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Motivation

Convection-
Diffusion
Problems

Solution
Strategy

Solution
Accuracy

PinT methods offer a pathway to
exploit modern HPC system, but require
solvers that are:

robust across varying diffusion coefficients
and long time intervals
efficiently parallelizable in space and time

Standard Galerkin methods can exhibit
non-physical oscillations in
convection-dominated regimes

Stabilization techniques are required to
improve numerical behavior and maintain
physical fidelity
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Model Problem

d-dimensional convection-diffusion problem
Find u : Ω × (0, T ) → R such that

∂tu(x, t) − ε∆u(x, t) + ∇ · (v(x, t)u(x, t)) = f(x, t) in Ω × (0, T ),
u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

where Ω ⊂ Rd, T > 0, diffusion coefficient ε > 0 and velocity field v.

Diffusion: leads to a smoothing of the concentration distribution (high to low
concentration)

Convection: Transports the concentration with the flow (displacement without spreading
in purely convective models)

Combined: Diffusion smooths, while convection shifts the profile (spreading and
transport), the balance between the two effects captured by: Pe = vL

ε
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1D Test Problem

(Linearized) Burgers’ Equation

∂tu(x, t) − ε∂xxu(x, t) + 1
2 ∂xxu(x, t)2 = f(x, t) in (0, 3) × (0, T ),

u(x, 0) = u0(x) in (0, 3),

where T > 0, diffusion coefficient ε > 0.
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“less” smooth solution: u(x, t) = 1
tanh(η) (tanh(η sin(2π(x − t))) + tanh(η)), where η = 5

velocity field v = u and corresponding source term f .
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1D Test Problem
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“more” smooth solution: u(x, t) = 1
tanh(η) (tanh(η sin(2π(x − t))) + tanh(η)), where η = 1

velocity field v = u and corresponding source term f , Pel < 1.
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“more” smooth solution: u(x, t) = 1
tanh(η) (tanh(η sin(2π(x − t))) + tanh(η)), where η = 1

velocity field v = u and corresponding source term f , Pel ≫ 1.
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Galerkin Finite Elements and VMS Stabilization

Problem at hand

∂tu − ε∆u + ∇ · (vu) = f in Ω × (0, T )

Semi-discrete variational problem

(∂tuh, φh) + ε(∇uh, ∇φh) + (∇ · (vuh), φh)
+αVMS[(∇uh, ∇φh) − (gh, ∇φh)] = (f, φh), ∀φh ∈ Vh

(gh − ∇uh,ψh) = 0 ∀ψh ∈ (Vh)d

Variational multiscale (VMS) method1: add diffusive and compensation term with
stabilization parameter αVMS ≥ 0

higher order stabilization
stabilization term vanishes in the continuous setting → consistence

1John, Kaya, Layton (2006); Lohmann et al. (2017).
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1D Finite Differences Interpretation

linear finite elements, uniform grid with mesh size h and N spatial unknowns,
quadrature based mass-lumping, v = 1
semi-discrete formulation in matrix form: M ∼ id,B ∼ grad,B⊤ ∼ div

M∂tu(t) + εLu(t) +Ku(t)+αVMS(L−B⊤M−1B︸ ︷︷ ︸
(=:W )

)u(t) = f(t)

Stabilization matrix W in FD

M−1L ∼ − 1
h2 [1, −2, 1] ⇝ Taylor: 1

h2 (h2uxx + Ch4uxxxx + O(h6))

M−1B⊤M−1B ∼ − 1
(2h)2 [1, 0, −2, 0, 1] ⇝ Taylor: 1

4h2 (4h2uxx + 24Ch4uxxxx + O(h6))

=⇒ M−1W ∼ 1
(2h)2 [1, −4, 6, −4, 1] ⇝ Taylor: C̃h2uxxxx + O(h4)

Stabilization term corresponds to scaled biharmonic operator ⇒ second order of accuracy
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VMS Stabilization in Convection-Dominated Cases

Non-phyiscal oscillations may occur when diffusion decreases
→ can be smoothed by stabilization or by finer resolution
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Level 5, T = 3, ε = 10−3.
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Level 7, T = 3, ε = 10−3.

Choose αVMS fix or αVMS(x, t) = 0.1 Pel

1+Pel
v(x, t), where Pel = hv(x,t)

ε

h = δt αVMS = 0 0.1 αVMS(x, t)
1/32 1.9 · 10−1 1.4 · 10−1 3.1 · 10−1

1/64 8.6 · 10−2 4.5 · 10−2 1.2 · 10−1

1/128 2.1 · 10−2 1.6 · 10−2 4.2 · 10−2

1/256 5.3 · 10−3 5.8 · 10−3 1.5 · 10−2

1/512 1.3 · 10−3 2.1 · 10−3 4.9 · 10−3

Discrete L2-error at final time T = 3, ε = 10−3.
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Time Discretization

Implicit Theta scheme, θ ∈ (0, 1], time steps t0, ..., tK , fixed time step size δt

Aum +Bum−1 = δt
(
θfm + (1 − θ)fm−1

)
= f̃m, m = 1, ..., K,

where A := M + θδt(εL+K) + δtαVMSW , B := −M + (1 − θ)δt(εL+K)

Special characteristic: Fully implicit treatment of stabilization2

considered for Crank-Nicolson scheme, i.e., θ = 1
2

reduces computational effort
no loss of accuracy (2nd order)
very effective regarding the solver

2D., Turek, Lohmann (2024)
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Preliminaries

Blocking the unknowns in two different ways... N spatial nodes x1, ..., xN ,
K time steps t1, ..., tK

time-major ordering

ũ :=



u1
1

u1
2...

u1
N

u2
1

u2
2...

u2
N...

uK
1

uK
2 ...

uK
N



space-major ordering

u1
1

u2
1...

uK
1
u1

2
u2

2...
uK

2 ...
u1

N

u2
N...

uK
N



=: u
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Preliminaries II

...results in the following two global system matrix structures for αVMS = 0 and 1D:
time-major ordering


N × N

N
K

×
N

K

space-major ordering


K × K

N
K

×
N

K
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Parallel-in-Time Multigrid Methods
Space-Time Multigrid (STMG)



Multigrid Waveform Relaxation (WRMG)


Smoothing: (damped) block Jacobi method: x(ν) = x(ν−1) + ωD−1(f − Sx(ν−1))

number of pre-smoothing and post-smoothing steps: ν1 and ν2
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Parallel-in-Time Multigrid Methods II

Space-Time Multigrid (STMG)

Gander & Neumüller (2016)

Parallelization in time (and space)

Solves the full space-time problem on a
space-time grid

Approximates D with multigrid in space
(tolrel = 10−1)
Coarsening per spatial node:
P δt,h

2δt,h
= P δt

2δt ⊗ IN ,
R2δt,h

δt,h
= (P δt,h

2δt,h
)⊤

δt

2δt

4δt

2δt

δt

Multigrid Waveform Relaxation (WRMG)

Lubich & Ostermann (1987)

Enhances parallelization in space

Solves “space-only” problem with
vector-valued unknowns for each spatial
node → applied simultaneously across all
time steps
Standard coarsening in space for each
time step: Ph,δt

2h,δt
= Ph

2h ⊗ IK ,
R2h,δt

h,δt
= (P δt,h

δt,2h
)⊤

h

2h

4h

2h

h
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Numerical Studies: αVMS = 0
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coarsening in space, ε = 10−1.
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Numerical Studies: ε = 10−3, αVMS = 0
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Stabilization in WRMG

Stabilization parameter in multigrid:

αVMS

(
h

H

)2

h: mesh size of fine level, H: mesh size of current level

Preferred choices: αVMS = 0.1 fix or αVMS(x, t)

Solve the same continuous problem on each level, but less
stabilization on coarser levels3

αVMS

(
h

H

)2
M−1Wu ∼ αVMS

(
h

H

)2
C̃H2uxxxx = αVMSh2C̃uxxxx

αVMS

αVMS
4

αVMS
16

αVMS
4

αVMS

3D., Turek, Lohmann (2023)
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Numerical Studies: ε = 10−3
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Numerical Studies: ε = 10−3
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Numerical Studies: ε = 10−3
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Combined Approach: Space-Time Parallelization

STMG(t) and WRMG(s) offer powerful tools - but may be limited when used alone.

Challenges:
small ε

number of iterations low and bounded
large time intervals

Main idea and aims:
introduce geometric multigrid in time (and space), coupled with WRMG as an
inner block smoother → enhanced space parallelism
split time interval into subintervals for smoothing purposes → time parallelism by
independent treatment of subintervals
ensure small coarse-grid problems - via coarsening in both space and time
scalable space-time parallelism to unlock more potential for extreme-scale
computing
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Multigrid in Time: Smoothing

Split global time interval into I subintervals

x(ν̃) = x(ν̃−1) + ωM̃−1(f̃ − S̃x(ν̃−1))

compute residual r̃ := (f̃ − S̃x(ν̃−1))

split global time interval into I
subintervals

solve Misi = ri, i = 1, ..., I on each
subinterval, or, approximate Mi with
WRMG(tolrel = 10−1)

correction x(ν̃) = x(ν̃−1) + ωs̃

0 Tsplitting


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Multigrid in Time (and in Space): Coarsening

Restriction (forward in time) and prolongation:

R2δt,h
δt,h = R2δt

δt ⊗ IN , P δt,h
2δt,h = (R2δt,h

δt,h )⊤

Pro: Processors correspond to fixed subintervals → reduces communication costs

Con: Maximum number of levels depends on the number of time steps per sub interval
on the fine level

In numerical studies: 32 time steps per subinterval on fine level → computing time of coarse
grid solver < 1%

Note: Fixing the number of time steps = 1 per interval when coarsening leads to STMG.
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Numerical Studies: ε = 10−1, αVMS = 0.
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Numerical Studies: ε = 10−2, αVMS = 0

101 102 103
0

5

10

15

K

#
ite

ra
tio

ns

h = δt = 1/32 h = δt = 1/64 h = δt = 1/128 h = δt = 1/256
h = 1/32, δt = 1/64 h = 1/32, δt = 1/128 h = 1/32, δt = 1/256

MG, V-cycle, FGMRES(2+2)
coarsening in time.

101 102 103
0

5

10

15

K

av
er

ag
e

ite
ra

tio
ns

Inner WRMG, V-cycle, GMRES(2+2),
coarsening in space.

Wiebke Drews Stabilized Finite Element Multigrid Techniques for Space-Time Parallelism in Convection-Diffusion Problems 24/27



Numerical Studies: ε = 10−3, αVMS = 0
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Numerical Studies: ε = 10−3, αVMS(x, t)
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MG, V-cycle, FGMRES(2+2)
coarsening in time and space.
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Numerical Studies: ε = 10−3

100 101 102 103

10−4

10−3

10−2

10−1

100

101

K

er
ro

r

h = δt = 1/32 h = δt = 1/64 h = δt = 1/128 h = δt = 1/256
h = 1/32, δt = 1/64 h = 1/32, δt = 1/128 h = 1/32, δt = 1/256

Discrete L2-error at final time T = δtK,
αVMS(x, t).
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Conclusion and More Aspects

Stabilization can improve solution
accuracy and solver performance in
convection-dominated scenarios
Combined method shows encouraging
results for various ε and large time
intervals

Extension to 2D and 3D problems
Studies on computational and parallel
efficiency
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Cost ratio estimation: sequential vs. MG,
V-cycle, FGMRES(2+2), ε = 10−1, coarsening

in space and time.
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Backup: Fully Implicit Treatment of Stabilization

stabilization matrix W := L−B⊤M−1B

stabilized FE discretization of problem at hand

Aum +Bum−1 = f̃m

where
A := (M + αVMS

δt
2 W ) + δt

2 (εL+K + αVMSW ),
B := −(M + αVMS

δt
2 W ) + δt

2 (εL+K + αVMSW ).

corresponds to the CN discretization of

(M + αVMS
δt
2 W )∂tu(t) + (εL+K + αVMSW )u(t) = f(t)

⇔ M∂tu(t) + (εL+K)u(t) + αVMSW ( δt
2 ∂tu(t) + uh(t)) = f(t)

variational formulation of VMS stabilization in d dimensions

(∂tuh, φh) + ε(∇uh, ∇φh) + ∇ · (vuh, φh)
+ αVMS[(∇[uh + δt

2 ∂tuh], ∇φh) − (gh, ∇φh)] = (fh, φh) ∀φh ∈ Vh,

(gh−∇[uh+ δt
2 ∂tuh],ψh) = 0 ∀ψh ∈ (Vh)d
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