinear term in TDGL model is of polynomial type. Moreover, Algorithm 2.3 allows for
large time step size. Therefore, the overall computational costs for Algorithm 2.3 is smaller than those for
Algorithm 2.1 and Algorithm 2.2. In sum, we conclude that Algorithm 2.3 outperforms the other two
algorithms.

To improve the accuracy and efficiency of the above algorithms, it is better to use moving grid defor-
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Figure 2: The snapshots of the numerical interface at t = 0, 1000ϵ2, 2000ϵ2, 3000ϵ2, 4000ϵ2, 5000ϵ2.

Figure 3: The snapshots of the mesh at t = 0, 1000ϵ2, 2000ϵ2, 3000ϵ2, 4000ϵ2, 5000ϵ2.
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mation algorithms so that they can accurately track the interfacial dynamics. In Figure 2 and Figure 3, we
show the snapshots of the numerical interface and the corresponding adapted meshes. Numerical results are
obtained by using (20) and the parameters are: Q1 elements, θ = 1.0 and ∆t = ϵ2. The mesh size in the
computational domain is h = 4ϵ. The monitor function is m(x, t) = min{1,max{d(x,Γ)/(10ϵ), 0.05}},
where d(x,Γ) is the distance to the interface and can be obtained by using the theory (25) or by recon-
struction according to the numerical solution. With this setting, the accumulated error is 1.08%. Since the
maximum degree of freedoms is much less than that used in the uniform mesh cases (h = 4ϵ versus h = ϵ),
the overall computation cost for moving grid deformation based algorithm is much less than that for uniform
grid based algorithm. Moreover, by using moving grid deformation, we observe that the accuracy of the
solution is greatly improved. We comment here that better monitor function can be designed to have further
improvement of the accuracy.

We also combined the moving grid deformation algorithm with Algorithm 2.1 and Algorithm 2.2. For
comparing the efficiency, we list the total CPU time for the moving grid deformation based algorithms in
Table 4. We report here that the total CPU time for Algorithm 2.3 with the parameters setting h = ϵ,
∆t = ϵ2 and Q1 element is 31784 seconds. For moving grid based algorithms, we set h = 4ϵ. in the
computational domain. From the numerical experiments, we observe that when θ = 1.0 both Algorithm 2.1
and Algorithm 2.2 are unstable if ∆t ≥ 0.2ϵ2. The instability perhaps is caused by the fact that the time
step size is affected by the local mesh size. However, if we set θ = 0.5 in these two algorithms, the time
step size can be relative large and the computational costs are much less than the uniform grid based results.
Moreover, for Algorithm 2.3, the time step size seems to be independent of the local mesh size. The total
CPU time of Algorithm 2.3 with moving grids is much less than that of uniform mesh based algorithm.
Therefore, we conclude that the moving grid deformation technique can significantly improve the efficiency.

Algorithm Element θ ∆t(ϵ2) h(ϵ) CPU time

Alg2.1 Q1
1.0 0.2 4 unstable
1.0 0.2 4 23671

Alg2.2 Q1
0.5 0.2 4 unstable
0.5 0.2 4 24634

Alg2.3 Q1 0.5 1.0 4 9919
Q2 0.5 1.0 8 3273

Table 4: CPU time (in seconds) for moving grid deformation based algorithms.

Example 2. The second example is concerned with the shrinking of elliptic bubble. The domain is
Ω = [−1, 1]× [−1, 1]. The interface thickness is ϵ = 0.05. The initial solution is

ϕ(x, y, 0) = tanh
(
1

ϵ

(
x2

0.09
+

y2

0.025
− 1

))
. (27)

For comparisons, we solve this problem by using both uniform mesh based algorithm and moving grid
algorithm. For uniform mesh configuration, we set θ = 0.5, Q1 element, 512 × 512 tensor mesh, ∆t =
5.0×10−5. In Figure 4, we list the snapshots of the numerical interface at different time by using the uniform
mesh. For deformed mesh configuration, we use 64 × 64 grids in the computational domain and ∆t =
1.0×10−4, other settings are same as those used in the uniform mesh configuration. In Figure 5, we show the
snapshots of the deformed meshes. The monitor function is m(x, t) = min{1,max{0.25d0.4(x,Γ), 0.02}}.
Since the interface is not exactly known, we reconstruct the interface by first marking all elements where
the solution changes the sign, then taking the centers of these elements and using picewise linear splines to

15



Figure 4: The snapshots of the numerical interface at t = 0, 0.01, 0.03, 0.05, 0.07.

Figure 5: The adapted meshes at t = 0, 0.01, 0.03, 0.05, 0.07. (Numerical results obtained by using uniform
mesh)

connect all centers. By this way, the error of the approximation of the interface is less than the smallest mesh
size. The numerical results based on the uniform mesh show that the bubble vanishes at t = 0.07045. We
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also observe that the algorithm based on deformed meshes gives a very accurate result. Most importantly,
we see that the adapted grid is concentrated at the interfacial region.

5 Conclusions and Outlook.
Several numerical algorithms for solving the TDGL model have been proposed and tested. Moreover,

a new moving grid deformation technique is applied for improving the accuracy and efficiency of all algo-
rithms. Firstly, it is observed that the numerical scheme is crucial for providing accurate numerical solutions.
From the numerical experiments, we conclude that the nonlinear scheme (7) allows for large time step size
and gives more accurate results. Note that the nonlinear term is a polynomial of degree 3, therefore the
nonlinear solver converges in few iterations. Secondly, by using the moving grid deformation technique, we
see that numerical results are greatly improved for both the accuracy and efficiency. The applied grid defor-
mation algorithm is efficient and robust because only linear Poisson problems on fixed meshes are needed
to be solved and the mesh tangling can be prevented.

From the numerical studies, we also note some important problems: Firstly, more robust linear and
nonlinear solvers are necessary. Although the local truncation error analysis shows that the time step size
may be as large as O(ϵ) for Algorithm 2.3, but the linear and nonlinear solver will break down for 2D or
3D problem if the time step size is of order O(ϵ). Secondly, more studies are necessary to understand the
moving grid algorithm. In particular, how to design monitor functions so that the moving grids are aligned
with the solution of PDEs is not well understood. It is known that the monitor function should be problem
dependent and is crucial for moving grid based simulations. In this paper, we have tested the distance based
monitor function for the TDGL model. More works are necessary to understand the connections between
the monitor function and the solution.
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