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Modeling of two phase flows

The incompressible Navier-Stokes equations

ρ(Γ)

(
∂u
∂t + u · ∇u

)
−∇ · τ +∇p = 0,

∇ · u = 0

Viscous stress
τ = τ s = 2µ(Γ)D(u)

Interfacial boundary conditions

[u] |Γ = 0

− [−pI + τ ]|Γ
· n = σκn

Direct interface conditions implementation is impractical due to the
unknown interface location Γ
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Interface Tension Force

Implicit interface condition by restriction of volume force

fst|Γ
= σκn, κ = −∇ · n on Γ

Non-homogeneous incompressible Navier-Stokes equations

ρ(Γ)

(
∂u
∂t + u · ∇u

)
−∇ · (2µ(Γ)D(u)) +∇p = fst ,

∇ · u = 0
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Challenges

Surface tension forces pose some challenging problems

As a source term, it is not appropriately treated w.r.t. to mixed FE
approximation of Navier-Stokes problem

If treated explicitly leads to the capillary time step restriction

4t(ca) <

√
〈ρ〉h3

2πσ

Aim
Remove the surface tension as force term
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Methodology

Embedding the interface in a higher dimentional function

The level Zero represents the interface.

Governing equation for level set function

∂ϕ

∂t + u · ∇ϕ = 0

This transport equation can be efficiently solved due to the choice of
a smooth level set function
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Advantages

Exact representation of the interface e. g.

Γ = {x ∈ Ω, ϕ = 0} ,

Provides the geometric quantities n and κ

n =
∇ϕ
||∇ϕ||

, κ = −∇ · n

Flexible w.r.t. topological changes

The signed distance function is the natural choice for the level set !
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Volume integrals of surface force

Finite element methods allow for surface internal as a volume integral

Introducing the δΓ function∫
Γ

fstvdx =

∫
Γ

κσn|Γ
vdx =

∫
Ω

κσnδΓvdx

fCSF,1 = κσnδΓ

Regularization of δΓ with the help of level set function

δε
Γ(x) =


1
ε
ϕ(x/ε) if |x | ≤ ε = mh

0 if |x | > ε = mh

fst = κσn|Γ
−→ fCSF,1 = κσnδΓ ' κσnδε

Γ
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Problems and Challenges

Explicit treatment

Surface tension forces

Capillary time step restriction
Not appropriately treated w.r.t. to mixed regularity of physical
quantities, velocity and pressure.

Reinitialization: Brute force, PDE, Algebraic Newton, · · ·

Requires perfect description of the interface w.r.t. FE
−→ in a conflictual with the Eulerian approach of level set ←−

Towards a fully implicit treatment
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Volume integrals of surface force

Finite element methods allow for surface internal as a volume integral
Introducing finite element cutoff function ψ

ψ(ϕ) =

+1 if ϕ ≥ 0

0 if ϕ < 0
−→

∫
Γ

fstvdx =

∫
Γ

κσn|Γ
vdx

=

∫
Ω

κσ∇ψvdx

fCSF,2 = σκ∇ψ

Advantages
Enhances the accuracy
ψ is material characteristic and can be used for conservative level set

Disadvantages
Explicit treatment of curvature requires high regularity of ψ

κ = −∇ · n, n =
∇ψ
||∇ψ|| .
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Implicit treatment of curvature

κ = −∇ · n, n =
∇ψ
||∇ψ||

.

Then,
fCSF,2 =− σ∇ ·

(
∇ψ
||∇ψ||

)
∇ψ

=− σ

(
∇ · ∇ψ
||∇ψ||

− ∇ ||∇ψ|| ∇ψ
||∇ψ||2

)
∇ψ

=− σ
(

1
||∇ψ||

4ψ∇ψ −∇ ||∇ψ||
)
.

Moreover, we have

4ψ∇ψ = ∇ · (∇ψ ⊗∇ψ)− 1
2∇ ||∇ψ||

2
.
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Implicit treatment of curvature

1
||∇ψ||

4ψ∇ψ =
∇ · (∇ψ ⊗∇ψ)

||∇ψ||
− 1

2
∇ ||∇ψ||2

||∇ψ||

= ∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
+

(∇ψ ⊗∇ψ)∇ ||∇ψ||
||∇ψ||2

−∇ ||∇ψ||

= ∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
−
(

I− ∇ψ
||∇ψ||

⊗ ∇ψ
||∇ψ||

)
∇ ||∇ψ||

= ∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
−∇s ||∇ψ||

where ∇s = (I− n ⊗ n)∇

fCSF,2 = −σ
{
∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
−∇ ||∇ψ||

}
.
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Curvature-free CSF

fCSF,3 = −σ∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
where the pressure

∇p
CSF,3

= ∇p
CSF,1/2

− σ∇ ||∇ψ||

∫
Ω

fCSF,3v dΩ =

∫
Ω

−σ∇ ·
(
∇ψ ⊗∇ψ
||∇ψ||

)
vdx

=

∫
Ω

σ

(
∇ψ ⊗∇ψ
||∇ψ||

)
:D(v) dx

Less regularity requirement for ψ
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Curvature-free multiphase flows

New multiphase stress τ m

τ m = −σ
(
∇ψ ⊗∇ψ
||∇ψ||

)
New set of equations for multiphase flows

ρ(ψ)

(
∂u
∂t + u · ∇u

)
− div τ +∇p = 0

∇ · u = 0

τ = τ s + τ m

where the stresses

τ m = −σ
(
∇ψ ⊗∇ψ
||∇ψ||

)
, τs = 2µ(ψ)D(u)

The momentum equation gets rid of the CSF force terms
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Preserving signed distance function

The distance based level set equations have the constraint

||∇ϕ|| = 1 ⇐⇒ n · ∇ϕ = 1, n =
∇ϕ
||∇ϕ||

Impose the constraint on the variational formulation

Variational formulation∫
Ω

(
∂ϕ

∂t + u · ∇ϕ
)
φ dx + γnd

∫
Ω

(n · ∇ϕ) (n · ∇φ) dx

= γnd

∫
Ω

n · ∇φ dx ∀φ ∈ H1(Ω)

Continuous problem

∂ϕ

∂t + u · ∇ϕ− γnd∇ ·
((
∇ϕ
||∇ϕ||

· ∇ϕ− 1
)
∇ϕ
||∇ϕ||

)
= 0

where γnd is a relaxation parameter.
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Characteristic material PDE

The material cutoff function ψ can be derived directly from the
signed distance function

ψε(ϕ) =
−1

1 + exp(ϕ/ε)
+ 0.5

PDE for ψ

∂ψ

∂τ
+∇ · (γncψ(1− ψ)∇ϕ)︸ ︷︷ ︸

Conv. normal

−∇ · (γnd (∇ψ · ∇ϕ) ∇ϕ)︸ ︷︷ ︸
Diff. normal

= 0

Conv. normal: nonlinear convection tends to build the
Heaviside step function

Diff. normal: normal diffusion control the sharpness of the
interface
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Curvature-free level set PDE


ρ(ψ)

(
∂u
∂t + u · ∇u

)
− div τ +∇p = 0

∇ · u = 0

τ = τ s + τ m

viscous stress
τs = 2µ(ψ)D(u)

multiphase stress

τ m = −σ
(
∇ψ ⊗∇ψ
||∇ψ||

)
new level set PDE

∂ϕ

∂t + u · ∇ϕ− γnd∇ · ((
∇ϕ
||∇ϕ||

· ∇ϕ− 1)
∇ϕ
||∇ϕ||

) = 0

∂ψ

∂τ
+∇ · (γncψ(1− ψ)∇ϕ)−∇ · (γnd (∇ψ · ∇ϕ) ∇ϕ) = 0
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Distance based level set function

Distance based level set function ϕ out of Heaviside step function ψ via
PDE

∂ϕ

∂τ
− γnd∇ ·

((
∇ϕ
||∇ϕ||

· ∇ϕ− 1
)
∇ϕ
||∇ϕ||

)
= 0

Initial Heaviside step function ψ (Left), the final distance based level set
function ϕ (Right) with the penalty parameter γnd = 102

no name                                                                             no name                                                                             
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Characteristic material function

Heaviside step function ψ out of level set function ϕ via PDE
∂ψ

∂τ
+∇ · (γncψ(1− ψ)∇ϕ)︸ ︷︷ ︸

Conv. normal

−∇ · (γnd (∇ψ · ∇ϕ) ∇ϕ)︸ ︷︷ ︸
Diff. normal

= 0

Heaviside step function ψ for different normal diffusion parameters
γnd = 1.0, 0.1, 0.01 (Left-Right), the nonlinear convective parameter
γnc = 0.01, and the initial level set function ϕ =

√
x2 + y2 − 0.5
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Rising bubble benchmark

12

h = 1/40 and N would be increased by a factor of 4 by refining the lattice spacing from h to h/2 (since
�t / h2 in LBM).

In order to provide a quantitative insight into the bubble dynamics, the temporal values of the di↵erent
bubble metrics are considered as benchmark quantities and will be calculated in time for each test case. Here
we use the temporal values of the bubble centroid position yc, bubble rise velocity uc and its circularity �
defined as

yc =

R
⌦b

ydxR
⌦b

1dx
(43)

uc =

R
⌦b

u dxR
⌦b

1 dx
(44)

� =
Pa

Pb
=

perimeter of area-equivalent circle

perimeter of bubble
=
⇡da

Pb
(45)

where ⌦b refers to the subspace of the lattice cells with coordinate x = (x, y) where �(x, y) < 0, i. e. they
fall inside the bubble.

Fig. 2: Initial configuration and boundary conditions for the rising bubble problem [16]

4.2.1 Test case 1

In the first test known as test case 1 in [16], we choose the corresponding parameters as in Table 1 where the
density and viscosity ratios are both set to 10. As the time elapses the bubble is expected to gain a stable
ellipsoidal shape. An illustration of the time evolution of the bubble shape is depicted in Figure3 for a lattice
of h = 1/160 using the Shan-Chen LBM, Approach 1 and 2 of the coupled scheme and the finite element
solution obtained by the FeatFlow package [16]. While the interface obtained by the LBM-Level Set scheme
closely resembles that by the FeatFLOW, the Shan-Chen model produces more noticeable discrepancies from
the reference shapes.

The convergence behaviour of the coupled scheme with Approach 2 for the eventual interface shape is
illustrated in Figure 4. The convergence trend is further examined in time for the bubble quantities in Figure
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Fig. 3: Time evolution of the bubble shape for the Test Case 1

5. The di↵erences between the curves of h = 1/80, h = 1/160 and h = 1/320 are quite small, while the curve
of the coarsest lattice of h = 1/40 has clear deviation from the fine grid solutions and experiences di�culty in
retaining the ellipsoidal shape of the bubble after t = 2 as reflected in the circularity curves. The main reason
is that the quality of our interface reconstruction degrades largely at coarser lattices which also provokes
intermittent jumps in the circularity curve due to the periodic reinitialization of a weakly reconstructed
interface. Table 4 contains the time-integrated errors in the rise velocity in di↵erent norm spaces measured
relative to the reference lattice of h = 1/320. The calculated rates of convergence (from h/2 to h) (ROC)
show that the overall accuracy of the coupled scheme in L1 and L2 norm spaces is in between 1.5 and 2
which confirms the second order accuracy in both Approach 1 and 2.

Finally, Figure 6 shows a quantitative comparison between di↵erent schemes on the finest level of h = 1/320.
Again, a very close agreement is discerned between the solutions from the coupled LBM-level set scheme
(using both approaches) and those produced by FeatFLOW. Although the Shan-Chen model is able to
capture the overall temporal trend, it exhibits apparent deviations especially in the bubble velocity, where
the velocities are in average lower than the reference solution. As also pointed out for the static case, Approach
1 is successful in recovering the correct pressure field for such moderate density and viscosity di↵erences and
therefore we did not expect it to introduce any noticeable error in the dynamic test as well.

Table 4: Errors in the bubble rise velocity and the rates of convergence (ROC) for the test case 1

LBM-Level Set, Approach 1

1/h k e1 k ROC1 k e2 k ROC2 k e1 k ROC1
40 0.076750 0.149206 0.177204

80 0.028549 1.426712 0.053590 1.477261 0.055123 1.684686
160 0.007367 1.954169 0.013609 1.977321 0.024643 1.161464

LBM-Level Set, Approach 2

1/h k e1 k ROC1 k e2 k ROC2 k e1 k ROC1
40 0.096958 0.051369 0.046389

80 0.042549 1.188226 0.021663 1.245647 0.020337 1.189679

160 0.013890 1.615036 0.000692 1.644344 0.000757 1.424072

Center point Xc =

∫
Ω2

x dΩ∫
Ω2

1 dΩ

Circularity c = πPa
Pd

Rising velocity Uc =

∫
Ω2

u dΩ∫
Ω2

1 dΩ

ρ1 ρ1 µ1 µ2 g σ Re Eo ρ1/ρ1 µ1/µ2

1000 100 10 1 0.98 24.5 35 10 10 10
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Rising bubble benchmark
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Rising bubble benchmark
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Summary and outlook

New curvature-free level set FEM method is introduced and numerically
validated for multiphase phase flow problems where

no explicit calculation of curvature and normals

a monolithic treatment of multiphase flow problems is possible

no capillary time step restriction remains

a conservative level set can be used

multiphase flow problems can be simulated with a standard
Navier-Stokes solver with homogenous force

special FEM for the multiphase stress can be used
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