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MIT Benchmark 2001

• One of industrial interests +
• Numerically challenging -

H. Damanik

Temperature oscillation in Newtonian Flow:

Highly accurate, robust numerical solver which
represents the temperature oscillation is challenging
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Motivation

• One of industrial interests +
• Physically fascinating +      
• Rheologically difficult -
• Numerically challenging -

H. Damanik

Polymer melts:

Highly accurate, robust numerical solver which
represents the rheological nature is still challenging
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Motivation
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Rising bubble in viscoelastic fluid:

A totally different behaviour!
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Polymer as Viscoelastic model

• Differential form: Upper-convected derivative
• More practical to implement than integral form
• Represent many viscoelastic models

H. Damanik

Viscoelastic fluid models (D. D. Joseph):

்

• Conformation tensor (߬ሻ, velocity source ,(ݑ) (݂ ߬ )
• Not able to capture high stress gradient at higher We number
• ݂ ߬ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom

ଶ

ି ௧ି௦
ௐ௘ ்

௧

ି∼

• Integral form
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Log-conformation Reformulation
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• Stresses grow exponentially
• Conformation tensor looses positive properties

during numerics

Experience (Kupferman et. al):
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LCR based models

• Ability to capture high stress gradients at higher We number
• Positivity preserving by design ߬ ൌ ݁ట

• Numerically more stable with appropriate FEM

H. Damanik

LCR based viscoelastic fluid:

• LCR tensor (ψሻ, velocity source ,(ݑ) (݃ ߰ )
• ݑߘ ൌ Ω ൅ ܤ ൅ ܰ߬ିଵ

• ݃ ߰ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom
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Total equations
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MIT Benchmark: velocity-temperature-pressure

With critical values: 
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Total equations
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MIT Benchmark + viscoelastic stress

With critical values: 
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Why a moderate relaxation time

H. Damanik

Flow around cylinder:

A moderate value of relaxation time Λ ൌ 0.1	 has a good
agreement between different numerical methods

moderate critical
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Discretizations
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In Time:

• Inf-sup stable for velocity and pressure
• High order: good for accuracy
• Discontinuous pressure: good for solver & physics
• Edge oriented FEM for numerical stabilitation (Burman)

In Space: Higher order finite element (Arnoldi)

• Second order Crank-Nicolson
• Can be adaptively applied
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Discrete system
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Saddle point problem:
• ෤ݑ consists of all numerical variables except pressure
• Newton with multigrid as well-known solver
• Monolithic way of solving
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• ܣ consists of differential operators
• ܤ is gradient operator
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Newton iteration

H. Damanik

Newton for nonlinear system:
• Strongly coupled problem
• Automatic damping control ߱௡	for each nonlinear step
• Black-box for many given viscoelastic models

• Quadratic convergence when iterative solutions are close
• Solution ݔ௡ାଵ ൌ ሺݑ෤, ሻ, Residual equation݌ ࣬ሺݔ௡ሻ
• Black-box is made possible by divided difference technique
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Multigrid iteration

H. Damanik

Multigrid for linearized system:
• Full-Vanka for strongly coupled

Jacobian in local system
• Full prolongation
• Black-box for many given viscoelastic

models
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Modified MIT Benchmark

H. Damanik

Case =1:

The old MIT enchmark 2001 is recovered
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Modified MIT Benchmark
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Case =0.75:

The amplitude is reduced



Page 17Page 17

Modified MIT Benchmark
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Case =0.65:

The amplitude is more reduced
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Modified MIT Benchmark
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Case =0.5:

The amplitude is completely damped
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Modified MIT Benchmark
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Case 0.5:

No oscillation so that Steady data
can be obtained! Here with
moderate nonlinear steps

ߚ Nonlinear
steps

ଵߠ ݑܰ

0.5 4 0.2654041 4.668066
0.4 4 0.2654271 4.668867
0.3 5 0.2654530 4.669650
0.2 5 0.2654823 4.670387
0.1 6 0.2655137 4.671005
0 5 0.2655297 4.670980
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Conclusion
We have presented:

• MIT Benhmark with additional viscoelastic model
• Higher order FEM discretizations
• Black-box Newton-multigrid solver
• Numerical examples show that introducing viscoelasticity: 

o Creates more oscillation at the beginning of time iteration
o In a longer time computation, oscillation goes periodically
o The amplitude of the oscillation decreases as viscoelasticity increases
o When viscoelasticity is dominant, the oscillation is completely damped

Future outlook: A comprehensive study on 
physicall results
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