

Simulation of "Extreme Fluids"

Examples, Challenges and Simulation Techniques for Flow Problems with Complex Rheology

H. Damanik, J. Hron, A. Ouazzi, <u>M. Razzaq, S. Turek</u> Institut für Angewandte Mathematik, LS III, TU Dortmund http://www.mathematik.tu-dortmund.de/lsiii

What are "Extreme" Fluids?

J technische universität dortmund

Complex rheology with "extreme" changes of viscosity:

- > Dependence of shear rate, pressure and temperature
- → Generalized Newtonian, resp., non-Newtonian rheology
- Viscoelastic effects
- → Extra-Polymer stress ("turbulence")
- Many interacting objects in the fluid
- \rightarrow Suspensions as particulate flow

- Special discretization/stabilization required
- Special solution techniques required
- Special software techniques required

Realization in *FeatFlow*

 HPC features: Moderately parallel GPU computing Open source 	Hardware -oriented Numerics	 Numerical features Higher order (Q2P (semi-) Implicit FD/ Semi-(un)structured dynamic adaptive g Fictitious Boundary Newton-Multigrid-ty 	: 1) FEM in space & FEM in time d meshes with rid deformation (FBM) methods /pe solvers
 Non-Newtonian flow module: generalized Newtonian model (Power-law, Carreau,) viscoelastic model (Giesekus, FENE, Oldroyd,) 	Multiphase flow mo • ℓ/ℓ – interfact • s/ℓ – interfact • $s/\ell/\ell$ – combine	dule (resolved interfaces): ce capturing (Level Set) ce tracking (FBM) ation of <i>l/l</i> and <i>s/l</i>	 Engineering aspects: Geometrical design Modulation strategy Optimization

Here: FEM-based tools for the accurate simulation of (multiphase) flow problems, particularly with complex rheology

Example: Screw Extruder (I)

- Numerical simulation of *(twin)screw extruders* for *polymer processing*
- Non-Newtonian rheological models (shear & temperature dependent) with non-isothermal conditions (cooling from outside, heat production)
- Analysis of the influence of local characteristics on the global product quality, prediction of hotspots and maximum shear rates
- Optimization of torque acting on the screws, energy consumption

technische universität

dortmund

Example: Screw Extruder (III)

technische universität

Governing Equations

Generalized Navier-Stokes equations

$$\rho(\frac{\partial}{\partial t} + u \cdot \nabla)u = -\nabla p + \nabla \cdot \sigma, \quad \nabla \cdot u = 0,$$

$$\rho c_p (\frac{\partial}{\partial t} + u \cdot \nabla)\Theta = k_1 \nabla^2 \Theta + k_2 D : D,$$

$$D(u) = \frac{1}{2} (\nabla u + (\nabla u)^T),$$

$$\sigma = \sigma_s + \sigma_p.$$

• Viscous stress

$$\sigma_s = 2 \eta_s(\dot{\gamma}, \Theta, p) D, \quad \dot{\gamma} = \sqrt{\operatorname{tr}(D(u)^2)}.$$

• Elastic stress

$$f_1(L,\sigma_p)\sigma_p + \Lambda \overset{\nabla}{\sigma_p} + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u).$$

• Viscous stress

$$\sigma_s = 2 \eta_s(\dot{\gamma}, \Theta, p) D, \ \dot{\gamma} = \sqrt{\operatorname{tr}(D(u)^2)}.$$

Power Law model

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{0}(\varepsilon + \dot{\gamma}^{2})^{(\frac{r}{2}-1)}, \ (\eta_{0} > 0, r > 1).$$

Generalized Cross model

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$
$$(\eta_{0} > \eta_{\infty} \ge 0, \ r > 1, \lambda > 0).$$

Constitutive Models (II)

Generalized upper convective constitutive model

$$f_1(L_k, tr(\sigma_p), \Lambda, \eta_p)\sigma_p + \Lambda \overset{\nabla}{\sigma_p} + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u),$$
$$\overset{\nabla}{\sigma_p} \coloneqq \frac{\partial \sigma_p}{\partial t} + u \cdot \nabla \sigma_p - \nabla u \cdot \sigma_p - \sigma_p \cdot \nabla u^T.$$

	f_1	F_2	F_3
Oldroyd-B/UCM	1	0	0
Giesekus	1	0	$lpha\sigma_p^2$
FENE-P/-CR	$f_1(L_k, tr(\sigma_p))$	0	0
White & Metzner $\Lambda = \Lambda(\dot{\gamma}), \eta_p = \eta_p(\dot{\gamma})$	1	0	0
PTT	$f_1(\eta_p, tr(\sigma_p), \Lambda)$	$\xi(D\sigma_p + \sigma_p D)$	0
Pom-Pom	$f_1(tr(\sigma_p), \Lambda)$	$F_2(G, \sigma_p, \Lambda)$	$F_3(G, \sigma_p^2, \alpha)$

Constitutive Models (III)

• Exemplary model: White-Metzner $\sigma_p + \Lambda(\dot{\gamma}) \overset{\nabla}{\sigma_p} = 2\eta_p(\dot{\gamma}, \Theta, p) D(u), \qquad \dot{\gamma} = \sqrt{2D(u):D(u)}$

> Larson:

$$\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + a\Lambda\dot{\gamma}} \qquad \eta_p(\dot{\gamma}, \Theta, p) = \frac{\eta_p}{1 + a\Lambda\dot{\gamma}}$$

> Cross:

$$\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + (L\dot{\gamma})^{1-n}} \qquad \eta_p(\dot{\gamma}, \Theta, p) = \frac{\eta_p}{1 + (k\dot{\gamma})^{1-m}}$$

> Carreau-Yasuda:

$$\Lambda(\dot{\gamma}) = \Lambda \left[1 + (L\dot{\gamma})^b \right]^{\frac{n-1}{b}} \quad \eta_p(\dot{\gamma}, \Theta, p) = \eta_p \left[1 + (k\dot{\gamma})^a \right]^{\frac{m-1}{a}}$$

Numerical Challenges

- Discretizations have to handle the following challenges points
 - > Stable FEM spaces for velocity/pressure and velocity/stress interpolation $Q_2 / Q_2 / P_1^{disc}$ or $\tilde{Q}_1 / \tilde{Q}_1 / P_0$ or $\tilde{Q}_2 / \tilde{Q}_2 / P_1^{disc}$
 - Special treatment of the convective terms: edge-oriented/interior penalty (EO-FEM), TVD/FCT
 - > High Weissenberg number problem (HWNP): LCR (Reformulation)
 - Locally adapted meshes due to steep gradients: GDM
- Solvers have to deal with different sources of nonlinearity
 - Nonlinearity: Newton method
 - > Strong coupling of equations: monolithic multigrid approach
- Complex geometries (and meshes)
 - FBM + distance based Level Set FEM for free interfaces

Problem Reformulation (I)

Elastic stress
$$\rightarrow (u, p, \sigma_p)$$

 $\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + 2\nabla \cdot \eta_s D + \nabla \cdot \sigma_p, \quad \nabla \cdot u = 0$

$$f_1(L,\sigma_p)\sigma_p + \Lambda \sigma_p^{\nabla} + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u)$$

Conformation stress \rightarrow (*u*, *p*, σ_c) is positive definite by design !!

Replace
$$\sigma_{p}$$
 in (1) with $\sigma_{p} = \frac{\eta_{p}}{\Lambda}(\sigma_{c} - I)$ \rightarrow special discretization: TVD

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) u = -\nabla p + 2\nabla \cdot \eta_{s} D + \frac{1}{\Lambda} \nabla \cdot \eta_{p} \sigma_{c}, \quad \nabla \cdot \mathbf{u} = 0,$$

$$\nabla_{\sigma_{c}} + F_{4}(\sigma_{c}, u) = 0$$
(2)

(1)

technische universität

dortmund

Problem Reformulation (II)

2 Observations:

- positive definite \rightarrow special discretizations like FCT/TVD
- exponential behaviour \rightarrow approximation by polynomials???

Problem Reformulation (III)

Driven Cavity: as We number changes from We=0.5 to We=1.5, the stress value jumps significantly

→ We= 0.5 → We= 1.5

Cutline of Stress_11 component at y = 1.0

- 11.2

--1.26

technische universität

Problem Reformulation (IV)

- **Experience**:
 - Stresses grow exponentially
 - Conformation tensor is positive by design
- Fattal and Kupferman:
 - > Take the logarithm as a new variable $\sigma_{LCR} = \log \sigma_c$ using the eigenvalue decomposition

$$\sigma_{LCR} = R \log(\lambda_{\sigma_c}) R^T$$

> Decompose the velocity gradient inside the stretching part

$$\nabla u = B + \Omega + N\sigma_c^{-1}$$

Remark for PTT only $L = B + \Omega + N\sigma_c^{-1}, L = \nabla u - \xi D$

LCR can be applied to all upper convective models

Problem Reformulation (V)

$$f_{1}(L, \sigma_{p})\sigma_{p} + \Lambda \sigma_{p}^{\nabla} + F_{2}(\sigma_{p}, D) + F_{3}(\sigma_{p}) = 2\eta_{p}D(u)$$

$$\sigma_{p} = \frac{\eta_{p}}{\Lambda}(\sigma_{c} - I)$$

$$\nabla u = \Omega + B + N\sigma_{c}^{-1}$$

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla\right)\sigma_{c} - (\Omega\sigma_{c} - \sigma_{c}\Omega) + 2B\sigma_{c} = \frac{1}{\Lambda}(I - \sigma_{c})$$

$$\sigma_{c} = \exp \sigma_{LCR}$$

$$\sigma_{LCR} = R \log(\lambda_{\sigma_{c}}) R^{T}$$

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla\right)\sigma_{LCR} - (\Omega\sigma_{LCR} - \sigma_{LCR}\Omega) - 2B = F_{4}(\sigma_{LCR}, u).$$

S. Turek | Simulation of Extreme Fluidics

Page 16

Full Set of Equations

• Generalized Newtonian (VP)

$$\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + \nabla \cdot \left(2\eta_s(\dot{\gamma}, \Theta, p) D(u) \right) + \frac{1}{\Lambda} \nabla \cdot \eta_p e^{\sigma_{LCR}}, \quad \nabla \cdot u = 0,$$

• Non-isothermal effect (T)

$$\rho c_p \left(\frac{\partial}{\partial t} + u \cdot \nabla\right) \Theta = k_1 \nabla^2 \Theta + k_2 \mathbf{D} : \mathbf{D},$$

• LCR equation (S)

$$\left(\frac{\partial}{\partial t}+u\cdot\nabla\right)\sigma_{LCR}-\left(\Omega\sigma_{LCR}-\sigma_{LCR}\Omega\right)-2B=F_4(\sigma_{LCR},u).$$

 $F_4(\sigma_{LCR}, u)$

Refers to all upper convective constitutive models

Examplary Viscoelastic Models

J technische universität dortmund

 $F_4 = \frac{1}{\Lambda} (e^{-\sigma_{LCR}} - I)$ **Oldroyd-B/UCM** $F_4 = \frac{1}{\Lambda} \left(e^{-\sigma_{LCR}} - I - \alpha e^{\sigma_{LCR}} - \left(e^{-\sigma_{LCR}} - I \right)^2 \right)$ Giesekus $F_{4} = \frac{1}{\Lambda} f(R)(e^{-\sigma_{LCR}} - I) / F_{4} = \frac{1}{\Lambda} (e^{-\sigma_{LCR}} - f(R)I)$ FENE-P/-CR $F_4 = \frac{1}{\Lambda(\dot{\nu})} (e^{-\sigma_{LCR}} - I)$ White-Metzner $F_4 = \frac{1}{\Lambda} (1 + \varepsilon (tr(e^{\sigma_{LCR}} - 3)))(e^{-\sigma_{LCR}} - I)$ Linear PTT $F_4 = \frac{1}{\Lambda} \exp(\varepsilon (tr(e^{\sigma_{LCR}} - 3)))(e^{-\sigma_{LCR}} - I)$ **Exponential PTT** $F_4 = -\frac{1}{\Lambda} \left(\left[f(\sigma_{LCR}) - 2\alpha \right] e^{\sigma_{LCR}} + \alpha e^{2\sigma_{LCR}} + (\alpha - 1)I \right)$ **Pom-Pom**

FEM Discretization

- High order $Q_2 / Q_2 / P_1^{disc}$ for velocity-stress-pressure
 - > Advantages:
 - Inf-sup stable for velocity and pressure
 - > High order: good for accuracy
 - Discontinuous pressure: good for solver & physics
 - > Disadvantages:
 - > Stabilization for same spaces for stress-velocity
 - > a single d.o.f. belongs to four elements (in 2D)

Compatibility condition between the stress and velocity spaces via EO-FEM

Variational Formulations

• Standard Navier-Stokes bilinear forms

$$a(u, v) = \int_{\Omega} \frac{1}{\Delta t} u \cdot v \, d\Omega + \int_{\Omega} 2\eta_s D(u) : D(v) \, d\Omega$$
$$b(p, v) = -\int_{\Omega} p \, \nabla \cdot v \, d\Omega$$

• Nonsymmetric bilinear forms due to LCR

$$c(\sigma_{LCR}, v) = \int_{\Omega} \exp(\sigma_{LCR}) : D(v) \, d\Omega$$

$$\widetilde{c}(\tau, u) = -2\int_{\Omega} B(\nabla u, \sigma_c) : \tau \ d\Omega$$

Variational Formulations

• Nonlinear tensor variational form due to LCR

$$d(\sigma_{LCR}, \tau) = \int_{\Omega} \left(\frac{1}{\Delta t} + (u \cdot \nabla) \right) \sigma_{LCR} : \tau \, dx$$
$$- \int_{\Omega} (\Omega \sigma_{LCR} - \sigma_{LCR} \Omega) : \tau \, dx - \int_{\Omega} F_4(\sigma_{LCR}, u) : \tau \, dx$$

• Nonsymmetric bilinear forms due to LCR

$$e(\Theta, \Phi) = \int_{\Omega} \left(\frac{1}{\Delta t} + u \cdot \nabla \right) \Theta \Phi \, dx + \int_{\Omega} k \nabla \Theta \cdot \nabla \Phi \, dx$$
$$- \int_{\Omega} 2\eta_s \left[D(u) : D(u) \right] \Phi \, dx - \int_{\Omega} D(u) : \exp(\sigma_{LCR}) \Phi \, dx$$

• Source term

$$l(u, \sigma_{LCR}, \Theta, p)$$

Problem Formulation

- Set $X := \left[H_0^1(\Omega)\right]^2 \times \left[L^2(\Omega)\right]^4 \times H^1(\Omega), \ Q := L_0^2(\Omega)$ $\widetilde{u} := (u, \sigma_{LCR}, \Theta)$ $\widetilde{A} := \begin{bmatrix} A & C & 0\\ \widetilde{C}^T & D & 0\\ E_{fD} & E_{\sigma_{LCR}} & E \end{bmatrix}$
- Find $(\tilde{u}, p) \in X \times Q$ such that $\langle K(\tilde{u}, p), (\tilde{v}, q) \rangle = \langle l(\tilde{v}, q) \rangle \quad \forall (\tilde{v}, q) \in X \times Q$ $K = \begin{bmatrix} \tilde{A} & \tilde{B} \\ B^T & 0 \end{bmatrix}$

(Non-)Classical saddle point problem

Compatibility Conditions

Compatibility condition

$$\sup_{u \in [H_0^1(\Omega)]^2} \frac{\int_{\Omega} \nabla \cdot u \, q \, dx}{\|u\|_{1,\Omega}} \ge \beta_1 \|q\|_{0,\Omega} \quad \forall q \in L_0^2(\Omega)$$
$$\sup_{\sigma \in [L^2(\Omega)]^4} \frac{\int_{\Omega} \sigma : \nabla u \, dx}{\|\sigma\|_{0,\Omega}} \ge \beta_2 \|u\|_{1,\Omega} \quad \forall u \in [H_0^1(\Omega)]^2$$

- Edge-oriented stabilization for
 - > Equal order finite element interpolation for velocity and stress
 - Convective dominated problem

$$\langle J_{\widetilde{u}}\widetilde{u},\widetilde{v}\rangle = \sum_{edgeE} \max(\gamma_u \eta_p h_E, \gamma_{\widetilde{u}} h_E^2) \int_E [\nabla \widetilde{u}] [\nabla \widetilde{v}] ds$$

with
$$\widetilde{u} = (u, \sigma, \Theta), \ \widetilde{v} = (v, \tau, \Phi)$$
 and $[\nabla \widetilde{u}][\nabla \widetilde{v}] = \sum_{i} [\nabla \widetilde{u}_{i}][\nabla \widetilde{v}_{i}]$

Then: Efficient Newton-type and multigrid solvers can be "easily" applied

Nonlinear Solver

• Damped Newton results in the solution of the form

$$R(x) = 0, x = (u, \sigma_{LCR}, \Theta, p)$$

$$x^{l+1} = x^{l} + \omega^{l} \left[\frac{\partial R(x^{l})}{\partial x} \right]^{-1} R(x^{l})$$

• **Inexact Newton:** Jacobian is approximated using finite differences

$$\left[\frac{\partial R(x^l)}{\partial x}\right]_{ij} \approx \frac{R_j(x+\varepsilon e_i) - R_j(x-\varepsilon e_i)}{2\varepsilon}$$

Jacobian Matrix

• The Jacobian matrix takes the form

$$J = \left[\frac{\partial R(x^n)}{\partial x}\right] = \begin{bmatrix} A & \widetilde{B}^T \\ B & 0 \end{bmatrix}$$

Generalized non-isothermal non-Newtonian problem

$$A = \begin{bmatrix} A_u & \tilde{C}^T & \tilde{H}^T \\ C & A_\sigma & 0 \\ H & 0 & A_\Theta \end{bmatrix}$$

Modified saddle point problem

Linear Solver

- Monolithic multigrid solver
 - > Standard geometric multigrid approach
 - > Full Q_2, P_1^{disc} restrictions and prolongations
 - Local MPSC via Vanka-like smoother

$$\begin{bmatrix} \widetilde{u}^{l+1} \\ p^{l+1} \end{bmatrix} = \begin{bmatrix} \widetilde{u}^{l} \\ p^{l} \end{bmatrix} + \omega^{l} \sum_{T \in T_{h}} \begin{bmatrix} J_{|T} \end{bmatrix}^{-1} \begin{bmatrix} R_{u}(\widetilde{u}^{l}, p^{l}) \\ R_{p}(\widetilde{u}^{l}, p^{l}) \end{bmatrix}_{|T|}$$

Fully implicit Monolithic FEM-Multigrid Solver

Linear Solver

Vanka-like Smoother

S. Turek | Simulation of Extreme Fluidics

Page 28

Linear Solver

Dynamic ALE-Mesh Adaptation

Advantages:

- Constant mesh/data structure \rightarrow GPU
- Increased resolution in regions of interest ("r-adaptivity")
- Anisotropic 'umbrella' smoother (with snapping/projection) or GDM
- Straightforward usage on general meshes in 2D / 3D

Quality of the method depends on the construction of the monitor function

- Geometrical description (solid body, interface triangulation)
- Field oriented description (steep gradients, fronts) \rightarrow numerical stabilization

Test: Oscillating Cylinder

- Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder
- Compare results for FBM, adapted FBM and adapted FBM + boundary projection/parametrization

Nodes concentrated near liquid-solid interface

Nodes projected and parametrized on boundary plus concentration of nodes near boundary

Oscillating Cylinder Results

Drag Coefficient C_d for Classic FBM, FBM+adapt, FBM+param+adapt

Oscillating Cylinder Results

Page 33

(Passive) Microswimmer

S. Turek | Simulations of Extreme Fluidics

Page 34

Sedimentation

Viscous Liquid Jets

J. M. Nóbrega et al.: The phenomenon of jet buckling: Experimental and numerical predictions

S. Turek | Simulation of Extreme Fluidics

technische universität

dortmund

Benchmark Problem

technische universität tU dortmund

•	Coarse grid and mesh information	Level	NEL	NMT	NMP
		1	520	572	1092
		2	2080	2184	4264
		3	8320	8528	16848
		4	33280	33696	66976
	n of for different problems	5	133120	133952	267072

• n.o.f. for different problems

Level	n.o.f. u	n.o.f p	n.o.f. T	n.o.f S	VP	VPT	VSP
0	1144	390	572	1716	1534	2106	3250
1	4368	1560	2184	6552	5928	8112	12489
2	17056	6240	8528	25584	23296	31824	48880
3	67392	24960	33696	101088	92352	126048	193449
4	267904	99840	133952	401856	367744	501696	769600
5	1068288	399360	534144	1602432	1467648	2001792	3070080

Newtonian Problem (VP)

Stokes			Navier	-Stokes Re=20		
0				2		
	0.0	0.24 0.4		0.0	0.24 0.	4
Level	Drag	Lift	N/L	Drag	Lift	N/L
1	3.112646	2.965870e-2	1/6	5.540999	9.447473e-3	5/2
2	3.134342	3.005275e-2	1/7	5.566928	1.046885e-2	5/2
3	3.140327	3.015909e-2	1/7	5.576088	1.056787e-2	5/2
4	3.141893	3.018665e-2	1/7	5.578652	1.060398e-2	5/2
5	3.142292	3.019366e-2	1/7	5.579313	1.061503e-2	5/2

Level independent solver

Power Law Problem (VP)

to r	technische	universität
ιU	dortmund	

$$\eta_s(\dot{\gamma},\Theta,p) = \eta_0(\varepsilon + \dot{\gamma}^2)^{(\frac{r}{2}-1)}, (\eta_0 > 0, r > 1).$$

- 10 ⁻²	0.0	0.000935	0.00178
$\mathcal{E} = 10$, r = 1.5		
Level	Drag	Lift	N/L
2	3.26420	-0.01339	4/2
3	3.27728	-0.01341	3/2
4	3.27956	-0.01338	2/2
5	3.28007	-0.01337	2/2
$\varepsilon = 10^{-4}$, r = 1.5		
Level	Drag	Lift	N/L
2	3.26433	-0.01342	4/2
3	3.27739	-0.01342	3/2
4	3.27968	-0.01339	2/2
5	3.28019	-0.01338	2/2

$\varepsilon = 10^{-2}$, r = 3		
Level	Drag	Lift	N/L
2	13.74280	0.35070	3/2
3	13.77355	0.34963	3/2
4	13.78220	0.35062	3/1
5	13.78445	0.35112	2/2
$\varepsilon = 10^{-4}$, <i>r</i> = 3		
Level	Drag	Lift	N/L
2	13.73800	0.35052	3/2
3	13.76875	0.34941	3/2
4	13.77740	0.35040	3/1
5	13.77970	0.35091	2/2

Level and parameter independent solver

Cross Model Problem (VP)

technische universität dortmund

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, \ a_{1} = a_{2} = 0,$$

r = 1, r	$\eta_1 = 1, \ \alpha = 0, \ \eta_0 = 10$		
Level	Drag	Lift	N/L
2	6.31313	0.02478	3/1
3	6.32337	0.02504	3/2
4	6.32619	0.02509	3/2
5	6.32691	0.02510	2/2

Lift

0.81901

0.82140

0.82201

0.82217

 $r = 0, r_1 = 1, \alpha = 0.1, \eta_0 = 10^{-2}$

Drag

33.22763

33.29026

33.30657

33.31069

Level

2

3

4

5

r=0,	$r_1 = 1, \ \alpha = 0.1, \ \eta_0 = 1$.0-1	
Level	Drag	Lift	N/L
2	534.29750	6.53247	3/2
3	535.48500	6.55813	3/3
4	535.77950	6.56464	3/3
5	535.84800	6.56621	2/2

1 - 1

 $r = 1, r_1 = 1, \alpha = 0.1, \eta_0 = 10^{-1}$

		-			
N/L	Level	Drag	Lift	N/L	
2/2	2	15.16395	0.13886	4/3	
2/2	3	15.18516	0.13963	4/3	
2/2	4	15.19108	0.13978	4/3	
2/2	5	15.19262	0.13982	3/3	

Level and model independent solver

Cross Model problem (VTP)

Non heated cylinder

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, a_{1} = 0, \ a_{3} = 1, \ k_{1} = k_{2} = 10^{-2},$$

technische universität

dortmund

$r = 0, r_1 = 1, \alpha = 0, \eta_0 = 10^{-2}, a_2 = 0.$					
Level	Drag	Lift	N/L		
2	74.29465	1.31636	2/2		
3	74.43290	1.32009	2/2		
4	74.46910	1.32105	2/2		
5	74.47830	1.32129	2/2		

 $r = 0.1, r_1 = 1, \alpha = 0, \eta_0 = 10^{-2}, a_2 = 1.$

Level	Drag	Lift	N/L
2	53.78930	1.05488	2/2
3	53.88590	1.05770	3/2
4	53.91125	1.05844	2/2
5	53.91770	1.05863	2/2

Level Drag Lift N/L 2 5579.355 54.79350 3/2 3 5589.415 54.96815 3/3 3/3 4 5592.050 55.01415 5 5592.725 55.02585 3/2

$$r = 0.1, r_1 = 1, \alpha = 10^{-3}, \eta_0 = 10^{-1}, a_2 = 1.$$

 $r = 0.1, r_1 = 1, \alpha = 0, \eta_0 = 10^{-1}, a_2 = 0.$

Level	Drag	Lift	N/L
2	6005.265	59.75125	3/2
3	6016.220	59.94455	3/2
4	6019.075	59.99535	3/2
5	6019.795	60.00820	3/2

Level and model independent solver

Cross Model Problem (VTP)

Heated cylinder

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, r = 0.1, r_{1} = 1, \alpha = 10^{-3}, a_{1} = 0, a_{2} = 1, a_{3} = 1,$$

technische universität

dortmund

$\eta_0 = 10$	$0^{-2}, \ k_1 = k_2 = 10^{-2}.$		
Level	Drag	Lift	N/L
2	45.26969	0.90303	3/2
3	45.35251	0.90563	3/2
4	45.37431	0.90632	2/2
5	45.37988	0.90649	2/2

 $\eta_0 = 10^{-1}, \ k_1 = k_2 = 10^{-2}.$

Level	Drag	Lift	N/L
2	464.07865	4.90752	2/2
3	464.93045	4.92313	3/2
4	465.15470	4.92724	2/2
5	465.21195	4.92828	2/2

$\eta_0 = 10$	$D^{-1}, k_1 = k_2 = 10^{-3}.$		
Level	Drag	Lift	N/L
2	512.7765	5.37640	3/2
3	513.7120	5.39301	3/3
4	513.9585	5.39743	3/3
5	514.0215	5.39856	3/2
	· · · · · · · · · · · · · · · · · · ·		

 $\eta_0 = 1.0, \ k_1 = k_2 = 10^{-3}.$

Level	Drag	Lift	N/L
2	5528.860	53.11685	3/2
3	5539.025	53.28790	3/2
4	5541.690	53.33335	3/2
5	5542.365	53.34490	3/2

Level and model independent solver

Barus Model Problem (VP)

Coarse grid and mesh information
 Mesh1

Mesh2

$$\eta_s(\dot{\gamma},\Theta,p) = \eta_0 \exp^{\alpha p}$$

 $\eta_0 = 0.105$

 $\alpha = 0.1$

, , , , , , , , , , , , , , , , , , ,	r = 0.25							
	Drag	Lift	N/L	Level	Drag	Lift	N/L	
	4.802439e2	-1.824015	6/2	2	1.025332e3	-4.720981e1	8/2	
	5.186006e2	-2.106716	6/2	3	1.056778e3	-4.945528e1	7/2	
	5.309640e2	-2.173021	5/2	4	1.066600e3	-5.012865e1	6/3	
	5.354556e2	-2.194828	5/2	5	1.069325e3	-5.032015e1	6/3	

Level and parameter independent solver

S. Turek | Simulation of Extreme Fluidics

2

3

4

5

technische universität

Lift

-6.215218

-6.228167

-6.230978

N/L

5/2

5/2

4/2

4/2

dortmund

Viscoelastic Fluids (VSP)

We = 0.002 Oldroyd-B				We=0.	⁰⁰² Giese	ekus	
Level	Drag	Lift	N/L	Level	Drag	Lift	N/L
2	5.57150	0.01031	2/2	2	5.56474	0.01053	2/2
3	5.58032	0.01047	3/2	3	5.57511	0.01064	2/2
4	5.58285	0.01051	2/2	4	5.57936	0.01062	2/2
5	5.58351	0.01052	2/2	5	5.58131	0.01059	2/2
We = 1.	0 0	Idrovd-B		$W \rho = 1$ (Giese	kus	
	•			mc = 1.0		nus	
Level	Drag	Lift	N/L	Level	Drag	Lift	N/L
Level 2	Drag 20.8412	Lift 0.32761	N/L 7/7	Level	Drag 5.03961	Lift -0.00172	N/L 4/2
Level 2 3	Drag 20.8412 17.7123	Lift 0.32761 0.22910	N/L 7/7 6/8	Level 2 3	Drag 5.03961 4.93834	Lift -0.00172 -0.00210	N/L 4/2 4/3
Level 2 3 4	Drag 20.8412 17.7123 15.0096	Lift 0.32761 0.22910 0.14311	N/L 7/7 6/8 6/9	Level 2 3 4	Drag 5.03961 4.93834 4.84483	Lift -0.00172 -0.00210 -0.00252	N/L 4/2 4/3 3/3

Level independent solver

Viscoelastic Fluids (VSP)

Viscoelastic Fluids (VSP)

We	0.1	0.2	0.3	0.4	0.5	0.6	 1.0
Oldroyd-B	5 [130.06]	4 [130.06]	4 [130.06]	5 [120.40]	5 [118.67]	5 [117.66]	 7 [119.33]
Giesekus	4 [129.37]	4 [124.41]	4 [119.86]	3 [116.31]	3 [113.67]	3 [111.71]	 3 [107.29]
Fene-P	4 [128.91]	4 [124.62]	4 [120.70]	3 [117.67]	3 [115.51]	4 [114.02]	 3 [111.84]
Fene-CR	4 [130.15]	4 [126.72]	4 [123.68]	3 [121.51]	3 [120.14]	3 [119.42]	 3 [120.13]
Pom-pom	3 [137.17]	4 [127.23]	4 [119.78]	4 [114.51]	4 [110.66]	5 [107.76]	 3 [101.00]

Lower We vs. higher We

Flow around Cylinder Benchmark

Coarse grid and mesh information

Local refinement via hanging nodes

• Planar flow around cylinder (Oldroyd-B)

Flow around Cylinder Benchmark

• Oldroyd-B

We	Drag	NL	We	Drag	NL	We	Drag	NL
0.1	130.366	8	0.8	117.347	4	1.5	125.665	4
0.3	123.194	4	1.0	118.574	6	1.7	129.494	4
0.5	118.828	4	1.2	120.919	5	1.9	133.754	4
0.6	117.779	4	1.3	122.350	4	2.0	136.039	5
0.7	117.321	4	1.4	123.936	4	2.1	138.438	5

Giesekus

We	Drag	Peak2	NL	We	Drag	Peak2	NL
5	96.943	924.45	14	60	85.859	12010.57	4
20	89.905	4204.51	12	70	85.365	13773.61	4
30	88.304	6318.79	5	80	84.937	15502.45	4
40	87.256	8311.32	5	90	84.585	17207.87	4
50	86.476	10199.1	4	100	84.287	18897.95	4

Efficient continuation for increasing We numbers

Flow around Cylinder Benchmark

technische universität dortmund

Direct steady vs. non-steady approach for Giesekus

3D Viscoelastic Flow Simulations

J technische universität dortmund

Flow past a sphere benchmark: R.G. Owens T. N. Phillips

Resolut	tion	$\max_1(\tau_{xx})$	$\max_2(\tau_{xx})$	F^*
	L2	20.80	2.082	5.6976
We-03	L3	19.29	2.081	5.6946
VVC=0.0	L4	18.72	2.086	5.6941
	L5	18.52	2.087	5.6940
Auth	ors		Reference values	
Lunsmann [4]		-	-	5.6937
Owens [5]		18.27	-	5.6963

3D Viscoelastic Flow Simulations

technische universität dortmund

M. Sahin: 3D flow past a cylinder benchmark

Prediction of special viscoelastic flow features for increased We numbers

Non-Newtonian Multiphase Flow

technische universität dortmund

Single phase validation on 2D benchmark "flow around a cylinder"

Reference: Damanik et al.

	Shear thining n=0,75				Shear thickening n=1,50				
	Damanik*		Our results		Damanik*		Our results		
level	C _D	CL	C _D	CL	C _D	CL	C _D	CL	
1	3,20082	-0,01261	3,20450	-0,01215	13,6209	0,34250	13,6233	0,34347	
2	3,26433	-0,01342	3,26637	-0,01347	13,7380	0,35052	13,7379	0,35037	
3	3,27739	-0,01342	3,27755	-0,01343	13,7688	0,34941	13,7688	0,34928	

n=0,7

Viscosity distribution

Pseudo 2D rising bubble in Power-Law fluids Droplet generation for Power-Law fluids

n=1,50

Viscoelastic Multiphase Flow

Preliminary numerical results – 2D rising bubble

	Test case	$ ho_1$	$ ho_2$	μ_1	μ_2	g	σ
Material 1: Viscoelastic fluid	1. Viscoelastic ($\Lambda = 10$)	10	0.1	10	1	9.8	0.245
described by the Oldroyd-B model	2. Newtonian $(\Lambda = 0)$	10	0.1	10	1	9.8	0.245
Material Or Neutralian fluid	3. Viscoelastic ($\Lambda = 10$)	10	0.1	2	1	9.8	0.245
Malenai Z. Newlonian IIulo	4. Newtonian $(\Lambda = 0)$	10	0.1	2	1	9.8	0.245

Encapsulation Processes

- Numerical simulation of micro-fluidic drug encapsulation ("monodisperse compound droplets")
- Polymeric "bio-degradable" outer fluid with generalized Newtonian behaviour
- Optimization w.r.t. boundary conditions, flow rates, droplet size, geometry

Jet Configuration

- Core material is defined as the specific material that requires to be coated (liquid, emulsion, colloid or solid)
- Shell material is present to protect and stabilize the core (Alginate, Chitosan, Gelatin, Pectin, Waxes, Starch)

M. Whelehan

Summary

Robust numerical and algorithmic tools are available using

- Classical and Log Conformation Reformulation (LCR)
- ✓ Monolithic Finite Element Approach
- ✓ Edge Oriented stabilization (EO-FEM) and local GDM
- ✓ Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of nonlinear flow with (extreme) rheological behaviour

Advantages

- ✓ No CFL-condition restriction due to the fully implicit coupling
- Positivity preserving
- Higher order and local adaptivity

The non-symmetric bilinear forms due to LCR

Compatibility Conditions for LCR

$$\tau \in \tau_{PD} \subset \left[L^{2}(\Omega) \right]^{4} \text{ such that } \tau \text{ is positive definite}$$

$$c(\tau, v) = \int_{\Omega} \exp(\tau) : D(v) \, d\Omega$$

$$\geq \beta_{2} \left\| \exp(\tau) \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega}$$

$$\geq \beta_{2} \left\| \tau \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega} \quad \forall \tau \in T_{PD}, \quad \forall v \in \left[H_{0}^{1}(\Omega) \right]^{2}$$

$$\widetilde{c}(\tau, u) = -2 \int_{\Omega} B(\nabla u, \sigma_{c}) : \tau \, d\Omega$$

$$\geq \beta_{2} \left\| \tau \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega} \quad \forall \tau \in \left[L^{2}(\Omega) \right]^{4}, \quad \forall v \in \left[H_{0}^{1}(\Omega) \right]^{2}$$

technische universität

dortmund

S. Turek | Simulation of Extreme Fluidics

Page 61

$$|E|^{-1} \int_{E} v_{h}|_{K_{2}} L_{E,k} ds = |E|^{-1} \int_{E} v_{h}|_{K_{1}} L_{E,k} ds, \quad 0 \le k < 2$$

No hanging nodes

 \succ Mortar condition: test space \approx order at slave side

d.o.f.s belong to at most two elements which is good for parallelisation

Larger FE space which allows high order

approximation

Coupling of different polynomial orders

r=3 F T=2

dortmund

technische universität

What are "Extreme Fluids"???

Page 62