

Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

H. Damanik, J. Hron, A. Ouazzi, <u>S. Turek</u> Institut für Angewandte Mathematik, LS III, TU Dortmund http://www.mathematik.tu-dortmund.de/lsiii

Modelling, Optimization and Simulation of Complex Fluid Flow June 20 – 22, 2012 TU Darmstadt Darmstadt, Germany

Multiscale CFD Problems

- Characteristics:
 - Complex temporal behaviour and spatially disordered
 - > Broad range of spatial/temporal scales
- Inertia turbulence
 - ≻ Re>>1
 - Numerical instabilities and problems

Turbulence flow inside a pipe. From ProPipe

- Special turbulence models required
- Special stabilization techniques required

Multiscale CFD Problems

• Elastic turbulence

- Re<<1, We>>1 (less inertia, more elasticity)
- > Numerical instabilities and problems (HWNP)

- > Special flow models: Oldroyd-B, Giesekus, Maxwell,...
- > Special stabilization: EEME, EEVS, DEVSS/DG, SD, SUPG,...

Viscoelastic Fluids

- Special effects due to normal stresses
- Special effects due to elongational viscosity
- The drag reduction phenomenon
- • •

Application: Twinscrew Extruder

- *Viscoelastic rheological* models (additionally shear & temperature dependent) with *non-isothermal* conditions (cooling from outside, heat production, melting, solidification)
- Multiphase flow behaviour due to partially filled and transported granular material
- Complex time dependent geometry and meshes

technische universität

dortmund

Governing Equations

Generalized Navier-Stokes equations

$$\rho(\frac{\partial}{\partial t} + u \cdot \nabla)u = -\nabla p + \nabla \cdot \sigma, \quad \nabla \cdot u = 0,$$

$$\rho c_p (\frac{\partial}{\partial t} + u \cdot \nabla)\Theta = k_1 \nabla^2 \Theta + k_2 D : D,$$

$$D(u) = \frac{1}{2} (\nabla u + (\nabla u)^T),$$

$$\sigma = \sigma_s + \sigma_p.$$

• Viscous stress

$$\sigma_s = 2 \eta_s(\dot{\gamma}, \Theta, p) D, \dot{\gamma} = \sqrt{\operatorname{tr}(D(u)^2)}.$$

• Elastic stress

$$f_1(L,\sigma_p)\sigma_p + \Lambda \overset{\nabla}{\sigma_p} + F_2(\sigma_p,D) + F_3(\sigma_p) = 2\eta_p D(u).$$

Viscous stress

$$\sigma_s = 2 \eta_s(\dot{\gamma}, \Theta, p) D, \dot{\gamma} = \sqrt{\operatorname{tr}(D(u)^2)}.$$

Power Law model

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{0}(\varepsilon + \dot{\gamma}^{2})^{(\frac{r}{2}-1)}, (\eta_{0} > 0, r > 1).$$

Generalized Cross model

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$
$$(\eta_{0} > \eta_{\infty} \ge 0, r > 1, \lambda > 0).$$

Constitutive Models (II)

Generalized upper convective constitutive model

$$f_{1}(L_{k}, tr(\sigma_{p}), \Lambda, \eta_{p})\sigma_{p} + \Lambda \overset{\nabla}{\sigma_{p}} + F_{2}(\sigma_{p}, D) + F_{3}(\sigma_{p}) = 2\eta_{p}D(u),$$
$$\overset{\nabla}{\sigma_{p}} \coloneqq \frac{\partial \sigma_{p}}{\partial t} + u \cdot \nabla \sigma_{p} - \nabla u \cdot \sigma_{p} - \sigma_{p} \cdot \nabla u^{T}.$$

	f_1	F_2	F_3
Oldroyd-B/UCM	1	0	0
Giesekus	1	0	$lpha\sigma_p^2$
FENE-P/-CR	$f_1(L_k, tr(\sigma_p))$	0	0
White & Metzner $\Lambda = \Lambda(\dot{\gamma}), \eta_p = \eta_p(\dot{\gamma})$	1	0	0
PTT	$f_1(\eta_p, tr(\sigma_p), \Lambda)$	$\xi(D\sigma_p + \sigma_p D)$	0
Pom-Pom	$f_1(tr(\sigma_p),\Lambda)$	$F_2(G, \sigma_p, \Lambda)$	$F_3(G,\sigma_p^2,\alpha)$

Constitutive Models (III)

• Exemplary model: White-Metzner $\sigma_p + \Lambda(\dot{\gamma}) \overset{\nabla}{\sigma_p} = 2\eta_p(\dot{\gamma}) D(u), \qquad \dot{\gamma} = \sqrt{2D(u):D(u)}$

> Larson:
$$\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + a\Lambda\dot{\gamma}} \qquad \eta_p(\dot{\gamma}) = \frac{\eta_p}{1 + a\Lambda\dot{\gamma}}$$

> Cross:
$$\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + (L\dot{\gamma})^{1-n}} \qquad \eta_p(\dot{\gamma}) = \frac{\eta_p}{1 + (k\dot{\gamma})^{1-m}}$$

$$\Lambda(\dot{\gamma}) = \Lambda \left[1 + (L\dot{\gamma})^b \right]^{\frac{n-1}{b}} \qquad \eta_p(\dot{\gamma}) = \eta_p \left[1 + (k\dot{\gamma})^a \right]^{\frac{m-1}{a}}$$

Page 10

Numerical Challenges

- Discretizations have to handle the following challenges points
 - > Stable FEM spaces for velocity/pressure and velocity/stress interpolation $Q_2 / Q_2 / P_1^{disc}$ or $\tilde{Q}_1 / \tilde{Q}_1 / P_0$ or the new $\tilde{Q}_2 / \tilde{Q}_2 / P_1^{disc}$
 - Special treatment of the convective terms: edge-oriented/interior penalty (EO-FEM), TVD/FCT
 - > High Weissenberg number problem (HWNP): LCR
- Solvers have to deal with different sources of nonlinearity
 - Nonlinearity: Newton method
 - > Strong coupling of equations: monolithic multigrid approach
- Complex geometries (and meshes)
 - FBM + distance based Level Set FEM for free interfaces

Problem Reformulation (I)

U technische universität dortmund

Elastic stress
$$\rightarrow (u, p, \sigma_p)$$

 $\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + 2\nabla \cdot \eta_s D + \nabla \cdot \sigma_p, \nabla \cdot u = 0$

$$f_1(L,\sigma_p)\sigma_p + \Lambda \sigma_p^{\nabla} + F_2(\sigma_p,D) + F_3(\sigma_p) = 2\eta_p D(u)$$

Conformation stress \rightarrow (u, p, σ_c) is positive definite by design !!

Replace
$$\sigma_{p}$$
 in (1) with $\sigma_{p} = \frac{\eta_{p}}{\Lambda}(\sigma_{c} - I)$ \Rightarrow special discretization: TVD

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) u = -\nabla p + 2\nabla \cdot \eta_{s} D + \frac{1}{\Lambda} \nabla \cdot \eta_{p} \sigma_{c}, \nabla \cdot \mathbf{u} = 0,$$

$$\nabla_{\sigma_{c}} + F_{4}(\sigma_{c}, u) = 0$$
(2)

(1)

2 Observations:

- positive definite \rightarrow special discretizations like FCT/TVD
- exponential behaviour \rightarrow approximation by polynomials???

Exponential Behaviour

Driven Cavity: as We number changes from We=0.5 to We=1.5, the stress value jumps significantly

→ We= 0.5 → We= 1.5

Problem Reformulation (II)

- **Experience**:
 - Stresses grow exponentially
 - Conformation tensor is positive by design
- Fattal and Kupferman:
 - > Take the logarithm as a new variable $\sigma_{LCR} = \log \sigma_c$ using the eigenvalue decomposition

$$\sigma_{LCR} = R \log(\lambda_{\sigma_c}) R^2$$

> Decompose the velocity gradient inside the stretching part

$$\nabla u = B + \Omega + N\sigma_c^{-1}$$

Remark for PTT only $L = B + \Omega + N\sigma_c^{-1}, L = \nabla u - \xi D$

LCR can be applied to all upper convective models !!

LCR Reformulation

$$f_{1}(L,\sigma_{p})\sigma_{p} + \Lambda \sigma_{p}^{\nabla} + F_{2}(\sigma_{p},D) + F_{3}(\sigma_{p}) = 2\eta_{p}D(u)$$

$$\sigma_{p} = \frac{\eta_{p}}{\Lambda}(\sigma_{c}-I)$$

$$\nabla_{u} = \Omega + B + N\sigma_{c}^{-1}$$

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla\right)\sigma_{c} - (\Omega\sigma_{c} - \sigma_{c}\Omega) + 2B\sigma_{c} = \frac{1}{\Lambda}\left(I - \sigma_{c}\right)$$

$$\sigma_{c} = \exp \sigma_{LCR}$$

$$\sigma_{LCR} = R \log(\lambda_{\sigma_{c}}) R^{T}$$

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla\right)\sigma_{LCR} - (\Omega\sigma_{LCR} - \sigma_{LCR}\Omega) - 2B = F_{4}(\sigma_{LCR},u).$$

Full Set of Equations (LCR)

U technische universität dortmund

Generalized Newtonian (VP)

$$\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + \nabla \cdot \left(2\eta_s(\dot{\gamma}, \Theta, p) D(u) \right) + \frac{1}{\Lambda} \nabla \cdot \eta_p e^{\sigma_{LCR}}, \quad \nabla \cdot u = 0,$$

• Non-isothermal effect (T)

$$\rho c_p \left(\frac{\partial}{\partial t} + u \cdot \nabla\right) \Theta = k_1 \nabla^2 \Theta + k_2 \mathbf{D} : \mathbf{D},$$

• LCR equation (S)

$$\left(\frac{\partial}{\partial t}+u\cdot\nabla\right)\sigma_{LCR}-\left(\Omega\sigma_{LCR}-\sigma_{LCR}\Omega\right)-2B=F_4(\sigma_{LCR},u).$$

 $F_4(\sigma_{LCR}, u)$ Refers to all upper convective constitutive models

Examplary Models (LCR)

 $F_4 = \frac{1}{\Lambda} (e^{-\sigma_{LCR}} - I)$ **Oldroyd-B/UCM** $F_4 = \frac{1}{\Lambda} \left(e^{-\sigma_{LCR}} - I - \alpha e^{\sigma_{LCR}} - \left(e^{-\sigma_{LCR}} - I \right)^2 \right)$ Giesekus $F_{4} = \frac{1}{\Lambda} f(R)(e^{-\sigma_{LCR}} - I) / F_{4} = \frac{1}{\Lambda} (e^{-\sigma_{LCR}} - f(R)I)$ FENE-P/-CR $F_4 = \frac{1}{\Lambda(\dot{\nu})} (e^{-\sigma_{LCR}} - I)$ White-Metzner $F_4 = \frac{1}{\Lambda} (1 + \varepsilon (tr(e^{\sigma_{LCR}} - 3)))(e^{-\sigma_{LCR}} - I)$ Linear PTT $F_4 = \frac{1}{\Lambda} \exp(\varepsilon (tr(e^{\sigma_{LCR}} - 3)))(e^{-\sigma_{LCR}} - I)$ **Exponential PTT** $F_4 = -\frac{1}{\Lambda} \left(\left[f(\sigma_{LCR}) - 2\alpha \right] e^{\sigma_{LCR}} + \alpha e^{2\sigma_{LCR}} + (\alpha - 1)I \right)$ **Pom-Pom**

Page 18

FEM Discretization

- High order $Q_2 / Q_2 / P_1^{disc}$ for velocity-stress-pressure
 - > Advantages:
 - Inf-sup stable for velocity and pressure
 - > High order: good for accuracy
 - Discontinuous pressure: good for solver & physics
 - > Disadvantages:
 - Stabilization for same spaces for stress-velocity
 - > a single d.o.f. belongs to four elements (in 2D)

Compatibility condition between the stress and velocity spaces via EO-FEM !

Variational Formulations

• Standard Navier-Stokes bilinear forms

$$a(u,v) = \int_{\Omega} \frac{1}{\Delta t} u \cdot v \, d\Omega + \int_{\Omega} 2\eta_s D(u) : D(v) \, d\Omega$$
$$b(p,v) = -\int_{\Omega} p \, \nabla \cdot v \, d\Omega$$

• Non-symmetric bilinear forms due to LCR

$$c(\sigma_{LCR}, v) = \int_{\Omega} \exp(\sigma_{LCR}) : D(v) \, d\Omega$$

$$\widetilde{c}(\tau, u) = -2\int_{\Omega} B(\nabla u, \sigma_c) : \tau \ d\Omega$$

Variational Formulations

- Nonlinear tensor variational form due to LCR $d(\sigma_{LCR}, \tau) = \int_{\Omega} \left(\frac{1}{\Delta t} + (u \cdot \nabla) \right) \sigma_{LCR} : \tau \ dx$ $-\int_{\Omega} (\Omega \sigma_{LCR} - \sigma_{LCR} \Omega) : \tau \ dx - \int_{\Omega} F_4(\sigma_{LCR}, u) : \tau \ dx$
- Non-symmetric bilinear forms due to LCR

$$e(\Theta, \Phi) = \int_{\Omega} \left(\frac{1}{\Delta t} + u \cdot \nabla \right) \Theta \Phi \, dx + \int_{\Omega} k \nabla \Theta \cdot \nabla \Phi \, dx$$
$$- \int_{\Omega} 2\eta_s \left[D(u) : D(u) \right] \Phi \, dx - \int_{\Omega} D(u) : \exp(\sigma_{LCR}) \Phi \, dx$$

Source term

$$l(u, \sigma_{LCR}, \Theta, p)$$

Problem Formulation

• Find $(\widetilde{u}, p) \in X \times Q$ such that

$$\begin{pmatrix} K(\widetilde{u}, p), (\widetilde{v}, q) \end{pmatrix} = \begin{pmatrix} l(\widetilde{v}, q) \end{pmatrix} \quad \forall (\widetilde{v}, q) \in X \times Q \\ K = \begin{bmatrix} \widetilde{A} & B \\ B^T & 0 \end{bmatrix}$$

Typical saddle point problem !

Compatibility Conditions

• Compatibility condition (for classical approach)

$$\sup_{u \in [H_0^1(\Omega)]^2} \frac{\int_{\Omega} \nabla \cdot u \, q \, dx}{\|u\|_{1,\Omega}} \ge \beta_1 \|q\|_{0,\Omega} \quad \forall q \in L_0^2(\Omega)$$
$$\sup_{\sigma \in [L^2(\Omega)]^4} \frac{\int_{\Omega} \sigma : \nabla u \, dx}{\|\sigma\|_{0,\Omega}} \ge \beta_2 \|u\|_{1,\Omega} \quad \forall u \in [H_0^1(\Omega)]^2$$

What about LCR ?

Compatibility Conditions for LCR technische universität dortmund

• The non-symmetric bilinear forms due to LCR

$$\tau \in \tau_{PD} \subset \left[L^{2}(\Omega)\right]^{4} \text{ such that } \tau \text{ is positive definite}$$

$$c(\tau, v) = \int_{\Omega} \exp(\tau) : D(v) \, d\Omega$$

$$\geq \beta_{2} \left\| \exp(\tau) \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega}$$

$$\geq \beta_{2} \left\| \tau \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega} \quad \forall \tau \in T_{PD}, \quad \forall v \in \left[H_{0}^{1}(\Omega)\right]^{2}$$

$$\widetilde{c}(\tau, u) = -2 \int_{\Omega} B(\nabla u, \sigma_{c}) : \tau \, d\Omega$$

$$\geq \beta_{2} \left\| \tau \right\|_{0,\Omega} \left\| v \right\|_{1,\Omega} \quad \forall \tau \in \left[L^{2}(\Omega)\right]^{4}, \quad \forall v \in \left[H_{0}^{1}(\Omega)\right]^{2}$$

- Edge-oriented stabilization for
 - > Equal order finite element interpolation for velocity and stress
 - Convective dominated problem

$$\langle J_{\widetilde{u}}\widetilde{u},\widetilde{v}\rangle = \sum_{edgeE} \max(\gamma_u \eta_p h_E, \gamma_{\widetilde{u}} h_E^2) \int_E [\nabla \widetilde{u}] [\nabla \widetilde{v}] ds$$

with
$$\tilde{u} = (u, \sigma, \Theta)$$
, $\tilde{v} = (v, \tau, \Phi)$ and $[\nabla \tilde{u}] [\nabla \tilde{v}] = \sum_{i} [\nabla \tilde{u}_{i}] [\nabla \tilde{v}_{i}]$

Efficient Newton-type and multigrid solvers can be easily applied !

Higher Order Nonconforming FEM

- Larger FE space which allows high order approximation
- d.o.f.s belong to at most two elements which is good for parallelisation
- Coupling of different polynomial orders

> Mortar condition: test space \approx order at slave side $|E|^{-1} \int_E v_h|_{K_2} L_{E,k} ds = |E|^{-1} \int_E v_h|_{K_1} L_{E,k} ds, \quad 0 \le k < 2$

No hanging nodes

Nonlinear Solver

• Damped Newton results in the solution of the form

$$R(x) = 0, x = (u, \sigma_{LCR}, \Theta, p)$$

$$x^{l+1} = x^{l} + \omega^{l} \left[\frac{\partial R(x^{l})}{\partial x} \right]^{-1} R(x^{l})$$

• **Inexact Newton:** Jacobian is approximated using finite differences

$$\left[\frac{\partial R(x^l)}{\partial x}\right]_{ij} \approx \frac{R_j(x+\varepsilon e_i) - R_j(x-\varepsilon e_i)}{2\varepsilon}$$

S. Turek | Monolithic Newton multigrid FEM

Page 27

Jacobian Matrix

• The Jacobian matrix takes the form

$$J = \left[\frac{\partial R(x^n)}{\partial x}\right] = \begin{bmatrix} A & \widetilde{B}^T \\ B & 0 \end{bmatrix}$$

Generalized non-isothermal non-Newtonian problem

$$A = \begin{bmatrix} A_u & \tilde{C}^T & \tilde{H}^T \\ C & A_\sigma & 0 \\ H & 0 & A_\Theta \end{bmatrix}$$

Typical saddle point problem !

Linear Solver

technische universität dortmund

- Monolithic multigrid solver
 - Standard geometric multigrid approach
 - > Full Q_2 , P_1^{disc} restrictions and prolongations
 - Local MPSC via Vanka-like smoother

$$\begin{bmatrix} \widetilde{u}^{l+1} \\ p^{l+1} \end{bmatrix} = \begin{bmatrix} \widetilde{u}^{l} \\ p^{l} \end{bmatrix} + \omega^{l} \sum_{T \in T_{h}} \begin{bmatrix} J_{|T} \end{bmatrix}^{-1} \begin{bmatrix} R_{u}(\widetilde{u}^{l}, p^{l}) \\ R_{p}(\widetilde{u}^{l}, p^{l}) \end{bmatrix}_{|T|}$$

Fully implicit Monolithic FEM-Multigrid Solver ! 💑

Linear Solver

Vanka-like Smoother!

S. Turek | Monolithic Newton multigrid FEM

Page 30

Linear Solver

Flow around Cylinder Benchmark

Coarse grid and mesh information

Local refinement via hanging nodes

• Planar flow around cylinder (Oldroyd-B)

Flow around Cylinder Benchmark

• Oldroyd-B

We	Drag	NL	We	Drag	NL	We	Drag	NL
0.1	130.366	8	0.8	117.347	4	1.5	125.665	4
0.3	123.194	4	1.0	118.574	6	1.7	129.494	4
0.5	118.828	4	1.2	120.919	5	1.9	133.754	4
0.6	117.779	4	1.3	122.350	4	2.0	136.039	5
0.7	117.321	4	1.4	123.936	4	2.1	138.438	5

Giesekus

We	Drag	Peak2	NL	We	Drag	Peak2	NL
5	96.943	924.45	14	60	85.859	12010.57	4
20	89.905	4204.51	12	70	85.365	13773.61	4
30	88.304	6318.79	5	80	84.937	15502.45	4
40	87.256	8311.32	5	90	84.585	17207.87	4
50	86.476	10199.1	4	100	84.287	18897.95	4

Efficient continuation for increasing We numbers

Flow around Cylinder Benchmark

technische universität dortmund

Direct steady vs. non-steady approach for Giesekus

Next Problem

technische universität dortmund tu

•	Coarse grid and mesh information	Level	NEL	NMT	NMP
		1	520	572	1092
		2	2080	2184	4264
		3	8320	8528	16848
		4	33280	33696	66976
	n of for different problems	5	133120	133952	267072

n.o.f. for different problems

Level	n.o.f. u	n.o.f p	n.o.f. T	n.o.f S	VP	VPT	VSP
0	1144	390	572	1716	1534	2106	3250
1	4368	1560	2184	6552	5928	8112	12489
2	17056	6240	8528	25584	23296	31824	48880
3	67392	24960	33696	101088	92352	126048	193449
4	267904	99840	133952	401856	367744	501696	769600
5	1068288	399360	534144	1602432	1467648	2001792	3070080

Newtonian Problem (VP)

Navior-Stokes Re=20

Stokes				Navier		
0				2		
	0.0	0.24 0.4		0.0	0.24 0.	4
Level	Drag	Lift	N/L	Drag	Lift	N/L
1	3.112646	2.965870e-2	1/6	5.540999	9.447473e-3	5/2
2	3.134342	3.005275e-2	1/7	5.566928	1.046885e-2	5/2
3	3.140327	3.015909e-2	1/7	5.576088	1.056787e-2	5/2
4	3.141893	3.018665e-2	1/7	5.578652	1.060398e-2	5/2
5	3.142292	3.019366e-2	1/7	5.579313	1.061503e-2	5/2

Level independent solver !

Power Law Problem (VP)

t n 1	technische universität
ιU	dortmund

Lift

0.35070

0.34963

0.35062

0.35112

Lift

0.35052

0.34941

0.35040

0.35091

$$\eta_s(\dot{\gamma},\Theta,p) = \eta_0(\varepsilon + \dot{\gamma}^2)^{(\frac{r}{2}-1)}, (\eta_0 > 0, r > 1).$$

$\epsilon = 10^{-2}$	r = 1.5	0.000935	0.00178	$\epsilon = 10^{-2}$	r = 3
Level	Drag	Lift	N/L	Level	Drag
2	3.26420	-0.01339	4/2	2	13.74280
3	3.27728	-0.01341	3/2	3	13.77355
4	3.27956	-0.01338	2/2	4	13.78220
5	3.28007	-0.01337	2/2	5	13.78445
$\varepsilon = 10^{-4}, r = 1.5$				$\varepsilon = 10^{-4}$,	r = 3
Level	Drag	Lift	N/L	Level	Drag
2	3.26433	-0.01342	4/2	2	13.73800
3	3.27739	-0.01342	3/2	3	13.76875
4	3.27968	-0.01339	2/2	4	13.77740
F			0 10		

Level and parameter independent solver !

N/L

3/2

3/2

3/1

2/2

N/L

3/2

3/2

3/1

2/2

Cross Model Problem (VP)

$$(n-n)$$
 technische universität

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, a_{1} = a_{2} = 0,$$

$r = 1, r_1 = 1, \alpha = 0, \eta_0 = 10^{-2}$							
Level	Drag	Lift	N/L				
2	6.31313	0.02478	3/1				
3	6.32337	0.02504	3/2				
4	6.32619	0.02509	3/2				
5	6.32691	0.02510	2/2				

$$r = 0 r_1 = 1, \alpha = 0.1, \eta_0 = 10^{-2}$$

Level	Drag	Lift	N/L
2	33.22763	0.81901	2/2
3	33.29026	0.82140	2/2
4	33.30657	0.82201	2/2
5	33.31069	0.82217	2/2

$$r = 0, r_1 = 1, \alpha = 0.1, \eta_0 = 10^{-1}$$
LevelDragLiftN/L2534.297506.532473/23535.485006.558133/34535.779506.564643/35535.848006.566212/2

$$r = 1, r_1 = 1, \alpha = 0.1, \eta_0 = 10^{-1}$$

Level	Drag	Lift	N/L
2	15.16395	0.13886	4/3
3	15.18516	0.13963	4/3
4	15.19108	0.13978	4/3
5	15.19262	0.13982	3/3

Level and model independent solver !

Cross Model problem (VTP)

Non heated cylinder

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, a_{1} = 0, a_{3} = 1, k_{1} = k_{2} = 10^{-2},$$

technische universität

dortmund

$r = 0, r_1$	= 1, $\alpha = 0, \eta_0 = 1$	$0^{-2}, a_2 = 0.$	
Level	Drag	Lift	N/L
2	74.29465	1.31636	2/2
3	74.43290	1.32009	2/2
4	74.46910	1.32105	2/2
5	74.47830	1.32129	2/2
$r = 0.1, r_1$	$\alpha = 1, \ \alpha = 0, \eta_0 = 0$	$10^{-2}, a_2 = 1.$	
Level	Drag	Lift	N/L
2	53.78930	1.05488	2/2
3	53.88590	1.05770	3/2
4	53.91125	1.05844	2/2
5	53.91770	1.05863	2/2

 $r = 0.1, r_1 = 1, \ \alpha = 0, \eta_0 = 10^{-1}, a_2 = 0.$ Level Drag Lift N/L 2 5579.355 54.79350 3/23 5589.415 54.96815 3/3 5592.050 55.01415 3/3 4 3/2 5 5592.725 55.02585 $r = 0.1, r_1 = 1, \ \alpha = 10^{-3}, \eta_0 = 10^{-1}, a_2 = 1.$ NI/I

Levei	Diag	LIII	IN/L
2	6005.265	59.75125	3/2
3	6016.220	59.94455	3/2
4	6019.075	59.99535	3/2
5	6019.795	60.00820	3/2
		- <u>·</u>	

Level and model independent solver !

Cross Model Problem (VTP)

Heated cylinder

$$\eta_{s}(\dot{\gamma},\Theta,p) = \eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{(1 + (\lambda\dot{\gamma})^{r_{1}})^{r}} \exp(\alpha p + (a_{1} + \frac{a_{2}}{a_{3} + \Theta})),$$

$$\eta_{\infty} = 10^{-3}, r = 0.1, r_{1} = 1, \alpha = 10^{-3}, a_{1} = 0, a_{2} = 1, a_{3} = 1,$$

technische universität

dortmund

$\eta_0 = 10^{-2}, k_1 = k_2 = 10^{-2}.$								
Level	Drag	Lift	N/L					
2	45.26969	0.90303	3/2					
3	45.35251	0.90563	3/2					
4	45.37431	0.90632	2/2					
5	45.37988	0.90649	2/2					

$$\eta_0 = 10^{-1}, k_1 = k_2 = 10^{-2}.$$

Level	Drag	Lift	N/L
2	464.07865	4.90752	2/2
3	464.93045	4.92313	3/2
4	465.15470	4.92724	2/2
5	465.21195	4.92828	2/2

$\eta_0 = 10^{-1}, k_1 = k_2 = 10^{-3}.$								
Level	Drag	Lift	N/L					
2	512.7765	5.37640	3/2					
3	513.7120	5.39301	3/3					
4	513.9585	5.39743	3/3					
5	514.0215	5.39856	3/2					

 $\eta_0 = 1.0, k_1 = k_2 = 10^{-3}.$

Level	Drag	Lift	N/L
2	5528.860	53.11685	3/2
3	5539.025	53.28790	3/2
4	5541.690	53.33335	3/2
5	5542.365	53.34490	3/2

Level and model independent solver !

Viscoelastic Fluids (VSP)

We = 0.002 Oldroyd-B $We = 0.002$ Giesekus						ekus		
Level	Drag	Lift	N/L		Level	Drag	Lift	N/L
2	5.57150	0.01031	2/2		2	5.56474	0.01053	2/2
3	5.58032	0.01047	3/2		3	5.57511	0.01064	2/2
4	5.58285	0.01051	2/2		4	5.57936	0.01062	2/2
5	5.58351	0.01052	2/2		5	5.58131	0.01059	2/2
We = 1.0	0 0	ldroyd-B			We = 1.0	D Giese	ekus	
<i>We</i> = 1. Level	0 C Drag	ldroyd-B Lift	N/L		<i>We</i> = 1.0 Level) Giese Drag	ekus Lift	N/L
<i>We</i> = 1.0 Level	0 O Drag 20.8412	Idroyd-B Lift 0.32761	N/L 7/7		<i>We</i> = 1.0 Level 2	D Giese Drag 5.03961	- 0.00172	N/L 4/2
<i>We</i> = 1.0 Level 2 3	0 Drag 20.8412 17.7123	0.32761 0.22910	N/L 7/7 6/8		<i>We</i> = 1.0 Level 2 3	D Giese Drag 5.03961 4.93834	Lift -0.00172 -0.00210	N/L 4/2 4/3
We = 1. Level 2 3 4	0 Drag 20.8412 17.7123 15.0096	Idroyd-B Lift 0.32761 0.22910 0.14311	N/L 7/7 6/8 6/9		We = 1.0 Level 2 3 4	Drag 5.03961 4.93834 4.84483	Lift -0.00172 -0.00210 -0.00252	N/L 4/2 4/3 3/3

Level independent solver !

Viscoelastic Fluids (VSP)

Viscoelastic Fluids (VSP)

We	0.1	0.2	0.3	0.4	0.5	0.6	 1.0
Oldroyd-B	5 [130.06]	4 [130.06]	4 [130.06]	5 [120.40]	5 [118.67]	5 [117.66]	 7 [119.33]
Giesekus	4 [129.37]	4 [124.41]	4 [119.86]	3 [116.31]	3 [113.67]	3 [111.71]	 3 [107.29]
Fene-P	4 [128.91]	4 [124.62]	4 [120.70]	3 [117.67]	3 [115.51]	4 [114.02]	 3 [111.84]
Fene-CR	4 [130.15]	4 [126.72]	4 [123.68]	3 [121.51]	3 [120.14]	3 [119.42]	 3 [120.13]
Pom-pom	3 [137.17]	4 [127.23]	4 [119.78]	4 [114.51]	4 [110.66]	5 [107.76]	 3 [101.00]

Lower We vs higher We !

Outlook: Multiphase Flow

• Distanced based FEM Level Set formulation

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla\right) \varphi = 0, \quad \left\|\nabla \varphi\right\| = 1, \quad F_{CSF} = \sigma \kappa n \Big|_{surface}$$

• Test cases

Test case	$ ho_1$	$ ho_2$	η_1	η_2	8	σ
1. Viscoelastic $\Lambda = 10$	10	0.1	10	1	9.8	0.245
2. Newtonian $\Lambda = 0$	10	0.1	10	1	9.8	0.245
3. Viscoelastic $\Lambda = 10$	10	0.1	2	1	9.8	0.245
4. Newtonian $\Lambda = 0$	10	0.1	2	1	9.8	0.245

Preliminary Results

• Rising bubble surrounded by viscoelastic fluids

Typical cusp formation

Page 47

Summary

U technische universität dortmund

Robust numerical and algorithmic tools are available using

- ✓ Monolithic Finite Element Method (M-FEM)
- Classical and Log Conformation Reformulation (LCR)
- ✓ Edge Oriented stabilization (EO-FEM)
- ✓ Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of nonlinear flow with viscoelastic behaviour

Advantages

- No CFL-condition restriction due to the fully implicit coupling
- Positivity preserving
- Higher order and local adaptivity

