

A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface

Damanik, H., Mierka, O., Ouazzi, A., Turek, S. (Lausanne, August 2013)

H. Damanik

Motivation

technische universität dortmund

Polymer melts:

- One of industrial interests +
- Physically fascinating +
- Rheologically difficult -
- Numerically challenging -

Highly accurate, robust numerical solver which represents the rheological nature is still challenging

Viscoelastic fluid models (D. D. Joseph):

• Integral form

$$\tau(t) = \int_{-\infty}^{t} \frac{1}{We^2} e^{\frac{-(t-s)}{We}} F(s,t) F(s,t)^T \, ds$$

- Differential form: Upper-convected derivative
- More practical to implement than integral form
- Represent many viscoelastic models

$$\frac{\partial \tau}{\partial t} + (u \cdot \nabla)\tau - \nabla u \cdot \tau - \tau \cdot \nabla u^T = f(\tau)$$

- Conformation tensor (τ), velocity (u), source ($f(\tau)$)
- Not able to capture high stress gradient at higher We number
- $f(\tau)$ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom

technische universität

ortmund

Numerical Results

Cells stress11 -2.57e+03 -2.31e+03 Cutline of Stress_11 -2.05e+03 component at y = 1.0We = 1.5 with -1.8e+03 -1.54e+03 LCR -1.28e+03 -1.03e+03**Old Formulation Vs Lcr** - 770 - 513 → We= 0.5 → We= 1.5 257 Cells stress11 124 2995 - 111 2495 - 98.6 1995 S 1495 - 86.1 stres We = 0.5 with 995 - 73.7 495 **Old formulation** - 61.2 - 48.7 0.20 0,40 0,60 0,80 1.00 0,00 X - 36.2 - 23.7 - 11.2

--1.26

U technische universität dortmund

Experience (Kupferman et. al):

- Stresses grow exponentially
- Conformation tensor looses positive properties during numerics

$$\begin{aligned} \frac{\partial \tau}{\partial t} + (u \cdot \nabla)\tau - \nabla u \cdot \tau - \tau \cdot \nabla u^T &= f(\tau) \\ \nabla u &= \Omega + B + N\tau^{-1} \\ \frac{\partial \tau}{\partial t} + (u \cdot \nabla)\tau - (\Omega\tau - \tau\Omega) - 2B\tau &= f(\tau) \\ \tau &= e^{\psi} \\ \frac{\partial \psi}{\partial t} + (u \cdot \nabla)\psi - (\Omega\psi - \psi\Omega) - 2B &= g(\psi) \end{aligned}$$

J technische universität dortmund

LCR based viscoelastic fluid:

- Ability to capture high stress gradients at higher We number
- Positivity preserving by design $\tau = e^{\psi}$
- Numerically more stable with appropriate FEM

$$\frac{\partial \psi}{\partial t} + (u \cdot \nabla)\psi - (\Omega \psi - \psi \Omega) - 2B = g(\psi)$$

- LCR tensor (ψ), velocity (u), source ($g(\psi)$)
- $\nabla u = \Omega + B + N\tau^{-1}$
- $g(\psi)$ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom \mathfrak{S}^*

U technische universität dortmund

LCR based viscoelastic fluid:

Model	$f(\mathbf{\tau})$	g(ψ)
OdB	$1/\lambda (\mathbf{I} - \boldsymbol{\tau})$	$1/\lambda (\exp(-\psi) - \mathbf{I})$
Gie	$1/\lambda \left(\mathbf{I}-\boldsymbol{\tau}-\boldsymbol{\alpha}(\boldsymbol{\tau}-\mathbf{I})^2\right)$	$1/\lambda (\exp(-\psi) - \mathbf{I}) - \alpha \exp(\psi)(\exp(-\psi) - \mathbf{I})^2)$
FENE	$-1/\lambda (f(\mathbf{R})\boldsymbol{\tau} - \alpha f(\mathbf{R})\mathbf{I})$	$-1/\lambda (f(\mathbf{R}) - \alpha f(\mathbf{R}) \exp(-\psi))$
LPTT	$-1/\lambda (1+\epsilon(\operatorname{tr}(\boldsymbol{\tau})-3))(\mathbf{I}-\boldsymbol{\tau})$	$-1/\lambda (1 + \varepsilon(tr(exp(\psi)) - 3))(exp(-\psi) - \mathbf{I})$
XPTT	$-1/\lambda (\exp(\varepsilon(tr(\tau)-3)))(\mathbf{I}-\tau)$	$-1/\lambda (\exp(\epsilon(tr(\exp(\psi)) - 3)))(\exp(-\psi) - \mathbf{I})$
WM	$-1/\lambda(\dot{\gamma}) (\boldsymbol{\tau} - \mathbf{I})$	$-1/\lambda(\dot{\gamma}) \left(\mathbf{I} - \exp(-\mathbf{\psi})\right)$
Pom	$-1/\lambda_{\mathbf{b}}(\mathbf{f}(\boldsymbol{\tau})-2\alpha+\alpha\boldsymbol{\tau}+(\alpha-1)\mathbf{I})$	$-1/\lambda_{\mathbf{b}}(\mathbf{f}(\mathbf{\psi}) - 2\alpha + \alpha \exp(\mathbf{\psi}) + (\alpha - 1)\exp(-\mathbf{\psi}))$

• Relaxation time (λ)

Multiphysics flow model

- Navier-Stokes equation (u, p) $\rho\left(\frac{\partial}{\partial t} + u \cdot \nabla\right) u = -\nabla p + \nabla \cdot \sigma_s + \frac{1}{\lambda} \nabla \cdot \eta_p e^{\psi}, \qquad \nabla \cdot u = 0$
 - + Nonlinear viscosities

$$\sigma_s = 2\eta_s(\dot{\gamma}, \Theta, p)D, \ \dot{\gamma} = \sqrt{tr(D^2)}$$

+ Temperature effects with Boussinesq and viscous dissipation (Θ)

$$\rho c_p \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \Theta = k_1 \nabla^2 \Theta + k_2 D : D$$

• + Viscoelastic fluid models (ψ)

$$\frac{\partial \psi}{\partial t} + (u \cdot \nabla)\psi - (\Omega \psi - \psi \Omega) - 2B = g(\psi)$$

+ Multiphase flow with Level-Set equation

$$\frac{\partial \varphi}{\partial t} + (u \cdot \nabla)\varphi = 0$$

U technische universität dortmund

In Time:

- Second order Crank-Nicolson
- Can be adaptively applied

In Space: Higher order finite element (Arnoldi)

- Inf-sup stable for velocity and pressure
- High order: good for accuracy
- Discontinuous pressure: good for solver & physics
- Edge oriented FEM for numerical stabilitation (Burman)

technische universität dortmund

Saddle point problem:

- \tilde{u} consists of all numerical variables except pressure
- Newton with multigrid as well-known solver
- Monolithic way of solving

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \widetilde{u} \\ p \end{pmatrix} = \begin{pmatrix} \operatorname{rhs}_{\widetilde{u}} \\ \operatorname{rhs}_p \end{pmatrix}$$

- A consists of differential operators
- *B* is gradient operator

Newton iteration

technische universität dortmund

Newton for nonlinear system:

- Strongly coupled problem
- Automatic damping control ω^n for each nonlinear step
- Black-box for many given viscoelastic models

$$x^{n+1} = x^n + \omega^n \left[\frac{\partial \mathcal{R}(x^n)}{\partial x}\right]^{-1} \mathcal{R}(x^n)$$

- Quadratic convergence when iterative solutions are close
- Solution $x^{n+1} = (\tilde{u}, p)$, Residual equation $\mathcal{R}(x^n)$
- Black-box is made possible by divided difference technique

$$\left[\frac{\partial \mathcal{R}(x^n)}{\partial x}\right]_{ij} = \frac{\mathcal{R}_i(x^n + \varepsilon e_j) - \mathcal{R}_i(x^n + \varepsilon e_j)}{2\varepsilon}$$

Multigrid iteration

Multigrid for linearized system:

- Full-Vanka for strongly coupled Jacobian in local system
- Full prolongation
- Black-box for many given viscoelastic models

U technische universität dortmund

Flow around cylinder:

Mod.	Gie	FENE-P	FENE-C	WM-Lr	WM-Cr	WM-Ca	LPPT/ XPPT	Pom
Par	α=0.01	α = 0, L2=100	α = 1, L2=100	I=0.01	k=0.01, l=0.01, m=0.01, n=0.01	a = 0.95, b = 0.95, k= 0.01, l = 0.01, m = 0.01, n = 0.01	ε=0.01	α=0.01, v = 0.2, r = 1

Flow around cylinder:

Lev.	Oldroyd-B	Giesekus	FENE-P	FENE-CR	LPTT
R1	126.5259[5/1]	126.0070[5/1]	125.3255[5/1]	126.6369[5/1]	126.5436[5/1]
R2	128.9641[5/1]	128.3420[4/1]	127.6645[5/1]	129.0771[5/1]	128.9727[5/1]
R3	129.9711[3/1]	129.2975[3/1]	128.6161[3/1]	130.0719[3/1]	129.9712[3/1]
R4	130.2648[2/2]	129.5757[2/2]	128.8925[2/2]	130.3606[2/2]	130.2608[2/2]
R5	130.3388[2/2]	129.6466[2/2]	128.9632[2/2]	130.4338[2/2]	130.3341[2/2]
	XPTT	WM-Larson	WM-Cross	WM-Carreau	Pom-Pom
R1	126.5437[5/1]	126.3346[5/1]	124.6317[5/1]	124.3082[5/1]	126.0887[4/1]
R2	128.9728[5/1]	128.7564[4/1]	126.9133[5/1]	126.5703[5/1]	128.3629[5/1]
R3	129.9713[3/1]	129.7564[3/1]	127.8540[3/1]	127.5025[3/1]	129.1754[3/1]
R4	130.2608[2/2]	130.0482[2/2]	128.1303[2/2]	127.7764[2/2]	129.4095[2/2]
R5	130 3342[2/2]	130 1219[2/2]	128 2007[2/2]	127 8463[2/2]	129 4728[2/2]

Newton-multigrid behaviour for We=0.1

technische universität

dortmund

Flow around cylinder:

We	Oldroyd-B	Giesekus	FENE-P	FENE-CR	LPTT
0.6	117.7887[2]	111.9109[2]	114.0870[2]	119.6564[2]	119.2840[2]
0.7	117.3345[3]	110.4256[3]	113.1044[3]	119.4340[3]	119.0223[3]
0.8	117.3718[3]	109.2601[3]	112.4831[3]	119.5552[3]	119.1038[3]
0.9	117.8039[4]	108.3084[3]	112.1125[4]	119.9018[4]	119.4197[3]
1.0	118.5410[3]	107.5035[3]	111.9158[4]	120.3899[4]	119.8937[3]
1.1	119.5344[3]	106.8035[3]	111.8408[4]	120.9640[4]	120.4741[3]
1.2	120.7520[5]	106.1817[5]	111.8526[3]	121.5885[3]	121.1270[3]
	VDTT				
	APTI	www-larson	WW-Cross	www-Carreau	Pom-Pom
0.6	APT1 119.4010[2]	117.1221[2]	116.6605[2]	116.4609[2]	104.9392[4]
0.6 0.7	119.4010[2] 119.1871[3]	117.1221[2] 116.5785[3]	116.6605[2] 116.2328[3]	116.4609[2] 116.0340[3]	104.9392[4] 102.8783[3]
0.6 0.7 0.8	XP11 119.4010[2] 119.1871[3] 119.3129[3]	117.1221[2] 116.5785[3] 116.5114[3]	116.6605[2] 116.2328[3] 116.2700[3]	116.4609[2] 116.0340[3] 116.0675[3]	Pom-Pom 104.9392[4] 102.8783[3] 101.2295[3]
0.6 0.7 0.8 0.9	XP11 119.4010[2] 119.1871[3] 119.3129[3] 119.6645[3]	117.1221[2] 116.5785[3] 116.5114[3] 116.8218[4]	116.6605[2] 116.2328[3] 116.2700[3] 116.6810[4]	116.4609[2] 116.0340[3] 116.0675[3] 116.4717[4]	Pom-Pom 104.9392[4] 102.8783[3] 101.2295[3] 99.8823[3]
0.6 0.7 0.8 0.9 1.0	XP11 119.4010[2] 119.1871[3] 119.3129[3] 119.6645[3] 120.1624[3]	117.1221[2] 116.5785[3] 116.5114[3] 116.8218[4] 117.4164[3]	116.6605[2] 116.2328[3] 116.2700[3] 116.6810[4] 117.3786[3]	116.4609[2] 116.0340[3] 116.0675[3] 116.4717[4] 117.1597[3]	Pom-Pom 104.9392[4] 102.8783[3] 101.2295[3] 99.8823[3] 98.7611[3]
0.6 0.7 0.8 0.9 1.0 1.1	XP11 119.4010[2] 119.1871[3] 119.3129[3] 119.6645[3] 120.1624[3] 120.7540[3]	117.1221[2] 116.5785[3] 116.5114[3] 116.8218[4] 117.4164[3] 118.2415[3]	116.6605[2] 116.2328[3] 116.2700[3] 116.6810[4] 117.3786[3] 118.3140[3]	116.4609[2] 116.0340[3] 116.0675[3] 116.4717[4] 117.1597[3] 118.0826[3]	Pom-Pom 104.9392[4] 102.8783[3] 101.2295[3] 99.8823[3] 98.7611[3] 97.8127[3]

Moderate number of nonlinear steps for all models

technische universität dortmund

Flow around cylinder:

Different drag behaviour of different models at increasing We number

U technische universität dortmund

Rising bubble in viscoelastic fluid:

H. Damanik

Rising bubble in viscoelastic fluid:

- A better visualisation from the data before. ",cheating bubbles"
- Multiphase flow in a cylindrical coordinate system is ongoing

technische universität dortmund

3D flow around a sphere:

- An LCR based FEM solver for 3D viscoelastic flow
- Tests with Oldroyd-B for We=0.3 and 0.6

We=0.3

We=0.6

Resolution	$\max_1(\tau_{xx})$	$\max_2(\tau_{xx})$	F^*
L2	20.80	2.082	5.6976
L3	19.29	2.081	5.6946
L4	18.72	2.086	5.6941
L5	18.52	2.087	5.6940
Authors		Reference values	
Lunsmann [4]	-	-	5.6937
Owens [5]	18.27	-	5.6963

Resolution	$\max_1(\tau_{xx})$	$\max_2(\tau_{xx})$	F^*
L2	50.31	5.041	5.4170
L3	39.01	5.061	5.4133
L4	36.43	5.104	5.4128
L5	35.65	5.118	5.4128
Authors		Reference values	
Lunsmann [4]	35.17	-	5.4123
Owens [5]	35.67	-	5.4117
Sahin [6]	34.73	5.12	-

U technische universität dortmund

3D flow around cylinder:

- An LCR based FEM solver for 3D viscoelastic flow
- Tests with Oldroyd-B
- Invariance in z-direction for We=1.6, agreement with Sahin et. al

Polymer stretching:

• A 2D+1 membrane model (Sollogoub et. Al)

$$\nabla \cdot eU = 0$$

$$\nabla \cdot e(2\mu D + 2\mu tr(D)I) = \nabla \cdot e\tau$$

$$\frac{\partial \tau}{\partial t} + (U \cdot \nabla)\tau - \nabla U \cdot \tau - \tau \cdot \nabla U^{T} = \frac{1}{\lambda}f$$

• Level set-FEM

$$\frac{\partial \varphi}{\partial t} + (U \cdot \nabla)\varphi = 0$$

U technische universität dortmund

Polymer stretching:

• A 2D+1 membrane model from Sollogoub et. al

Conclusion

U technische universität dortmund

We have presented:

- LCR-based viscoelastic models
- Higher order FEM discretizations
- Black-box Newton-multigrid solver
- Numerical examples:
 - o 2D benchmark flow around cylinder
 - Rising bubble surrounded by viscoelastic fluid
 - 3D solver for LCR-based viscoelastic models
 - Polymer stretching

We would like in the future:

- 3D viscoelatic multiphase
- Collection of different viscoelastic models
- FBM and viscoelastic integral model

