

 No. 634 December 2020

Increased space-parallelism via time-simultaneous
 Newton-multigrid methods for nonstationary

nonlinear PDE problems

J. Dünnebacke, S. Turek, C. Lohmann,
A. Sokolov, P. Zajac

ISSN: 2190-1767

Jonas Dünnebacke∗1, Stefan Turek1, Christoph Lohmann1, Andriy Sokolov1, and
Peter Zajac1

1Institute of Applied Mathematics (LS III), TU Dortmund University,
Vogelpothsweg 87, D-44227 Dortmund, Germany

Abstract

We discuss how ‘parallel-in-space & simultaneous-in-time’ Newton-multigrid ap-
proaches can be designed which improve the scaling behavior of the spatial paral-
lelism by reducing the latency costs. The idea is to solve many time steps at once and
therefore solving fewer but larger systems. These large systems are reordered and in-
terpreted as a space-only problem leading to multigrid algorithm with semi-coarsening
in space and line smoothing in time direction. The smoother is further improved by
embedding it as a preconditioner in a Krylov subspace method. As a prototypical
application, we concentrate on scalar partial differential equations (PDEs) with up
to many thousands of time steps which are discretized in time, resp., space by finite
difference, resp., finite element methods.

For linear PDEs, the resulting method is closely related to multigrid waveform re-
laxation and its theoretical framework. In our parabolic test problems the numerical
behavior of this multigrid approach is robust w.r.t. the spatial and temporal grid size
and the number of simultaneously treated time steps. Moreover, we illustrate how
corresponding time-simultaneous fixed-point and Newton-type solvers can be derived
for nonlinear nonstationary problems that require the described solution of linearized
problems in each outer nonlinear step. As the main result, we are able to gener-
ate much larger problem sizes to be treated by a large number of cores so that the
combination of the robustly scaling multigrid solvers together with a larger degree of
parallelism allows a faster solution procedure for nonstationary problems.

1 Motivation
Modern High Performance Computing platforms feature a continuously growing number
of cores, together with accelerator hardware, e.g. GPUs, while the performance of each
core does barely increase or even stagnates: To efficiently use such systems the underlying
numerical algorithms have to be more and more parallel. However, when dealing with
time-dependent partial differential equations (PDEs) in the framework of initial value
problems (IVP), the usual time-stepping approach is inherently sequential and does only
allow spatial parallelization in each time step.

To be more precise: If we simulate such PDEs with a relatively low number of spatial
degrees of freedoms (DOFs), but a very high number of time steps due to a long time

∗jonas.duennebacke@math.tu-dortmund.de

1

horizon and/or small time steps, we can only exploit a certain degree of parallelism in
each time step due to the small spatial problem size.

As a consequence, we cannot significantly speed up the complete simulation by parallel
computing: If we utilize more and more cores, the run-time of the simulation will stagnate
or even begin to increase when there are too few (spatial) unknowns left for each processor,
because the communication time between the processors will outweigh the time that is
needed for the actual computations in each process (see Fig. 1 for illustration).

10 1 10 2 10 3

#cores

10 3

10 4

10 5

s
o
lv

e
r

ti
m

e
 [
s
]

Level 9, 3.2M steps

Level 10, 0.8M steps

Level 11, 0.2M steps

Level 12, 50K steps

Figure 1: Strong scaling test: Typical solution time (y-axis) for an increasing number of
cores (x-axis) with different mesh levels in space vs. number of time steps for nonstationary
2D problems discretized with bilinear FEM (Level i corresponds to mesh size h = 2−i);
the total number of unknowns (in the space-time domain) is the same in all 4 tests.

It is important to note that the main cost of communication is due to latency and
not due to limited bandwidth. Vice versa, if the number of communication operations
is reduced by communicating more data at once, the limited scaling behavior could be
improved, so that more cores could be used efficiently in such simulations. To achieve this,
we therefore have to abandon the usual sequential time-stepping which treats complete
spatial problems, but one after the other.

One class of corresponding approaches is based on ’time-parallel’ solvers in which case
many methods are based on integrating ordinary differential equations (ODEs) parallel
in time. The most prominent example of this group is Parareal [13] and its variants.
Other notable examples are PFASST [2, 20] and MGRIT [3, 4, 8]. Another class of time-
parallel methods is based on solving a global discrete system with multigrid methods.
Since a simple geometric multigrid method as used for elliptic problems does not work for
parabolic equations, there exist several different approaches. The first parabolic multigrid
was developed by Hackbusch [7], while other forms of such schemes are the ones developed
by Horton and Vandewalle [10] as well as the more recent variants [6, 9, 17, 27]. The
method that is the closest to our approach (which is better described as time-simultaneous
instead of time-parallel) is multigrid waveform relaxation. It was first published by Lubich
and Ostermann [16] and has been studied in detail for different problems [21, 23, 24, 25].
For a more complete overview of parallel-in-time methods, we refer to [5].

2 Time-simultaneous multigrid solvers
In the following, we describe a geometric multigrid scheme that computes many time steps
simultaneously but relies solely on spatial parallelization [1]. For illustration, we start with

2

a second order parabolic evolution equation

∂tu(x, t)− L(t)u(x, t) = f(x, t) (x, t) ∈ Ω× (0, T) (1)

where L(t) is a linear elliptic operator in space for every t ∈ (0, T) with some initial and
boundary conditions.

To simplify the notation, we only consider linear one-step methods such as implicit
Euler or Crank-Nicolson schemes. Moreover, we require a fixed spatial discretization by
finite differences (FD) or finite elements (FE) for all time steps, so that the discrete system
at each time level k can be written as

Akuk = fk −Bkuk−1 , k = 1, . . . ,K (2)

with matrices Ak, Bk ∈ RN×N for 1 ≤ k ≤ K and a given discrete initial value u0 ∈ RN ;
uk represents the vector of spatial DOFs at time level k. Here, N ∈ N is the number of
spatial degrees of freedom and K ∈ N denotes the number of (simultaneously computed)
time steps. This method can also be applied in combination with linear multistep methods:
The only additional requirement is that the related systems in each time step, that means
Akuk = r.h.s., can be efficiently solved by a spatial (geometric) multigrid method.

Now, we can gather the individual equations in (2) in an all-at-once system of the form
A1
B2 A2

.

BK AK

︸ ︷︷ ︸

=:Ā∈RNK×NK

u1
u2
...

uK

︸ ︷︷ ︸

=:ū∈RNK

=

f1 −B1u0

f2
...

fK

︸ ︷︷ ︸

=:f̄∈RNK

. (3)

Then, the central idea is to reorder this system from a space-major ordering

ū = [u1,1, . . . , u1,N , u2,1, . . . , u2,N , . . . , uK,1, . . . , uK,N]>

to a time-major ordering

u = [u1,1, . . . , uK,1, u1,2, . . . , uK,2, . . . , u1,N , . . . , uK,N]>

where uk,i = (uk)i denotes the i-th spatial DOF at the k-th time step. The same reordering
is applied to the vector f̄ and to the rows and columns of the matrix Ā.

The reordered matrix A ∈ RNK×NK can be written as a block matrix whose block
structure is the same as the structure of the matrices Ak and Bk in each time step.
However, each (block) matrix entry is not a scalar value but a lower bi-diagonal K ×K
matrix. In the more general case of linear multi-step methods, each block is a lower
triangular submatrix with a small bandwidth. For example, in the case of linear 1D finite
elements, the stiffness and mass matrices are tridiagonal which means that the reordered
global matrix A for one-step methods has the following block-tridiagonal structure:

A =

∗
∗ ∗

.
∗ ∗

∗
∗ ∗

.
∗ ∗∗

∗ ∗
.
∗ ∗

∗
∗ ∗

.
∗ ∗

∗
∗ ∗

.
∗ ∗

.
∗
∗ ∗

.
∗ ∗

∗
∗ ∗

.
∗ ∗

∗
∗ ∗

.
∗ ∗∗

∗ ∗
.
∗ ∗

∗
∗ ∗

.
∗ ∗

.

3

Summarizing, this new system is just based on grouping multiple equations into one large
system and reordering. Therefore, it has the same solution as the initial time-stepping
equations in (2), resp., in (3).

To solve this new system we simply apply a geometric multigrid method in space to
the global system by treating each inner (K × K)-block as a single matrix entry which
is directly related to one corresponding spatial unknown, resp., grid point now containing
all K time instances. Then, we may use a damped Jacobi smoother given by the iteration

um+1 = um + ωD−1(f −Aum) , (4)

where ω > 0 is a damping parameter and D is the (block) diagonal part of the reordered
matrix A, to achieve a high level of parallelism as usual for Jacobi smoothing. Since we
are formally treating the matrix A as a matrix of blocks, resp., submatrices, we have to
use the complete diagonal blocks in the matrix

D =

#
#

. . .
#

 ∈ RNK×NK with # =
[∗
∗ ∗

.
∗ ∗

]
∈ RK×K (5)

resulting in a block-Jacobi smoother with block size K. Additionally, different smoothers
which can be written in the form (4) are applicable in the same manner leading to block-
smoothing procedures, too.

The corresponding grid transfer operators for performing multigrid iterations are con-
structed in an analogous way leading to semi-coarsening in space which means that the
transfers in space can be applied to each time step independently so that the temporal
grid remains the same across all grid levels. Consequently, we can write the prolonga-
tion matrix P ∈ RNK×NcK and the restriction matrix R ∈ RNcK×NK as the Kronecker
products

P = Ps ⊗ Ik and R = Rs ⊗ Ik (6)

with the identity matrix IK ∈ RK×K and the spatial transfer matrices Ps ∈ RN×Nc and
Rs ∈ RNc×N , which correspond to the usual grid transfer operators in a standard (space-
only) geometric multigrid method. Here, Nc denotes the number of spatial DOFs on the
coarser level.

With these modified smoothing and transfer operators we can apply the same multi-
grid algorithm as in each time step in (2), but now to solve the all-at-once system. As
a consequence, we can treat K time steps simultaneously, while at the same time the
dimension of the all-at-once system is K times greater than the dimension of the original
spatial systems Ak in each time step which is the key to exploit a larger number of cores
related to the given number of spatial grid points.

In our numerical experiments in the following sections, we also demonstrate the effi-
ciency of different smoothing operators. For instance, instead of using a plain damped
(block) Jacobi smoother, we may use BiCGSTAB (or GMRES) iterations for smoothing
with matrix D in (4) as preconditioner. The reasoning behind this idea will be explained
in the next subsection. Moreover, the total number of time steps M = T

τ that have to be
computed to solve a problem in a given time interval (0, T] and for a given time step size
τ can be very large. In such cases it is not beneficial or even not possible to compute all
M time steps simultaneously. Instead we will only solve K < M steps simultaneously and
perform such a ’macro time stepping’

⌈
M
K

⌉
times, but in a sequential manner where the

solution of the previous time slot can be used as initial value of the next one. To make
this point clear: This does explicitly not expose any parallelism in time.

4

2.1 Intuitive explanation for small and large time steps

In the following, we provide a short intuitive understanding of two special cases that can
help to tweak the algorithm in practice. To do this we consider the 1D heat equation with
finite elements (and mass lumping) or finite differences as spatial discretization. In the
most simplistic case of central differences as space discretization and the implicit Euler
time discretization with equidistant spatial and temporal grids, the discrete scheme reads

1
τ

(uk,i − uk−1,i)−
1
h2 (uk,i+1 − 2uk,i + uk,i−1) = fk,i (7)

with the spatial grid size h and the time step size τ . This shows that matrix entries
belonging to the spatial derivatives are of the size O(h−2) and matrix entries belonging to
the time derivative are of the size O(τ−1). To describe the ratio between these values we
introduce the ‘anisotropy factor’ λ = τ

h2 that is widely used in the convergence analysis
of space-time multigrid methods [6, 10, 24]. For different discretizations or a different
number of spatial dimensions, the same ratio can be used without losing its meaning as
long as L(t) is a second order elliptic differential operator. As this parameter depends
on the temporal and spatial grids, it changes on different levels of the multigrid scheme.
Furthermore, it can change locally on each level, if local grid refinement or space- and
time-dependent coefficients are used. Consequently, the resulting method should yield
convergence rates that are stable with respect to a wide range of values for λ.

In the case of λ↗∞, the matrix entries belonging to the spatial discretizations prevail
and we obtain a discretized Poisson operator. This means that the prototype system has
the global structure

A = τ−1

1 + 2λ −λ
−1 1 + 2λ −λ

. . .
. . .

. . .
−1 1 + 2λ −λ

−λ 1 + 2λ
−λ −1 1 + 2λ

. . .
. . .

. . .
. . .

−λ −1 1 + 2λ
−λ

−λ. . .
.

−λ
−λ 1 + 2λ

−λ −1 1 + 2λ
. . .

. . .
. . .

−λ −1 1 + 2λ

where the absolute values of red entries are much larger than the black ones. If we ignore
the significantly smaller values, each block of the global matrix becomes diagonal, so that
the global system can be seen as K independent N ×N systems for each time step. Then,
using the time-simultaneous multigrid is equivalent to solving each independent problem
with a (spatial) multigrid scheme on its own and it should not behave worse than the
corresponding multigrid algorithm for the stationary problem with a convergence behavior
independent of the spatial mesh size h (see Fig. 2). This consideration holds true also
for all BDF-like time discretizations; with other linear one- or multistep methods the
subdiagonal entries do not vanish, nevertheless the convergence behavior is similar.

5

In the opposite case λ↘ 0, the (red) values of order O(τ−1) dominate in the matrix:

A = τ−1

1 + 2λ −λ
−1 1 + 2λ −λ

. . .
. . .

. . .
−1 1 + 2λ −λ

−λ 1 + 2λ
−λ −1 1 + 2λ

. . .
. . .

. . .
. . .

−λ −1 1 + 2λ
−λ

−λ. . .
.

−λ
−λ 1 + 2λ

−λ −1 1 + 2λ
. . .

. . .
. . .

−λ −1 1 + 2λ

.

Ignoring all small values leads to a block diagonal global system if the mass matrix is
diagonal. Such a diagonal mass matrix arises naturally in FD discretizations or can be
obtained by using mass lumping in the FE case. However, for such block diagonal matrices,
the described block-Jacobi preconditioner (ω = 1.0) becomes exact and the corresponding
multigrid solver converges in one step (see Fig. 2 for illustration).

10
-5

10
0

10
5

0

2

4

6

8

10

it
e

r

 = 0.7

 = 1.0

bicgstab

(a) h = 1/256

10
-5

10
0

10
5

0

2

4

6

8

10

it
e

r

 = 0.7

 = 1.0

bicgstab

(b) h = 1/1024

Figure 2: MG iterations for the heat equation with different smoothers, K = 100

Since we do not want to choose the damping parameter ω based on λ manually, a well-
known remedy is to use modified smoothers like the Krylov subspace methods BiCGSTAB
[22] and GMRES [19] with the described block diagonal matrixD as preconditioner. These
methods yield convergence rates similar to the Jacobi smoothing with comparable effort
(also w.r.t. parallel treatment), while they can recover the fast convergence in the case
of λ ↘ 0 with a diagonal mass matrix. This is demonstrated in Fig. 2, too, where this
prototype system is solved for different time step sizes resulting in different anisotropy
factors λ. Here, the standard block-Jacobi smoother uses 2 smoothing steps while the
BiCGSTAB smoother uses only 1 step to have comparable cost.

2.2 Relation to multigrid waveform relaxation

Although we developed the previously described algorithm independently, the resulting
schemes can be interpreted as multigrid waveform relaxation methods [16]. These schemes

6

are based on discretizing the evolution equation in space and applying a multigrid splitting
to the stiffness matrix of the semi-discrete ODE system. For finite elements, a similar
splitting has to be applied to the mass matrix to be able to independently solve the ODEs
that arise in every step of the multigrid algorithm. The resulting method is equivalent to
our time-simultaneous method, if the same multigrid splitting with a smoother of type (4)
is used for the mass and stiffness matrix and if the same linear multi-step method is used to
solve each ODE problem in the multigrid approach. Therefore, we do not provide a more
detailed convergence analysis, but rather refer to the literature on multigrid waveform
relaxation in [11, 24] for further details.

Remark 1. As was shown by Janssen and Vandewalle [11] for the time discrete multi-
grid waveform algorithm for finite elements and a time constant operator L, the algorithm
converges and yields the same asymptotic convergence rates as the traditional multigrid
algorithm in the time-stepping case, if the coarse grid system matrix and the precondition-
ing matrices Dl on each level l are regular. Since our algorithm for the plain block-Jacobi
smoother is equivalent, this result holds true.

Consequently, the asymptotic convergence rate (i.e. the spectral radius of the iteration
matrix) is bounded, but that does not imply that the residual reduction w.r.t. an arbi-
trary norm is bounded in each iteration. Therefore, this result does not show that the
number of iterations to achieve a given residual reduction is independent of the number of
simultaneously treated time steps K. Nevertheless, the monotone convergence behavior of
the block-Jacobi smoothing can be proven, too, and will be part of a forthcoming paper.
Moreover, the described BiCGSTAB smoother does not fit into the traditional multigrid
waveform relaxation framework since this smoother itself and the resulting multigrid it-
eration are not linear so that an analysis based on the iteration matrix is not possible
anymore and hence the convergence result does not hold in that case. However, the nu-
merical examples demonstrate the expected numerical convergence behavior.

2.3 Computational characteristics

The number of necessary floating point operations (FLOPs) in each iteration of the de-
scribed time-simultaneous multigrid approach with K blocked time steps is still of linear
complexity w.r.t. the total number of unknowns N · K. Compared with the sequential
time-stepping case where an N ×N system is solved by a multigrid method in each of the
K time steps, the cost of the grid transfer per iteration and time step is the same. The cost
of the (space-time) residual calculation is slightly higher, because the global matrix has a
moderately higher bandwidth in the time-simultaneous case: The bandwidth increases by
a factor of L+1 at most where L is the width of the multistep method. For the smoothing
procedure, the residual needs to be calculated, and the preconditioner has to be applied.
That means we have to solve Nl block systems of size K ×K on level l, but each block is
a lower triangular matrix of bandwidth L+ 1 and can be treated independently from each
other. Thus, we can solve these systems by forward substitution with linear complexity
O(K), too.

Summarizing, the computational cost per iteration of the time-simultaneous multigrid
approach and the cost of the sequential time-stepping scheme with the multigrid solver in
each time step only differ by a moderate constant (multiplicative) factor. And to make
this clear: The described multigrid approach does not exploit any temporal parallelization.
Nevertheless, the time-simultaneous method is beneficial because the number of required
data communications per MG iteration and time step is reduced by a factor of K−1 since
one multigrid step yields the solution of K time steps. Consequently, the latency induced

7

communication time can be lowered and better scaling of the spatial parallelization is
possible. If the number of necessary multigrid iterations does not increase significantly
with increasing K the total computational cost is only slightly higher and the improved
scalability enables a speedup compared to sequential time-stepping.

Remark 2. Even though parallelization in the time direction is not trivial, it is possible to
apply parallel triangular solvers. This has been shown for multigrid waveform relaxation
(c.f. [26]), but will not be considered in this paper.

2.4 Extension to nonlinear problems

In the previous sections only linear evolution equations have been discussed, but in real
world applications one often has to deal with nonlinear problems. In the following, we
consider nonlinear time-dependent equations of the type

∂tu(x, t)− L(u(x, t))u(x, t) = f(x, t) (x, t) ∈ Ω× (0, T)

with suitable initial and boundary conditions, where L(v(x, t)) is a linear differential op-
erator for every v(x, t) and every (x, t) ∈ Ω × (0, T) (see the subsequent examples). In
the traditional time-sequential approach we typically discretize the equation in time and
then we only need to solve a nonlinear PDE to obtain the solution u(x, ti) at the new time
step ti when the solution u(x, tj) is already computed in the last time steps tj with j < i.
However, in the time-simultaneous approach this is not possible since we do not know the
solution at the previous time steps.

Instead, we have to perform an outer nonlinear iteration where we solve a corresponding
linearized PDE problem over the complete space-time domain in each step. First of all,
we consider the (standard) fixed-point method where the new approximation u(j+1) =
u(j+1)(x, t) is calculated by solving

∂tu
(j+1) − L(u(j))u(j+1) = f (x, t) ∈ Ω× (0, T)

where u(j+1) satisfies the same initial and boundary conditions as the solution u.
Another nonlinear iteration is the Newton method. Here, we solve

∂tv
(j+1) −K(u(j))v(j+1) = F (j) (x, t) ∈ Ω× (0, T)

where K(u(j))v(j+1) corresponds to the Fréchet derivative of L(u)u evaluated in u(j) and
applied to v(j+1), while F (j) denotes the nonlinear residual:

F (j) = ∂tu
(j) − L(u(j))u(j) − f (8)

The correction v = v(j+1) has to satisfy homogeneous boundary conditions so that the new
approximation given by u(j+1) = u(j) − v satisfies the boundary conditions if the initial
guess u0 also satisfies them.

Summarizing these two nonlinear approaches, we have to calculate a residual vector
in each nonlinear iteration step and nonstationary linearized PDE problems have to be
handled which correspond to the actual fixed-point, resp., Jacobian matrix. To solve these
nonstationary, but linear problems, we can apply the described time-simultaneous multi-
grid approaches from the previous sections. From a theoretical point of view, the standard
convergence results for classical fixed-point and Newton methods, but now applied onto the
discretized space-time problem, can be obtained. However, how this is applied in practice
will be demonstrated in the next section where we analyze numerically the behavior of such

8

time-simultaneous nonlinear iteration methods for several prototypical examples. More-
over, we shortly discuss additional aspects like adaptive step-length control techniques
and also strategies for generating appropriate starting values in the time-simultaneous
framework which can significantly influence the resulting numerical convergence behavior,
too.

3 Numerical results
In the remaining part we provide numerical results for different linear and nonlinear test
problems to illustrate the potential of this new numerical approach. For illustration pur-
poses, all tests are performed on uniform meshes where each element has the same size.
Furthermore, for simplicity, we use constant time step sizes.

All tests, that focus on the numerical behavior, are done in MATLAB while the solver
for the 2D heat equation is implemented using the C++ based Finite Element Analysis
Toolbox 3 1 to test the performance and parallel scaling capabilities of this method. The
strong scaling tests were executed on the LiDO3 cluster 2 which features 316 nodes with
2 Intel Xeon E5-2640v4 and 64 GB RAM on each node (see Fig. 4).

3.1 Linear problems

As first linear test problem, the heat equation with the following setting

∂tu(x, t)−∆u(x, t) = 1 + 0.1 sin(t) (x, t) ∈ Ω× (0, T) ,
u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T) ,
u(x, 0) = 0 x ∈ Ω ,

on the 2D unit-square domain Ω = (0, 1)2 ⊂ R2 is used which is discretized with bilin-
ear finite elements and mass lumping in space and with Crank-Nicolson in time. The
introduced time-simultaneous multigrid algorithm (here: F-cycle) uses one BiCGSTAB
iteration (preconditioned with the block diagonal matrix) as pre- and post-smoothing pro-
cedure. For each test the total number of time steps is M = 1000, while the number of
simultaneously computed time steps K changes. For example, in the case of K = 100, 10
sequentially executed multigrid solves are needed to compute the solution on the full time
domain. This ensures that for a fixed λ = τ

h2 the same problem is solved regardless of the
number of simultaneous time steps K. Then, the shown number of multigrid iterations is
the average over those 10 solver steps. Additional simulations using the sequential time-
stepping scheme and solving the corresponding stationary equation (‘stat.’) are performed
to obtain reference results (see Fig. 3). Obviously, changing λ in combination with a fixed
spatial grid size and a fixed number of total time steps implies that the time step size τ
and the time interval (0, T) are changed.

The number of multigrid iterations for very small and large time steps behaves as
expected: For λ � 1 the number of iterations needed to reduce the norm of the global
residual vector by a factor of 10−8 is independent of the block size K and corresponds to
the number of iterations that are needed in the stationary test (which means the solution
of one Poisson problem on the given spatial mesh). In the case of λ � 1, the multigrid
algorithm converges in one step and in-between the number of iterations is at most slightly
higher than in the case of large time steps. The only major difference between different

1http://www.featflow.de/en/software/feat3.html
2https://www.lido.tu-dortmund.de/

9

http://www.featflow.de/en/software/feat3.html
https://www.lido.tu-dortmund.de/

block sizes is that the transition area between ’small’ and ’large’ time steps shifts to smaller
time steps if the block size K, and hence the number of simultaneously treated time steps
increases.

Comparing the results of different spatial grids shows that the grid size only affects
the convergence speed due to its influence on λ. Other linear multistep methods, higher
order finite elements and different test cases show a similar qualitative behavior.

10
-5

10
0

10
5

0

2

4

6

8

a
v
g
.
it
e
ra

ti
o
n
 c

o
u
n
t

stat.

seq.

K=10

K=100

K=1000

(a) h = 1/32

10
-5

10
0

10
5

0

2

4

6

8

a
v
g
.
it
e
ra

ti
o
n
 c

o
u
n
t

stat.

seq.

K=10

K=100

K=1000

(b) h = 1/128

Figure 3: Number of multigrid iterations in the heat equation test case with different time
step sizes and block dimensions

10
0

10
1

10
2

10
3

#CPUs

10
0

10
1

10
2

s
o
lv

e
r

ti
m

e

seq.

K=10

K=20

K=100

K=1000

(a) solver times [s]

10
0

10
1

10
2

10
3

#CPUs

10
-1

10
0

10
1

10
2

s
p
e
e
d
 u

p

seq.

K=10

K=20

K=100

K=1000

(b) speedup vs. sequential time-stepping with-
out parallelization

Figure 4: Strong scaling test: Solver time and speed up for an increasing number of cores,
h = 1/256 (leading to appr. 66.000 grid points), τ = 0.001, T = 1

The strong scaling tests in Fig. 4 use the same multigrid setup and the same test
problem with 256× 256 quadratic elements (h = 1/256) and time step size τ = 0.001. In
the sequential time-stepping case the lowest time of 23.3 seconds to solve the complete
system, that means for 1000 time steps, can be achieved using 32 cores, while more yield no
benefit for such (in space) small-scale problems. Due to the computational overhead, the
time-simultaneous approach needs approximately twice the time for low core counts but
provides much better scaling. For a small block size of K = 20 time steps the simulation
time can be already significantly improved, while greater block sizes may even further
improve the scaling behavior. With 2048 cores and K = 1000 simultaneous steps we
achieve a speedup by a factor of 27 per multigrid iteration, but we need 7 iterations,

10

whereas the sequential time-stepping solver only needs appr. 5 multigrid iterations on
average. This results in a overall speedup factor of 19 leading to a solver time of 1.2
seconds.

3.1.1 Convection-Diffusion equation

The second linear test case is the (1D) nonstationary convection-diffusion equation

∂tu(x, t)− ε∂xxu(x, t) + c(x, t)∂xu(x, t) = f(x, t) (x, t) ∈ (0, 1)× (0, T) ,

with homogeneous Dirichlet boundary conditions, the initial condition

u(x, 0) = exp(4(x− x2))− 1 ,

the space- and time-dependent velocity field

c(x, t) = sin(πx) sin(2t)

and the forcing function
f(x, t) = sin(πt) .

The PDE is discretized using finite differences in space with a first-order upwind dis-
cretization for the convection term and the implicit Euler discretization in time. The
time-simultaneous multigrid solver uses one BiCGSTAB smoothing step (with the de-
scribed (block) Jacobi preconditioner). The following results are computed using a W-
cycle. Other cycles lead to a larger increase of iterations for both, the time-stepping and
the time simultaneous solver, when the diffusion coefficient is small. In contrast to the pre-
vious tests, the number of simultaneous time-steps is fixed and equal to the total number
of time steps K = M = 100.

Each simulation is executed with the time-simultaneous multigrid method and with
the corresponding sequential time-stepping where a standard (geometric) multigrid solver
with the same setup is used as linear solver in each time step. The results of the sequential
time-stepping approach are provided as reference (labeled with ‘seq.’ in Fig. 5).

10
-5

10
0

10
5

0

5

10

15

20

it
e

r

=1

=1e-2

=1e-4

=1, seq.

=1e-2, seq.

=1e-4, seq.

(a) h = 1/256

10
-5

10
0

10
5

0

5

10

15

20

it
e

r

=1

=1e-2

=1e-4

=1, seq.

=1e-2, seq.

=1e-4, seq.

(b) h = 1/1024

Figure 5: Convection-diffusion equation with M = K = 100 time steps for the sequential
(‘seq.’) and the time-simultaneous approach

The results show again a similar behavior for both methods (see Fig. 5): The number
of necessary multigrid steps to reduce the residual by a factor of 10−8 is bounded for large

11

time steps, and for small step sizes only one iteration is needed. Decreasing the diffusion
parameter ε leads (as can be expected) to a slower convergence speed but this is also true
for the sequential time-stepping case and is likely caused by the Jacobi smoother which
is not perfectly suitable for convection-dominated problems. Therefore, this effect is less
dominant on finer spatial grids. The biggest difference between both methods is that
the transition range between higher and lower values for λ shifts to smaller time steps in
comparison with the sequential time-stepping approach. When the diffusion parameter ε
is small, this behavior is more noticeable.

3.2 Nonlinear problems

To demonstrate that this new time-simultaneous approach can also be used to solve non-
linear PDEs while exploiting the reduced latency costs in the linear subproblems, we show
numerical results for problems of three different types.

3.2.1 Viscous Burgers’ equation

The first nonlinear test problem is the viscous Burgers’ equation

∂tu(x, t)− ε∂xxu(x, t) + u(x, t) ∂xu(x, t) = f(x, t) (x, t) ∈ (0, 1)× (0, T) (9)

in one spatial dimension with a given initial condition u(x, 0) = u0(x) = max{1− 5x, 0},
Dirichlet boundary conditions u(0, t) = g(t) = 1 and u(1, t) = h(t) = 0, with t ∈ (0, T).
In the fixed-point iteration the new approximation u(j+1) = u(j+1)(x, t) is determined as
solution of the linear convection-diffusion problem

∂tu
(j+1) − ε∂xxu(j+1) + u(j)∂xu

(j+1) = f(x, t) (x, t) ∈ (0, 1)× (0, T) ,
u(j+1)(x, 0) = u0(x) x ∈ (0, 1) ,

u(j+1)(0, t) = g(t) , u(j+1)(1, t) = h(t) t ∈ (0, T) ,

whereas the update u(j+1) = u(j) − v(j+1) in the Newton method is given by the linear
convection-diffusion-reaction problem in each outer iteration step

∂tv
(j+1) − ε∂xxv(j+1) + v(j+1)∂xu

(j) + u(j)∂xv
(j+1) = F (j) (x, t) ∈ (0, 1)× (0, T) ,

v(j+1)(x, 0) = 0 x ∈ (0, 1) ,
v(j+1)(0, t) = v(j+1)(1, t) = 0 t ∈ (0, T) ,

with
F (j) = ∂tu

(j) − ε∂xxu(j) + u(j)∂xu
(j) − f .

Here, we use a FD discretization with upwinding in space and the implicit Euler scheme
in time. As linear solver we use the same multigrid configuration as for the convection-
diffusion equation in section 3.1.1. The time-simultaneous solvers treat all time steps as
once, so the number of simultaneously computed time steps is equal to the total number
of time steps M = K = T

τ .
It is obvious that the number of necessary fixed-point iterations, denoted by it, to

achieve a global residual reduction by 10−6 depends on the simulated time horizon in
the case of small diffusion coefficients ε which render the problem more nonlinear (see
Tab. 1). For example, in the case of T = 0.1, ε = 10−3 and τ = 0.005, the fixed-point
iteration achieves the desired residual reduction after 9 steps, but 37 iterations are needed
for T = 0.4. If we extend the time interval even further to T = 1.0, the time-simultaneous

12

ε = 1 ε = 10−2 ε = 10−3

T τ it itref mg mgref it itref mg mgref it itref mg mgref

0.1 0.050 4 4.00 6.50 6.38 10 9.00 6.70 6.50 13 11.50 7.15 7.04
0.1 0.005 4 3.00 6.25 6.33 8 4.15 6.75 6.67 9 4.45 7.33 6.93
0.1 0.001 4 2.99 6.25 6.46 7 3.00 6.86 6.38 8 3.00 8.38 6.01

0.4 0.050 4 4.00 6.25 6.47 16 9.75 6.81 6.65 26 13.75 8.38 7.94
0.4 0.005 4 3.00 6.25 6.36 15 4.79 6.53 6.44 37 6.85 8.59 7.24
0.4 0.001 4 2.54 6.25 6.72 15 3.00 6.53 6.26 41 4.18 9.46 6.38

1.0 0.050 5 4.00 6.40 6.49 23 9.30 6.52 6.60 45 14.10 8.58 8.16
1.0 0.005 5 3.00 6.40 6.54 25 4.92 6.40 6.05 >50 7.63 – 7.49
1.0 0.001 5 2.22 6.40 6.87 25 3.00 6.40 5.76 >50 4.67 – 6.65

(a) Fixed-point method

ε = 1 ε = 10−2 ε = 10−3

T τ it itref mg mgref it itref mg mgref it itref mg mgref

0.1 0.050 2 2.00 6.00 7.00 3 3.00 6.33 7.00 3 3.50 7.67 7.57
0.1 0.005 2 2.00 6.50 7.00 3 2.55 6.67 7.06 3 2.80 8.33 8.27
0.1 0.001 2 2.00 6.50 7.00 3 2.00 6.67 7.00 3 2.00 10.00 6.76

0.4 0.050 2 2.75 6.00 6.73 3 3.75 6.00 7.00 3 4.50 8.33 8.56
0.4 0.005 2 2.00 6.50 7.00 3 2.89 6.67 7.01 4 3.45 10.25 8.40
0.4 0.001 2 2.00 6.50 7.00 3 2.00 6.67 7.26 4 2.63 12.00 7.06

1.0 0.050 2 2.90 6.00 6.69 3 3.90 6.67 7.01 3 4.80 9.00 8.86
1.0 0.005 2 2.00 6.50 7.00 3 2.96 6.33 6.80 4 3.78 12.00 8.62
1.0 0.001 2 2.00 6.50 7.00 4 2.00 6.50 7.40 5 2.85 14.00 7.23

(b) Newton method

Table 1: Burgers’ equation: number of nonlinear iterations, h = 1
2048

fixed-point iteration needs 45 iterations in the case of τ = 0.05 and for smaller time steps
the nonlinear solver does not reach the convergence criterion in 50 iteration. On the
other hand, the averaged number of fixed-point iterations per time step itref is only 14.1
in the sequential time-stepping approach with time step size τ = 0.05 and decreases for
smaller time steps. Therefore, a time-simultaneous fixed-point iteration is not suitable
for the Burgers’ equation in the case of small viscosity since the number of nonlinear
iterations clearly depends on the final simulation time T which is not surprising due to
the physical information transport in this Burgers’ problem. However, the number of
time-simultaneous multigrid steps in each nonlinear fixed-point iterations remains stable
as expected.

In contrast, the Newton scheme can provide much faster convergence, especially if the
initial starting values are close enough to the solution. Then, the typical quadratic con-
vergence behavior can be observed. Thus, we compute the solution for the same problem
in a nested manner with 2h, τ and 2ε and use the result as initial guess for the simu-
lation with the grid sizes τ , h and the viscosity parameter ε. Increasing the viscosity
leads to a more diffusive profile that can be appropriately resolved on the coarser meshes.
It also improves the linear multigrid solver as the problems on the coarser meshes are
less convection-dominant. Using this starting value procedure, the number of iterations
shows only a slight increase if a longer time horizon is calculated simultaneously since the
quadratic convergence behavior of Newton methods can be exploited. In these tests at
most 5 iterations are necessary to achieve the desired residual reduction.

The averaged number of multigrid steps in each nonlinear iteration, denoted by mg,

13

increases with a smaller viscosity, but is still more or less independent of the size K of
simultaneously treated time steps. In the most difficult test case with T = 1.0, τ = 0.001
and ε = 10−3, 5 Newton iterations with an averaged number of 14 (time-simultaneous)
multigrid iterations are needed to solve the complete space-time problem using the nested
starting strategy. This means that a total number of 14 · 5 = 70 multigrid iterations
are needed to solve the fully nonlinear time-dependent problem. In the sequential time-
stepping case we only need 2.85 Newton iterations on average with an averaged number of
mgref = 7.23 multigrid iterations resulting in roughly 7.23·2.85 = 20.6 multigrid iterations
per time step. Overall the time-simultaneous approach for this nonstationary nonlinear
problem needs appr. 70

20.6 = 3.4 times the number of multigrid iterations in comparison
with the sequential time-stepping solver but the previous scaling results (see Fig. 4) show
that with 1000 simultaneously treated time steps a bigger speedup per multigrid iteration
is possible.

3.2.2 Allen-Cahn equation

As second nonlinear problem we consider the Allen-Cahn equation for u = u(x, t)

∂tu−∆u+ 1
ε2u(u2 − 1) = 0 (x, t) ∈ Ω× (0, T),

∂nu = 0 (x, t) ∈ ∂Ω× (0, T),
u(x, 0) = u0(x) x ∈ Ω,

on the unit square domain Ω = (0, 1)2 with ε = 0.01. Here, we use the initial condition

u0(x) = 0.05
(

cos(6πx) cos(4πy) + (cos(8πx) cos(6πy))2

+ cos(2πx− 10πy) cos(4πx− 2πy)
)
.

The qualitative behavior of the solution at different times is shown in Fig. 6.

(a) t = 0.0 (b) t = 0.001 (c) t = 0.004 (d) t = 0.016

Figure 6: Qualitative behavior of the solution at different time steps

Here, Newton linearization leads to the following reaction-diffusion PDE for v = v(x, t)

∂tv −∆v + 1
ε2

(
3u(j)2 − 1

)
v = ∂tu

(j) −∆u(j) + 1
ε2u

(j)
(
u(j)2 − 1

)
(x, t) ∈ Ω× (0, T),

∂nv(x, t) = 0 (x, t) ∈ ∂Ω× (0, T),
v(x, 0) = 0 x ∈ Ω,

which has to be solved via the time-simultaneous (linear) multigrid approach in order to
compute the Newton update u(j+1) = u(j) − v . For the discretization in time and space,
we use bilinear finite elements in space and the Implicit Euler scheme.

For this test case, the results show a strong dependency of the number of nonlinear
iterations from the starting values which can be expected for the Newton method. To

14

visualize the corresponding convergence behavior in time we calculate the global residual
vector rj after the j-th Newton iteration, which corresponds to the discretized version of
the residual F (j) in equation (8). Then, we split that vector and compute the spatial norm
in each time step, so that we can quantify how much each time step contributes to the
global residual. So the residual at time step k after the i-th Newton iteration is given by

rj(tk) =
(N∑
l=1

rj(xl, tk)2
) 1

2 .

It should be noted that a residual of (almost) 0 in a single time step does not imply that
the solution is reached if the residual at a previous time is not 0.

If the prescribed initial condition is used as starting value at all time steps, the norm
of the residual declines only in the very first of the simultaneously computed time steps,
whereas the residual in the later time steps even increases significantly (see Fig. 7a).
Then, the residual decreases in one time step after another. This implies that increasing
the time horizon T and therefore increasing the number of simultaneously computed time
steps leads to even more nonlinear iterations.

Better results can be achieved by using a nested procedure where the starting value is
computed by solving (also in a time-simultaneous manner) the same problem, but with a
coarser discretization. In Fig. 7b the solution for mesh size h = 1/50 and τ = 5 × 10−5

is used as a starting value to solve the problem with refined grid sizes h = 1/100 and
τ = 2.5×10−5. In this case the discrete residual decreases in all time steps in all iterations
which corresponds better to the expected quadratic convergence behavior of the Newton
solver. Consequently, only 5 iterations are needed to achieve a global residual reduction
by 10−8.

In Tab. 2, corresponding results for different time step sizes τ and different end points
T are shown. In each simulation all time steps are computed using the solution computed
with the time step size 2τ as start values. The iteration counts of the Newton scheme are
stable and nearly independent of the number of simultaneously computed time steps if the
time step size is small enough. Otherwise the initial guess is not good enough, although
it portrays the qualitative behavior of the solution. Moreover, if we choose over-refined
meshes in space and time, it is possible to use the solution from a coarser discretization
in space and time as initial guess (see Tab 3).

0 10 20 30 40

time step

10
-20

10
-10

10
0

10
10

re
s
id

u
a

l

r
0

r
1

r
2

...

(a) initial condition as starting value

0 10 20 30 40

time step

10
-20

10
-15

10
-10

10
-5

10
0

re
s
id

u
a

l

r
0

r
1

r
2

...

(b) nested start strategy

Figure 7: Global residuals per time step in each iteration, h = 1/100, τ = 2.5 × 10−5,
T = 0.001

15

h τ T = 0.001 T = 0.004 T = 0.016

1/100 1/10000 16 31 81
1/100 1/20000 12 14 18
1/100 1/40000 6 6 7
1/100 1/80000 5 5 5
1/100 1/160000 4 4 5

Table 2: Number of nonlinear iterations: Solution with h and 2τ used as initial guess

h τ T = 0.001 T = 0.004 T = 0.016

1/100 1/10000 16 31 81
1/200 1/20000 12 14 17
1/400 1/40000 6 6 9
1/800 1/80000 5 5 6

Table 3: Number of nonlinear iterations: Solution with 2h and 2τ used as initial guess

3.2.3 Nonlinear stabilization method for advection problems

In this final example, we focus on a nonlinear stabilization technique for the (pure) linear
advection problem in one dimension with periodic boundary conditions

∂tu(x, t) + ∂xu(x, t) = 0 (x, t) ∈ (0, 1)× (0, T),
u(0, t) = u(1, t) t ∈ (0, T),
u(x, 0) = χ(0.1,0.5)(x) x ∈ (0, 1).

It is well known that the continuous and piecewise linear Galerkin approximation
of this problem might be polluted by spurious oscillations especially if the exact solution
possesses discontinuities. Therefore, stabilization techniques are commonly used to prevent
the occurrence of unphysical overshoots and undershoots. For example, the so called
algebraic flux correction (AFC) methodology introduced by Kuzmin and Turek [12] adds
algebraically defined artificial diffusion operators to the Galerkin discretization to provably
guarantee the validity of discrete maximum principles. In this case, the time-dependent
degrees of freedom (ui)Ni=1 : [0, T] → RN of the continuous and piecewise linear finite
element function uh solve the semi-discrete problem [15, Section 4.5.2](∑

j

mij
)
dtui −

∑
j

kijuj +
∑
j 6=i

α̇ijmij(u̇j − u̇i)−
∑
j 6=i

(1− αij)dij(uj − ui) = 0 ∀i, (10)

where mij and kij denote the entries of the mass and convection matrices while dij =
max(−kij , 0,−kji). The auxiliary quantity u̇ ∈ RN approximates the time derivative of
the degrees of freedom (dtui)Ni=1 as follows:

u̇i =
(∑

j

mij

)−1(∑
j

kijuj +
∑
j 6=i

dij(uj − ui)
)
∀i

16

Inspired by [14, Section 7.2], we define the correction factors αij , α̇ij ∈ [0, 1] by

αij = βiβj , βi = 1−max
(
0, 1− q Q+

i Q
−
i

(Pi + ε)2

)3
,

α̇ij = β̇iβ̇j , β̇i = 1−max
(
0, 1− q̇ Q+

i Q
−
i

(Ṗi + ε)2

)3
,

Q±i =
∑

j 6=i,mij>0
dij

max
(
0,±(uj − ui)

)3
(uj − ui)2 + ε

≈
∑

j 6=i,mij>0
dij max

(
0,±(uj − ui)

)
,

Pi =
∑

j 6=i,mij>0
dij

√
(uj − ui)2 + ε ≈

∑
j 6=i,mij>0

dij |uj − ui|,

Ṗi =
∑

j 6=i,mij>0
dij

√
(u̇j − u̇i)2 + ε ≈

∑
j 6=i,mij>0

dij |u̇j − u̇i|,

where ε > 0 is a small regularization parameter and q, q̇ > 0 can be increased to improve
the accuracy of the AFC solution. In this work, we set ε = 10−8 and consider q = 10 as
well as q̇ = q

τ . Eventually, the semi-discrete problem (10) is discretized in time using the
implicit Euler method to achieve a provably bound-preserving finite element scheme [15,
Section 4.5.2].

Although the continuous problem under consideration is linear in u, the dependence of
the correction factors on the unknown solution makes the resulting AFC residual highly
nonlinear. To solve the time-blocked problem, we apply again the time-simultaneous
(damped) Newton scheme. Here, ω ∈ (0, 1] is the relaxation parameter in the Newton
update u(j+1) = u(j)−ωv(j+1) and is either chosen to be constant or is set to the largest ω ∈
{2−k|k ∈ N0} so that the Armijo condition [18, eq. (3.4) with c1 = 10−4] is satisfied for the
norm of the residual. The solution is accepted if the relative norm of the residual becomes
smaller than 10−6 within a maximum of 500 nonlinear iterations. As an initial guess, we
either consider the solution sequentially calculated using a single Newton iteration in each
time step or the low order approximation produced by the AFC scheme for q = q̇ = 0.
The former starting value is very accurate so that the time-simultaneous Newton scheme
converges with a fixed number of iterations independently of the final time T if τ

h ≤ 0.2
(see Tab. 4). The same behavior can be observed for greater time increments if the solution
update is damped, at least in some iterations. On the other hand, the low order solution is
very diffusive and the use of a relaxation parameter smaller than 1 seems to be mandatory
to achieve a global residual reduction which is independent of T (see Tab. 5).

In Fig. 8, the behavior of the residual for the time-simultaneous Newton scheme using
different damping parameters is illustrated for h = 0.01, T = 1, τ = 0.002, and the low
order initial guess. For the undamped Newton scheme, the residual decreases sequentially
with respect to time and, hence, leads to a convergence behavior which depends on the
final time T . If the damping parameter is smaller than one, the order of convergence is
formally reduced, but the solution converges globally so that the total number of iterations
seems to be independent of T . Therefore, the Armijo algorithm can be used to combine
both benefits: During the first iterations, the residual of this time-simultaneous approach
is large and a relaxation parameter smaller than 1 results in a global residual reduction.
When the residual is sufficiently small, the relaxation parameter is adaptively increased
and a quadratic convergence behavior can be observed.

17

T τh−1 ω = 1.0 ω = 0.8 ω = 0.5 ω adapt.

1 0.8 − − − − − − 27 27 27 17 17 13
1 0.4 − − − 15 17 − 27 27 27 17 15 15
1 0.2 4 4 4 12 12 12 27 27 27 4 4 4
1 0.1 4 4 4 12 12 12 27 27 27 4 4 4

2 0.8 − − − − − − 27 27 27 17 17 13
2 0.4 − − − 15 19 − 27 27 27 17 17 15
2 0.2 6 4 4 12 12 12 27 27 27 6 4 4
2 0.1 4 4 4 12 12 12 27 27 27 4 4 4

3 0.8 − − − − − − 27 27 27 17 17 13
3 0.4 − − − 15 19 − 27 27 27 17 17 15
3 0.2 6 4 4 12 12 12 27 27 27 6 4 4
3 0.1 4 4 4 12 12 12 27 27 27 4 4 4

4 0.8 − − − − − − 27 27 27 17 17 13
4 0.4 − − − 15 19 − 27 27 27 17 17 15
4 0.2 6 4 4 12 12 12 27 27 27 6 4 4
4 0.1 4 4 4 12 12 12 27 27 27 4 4 4

Table 4: Advection equation: Number of (damped) Newton iterations where the initial
guess is given by the solution sequentially calculated using one Newton iteration in each
time step (first column: h = 1

50 ; second column: h = 1
100 ; third column: h = 1

200)

T τh−1 ω = 1.0 ω = 0.8 ω = 0.5 ω adapt.

1 0.8 − − − − − − 28 28 28 14 14 17
1 0.4 − − − 17 − − 30 31 31 13 13 13
1 0.2 21 36 78 18 19 21 32 35 36 12 14 29
1 0.1 15 19 88 17 20 23 32 36 40 12 13 20

2 0.8 − − − − − − 28 28 28 14 14 17
2 0.4 − − − 17 − − 30 31 31 16 13 14
2 0.2 21 53 135 18 19 31 32 35 38 12 15 30
2 0.1 19 27 105 17 20 30 33 39 47 13 15 24

3 0.8 − − − − − − 28 28 28 15 14 17
3 0.4 − − − 17 − − 30 31 32 16 13 19
3 0.2 21 104 222 18 23 55 32 35 55 12 16 24
3 0.1 21 44 126 17 22 63 45 83 77 14 19 40

4 0.8 − − − − − − 28 28 28 15 14 17
4 0.4 − − − 17 − − 30 31 35 16 13 23
4 0.2 21 201 299 18 26 77 32 35 87 12 16 30
4 0.1 30 63 196 19 43 83 51 96 161 14 18 37

Table 5: Advection equation: Number of (damped) Newton iterations using the low order
solution (q = q̇ = 0) as initial guess (first column: h = 1

50 ; second column: h = 1
100 ; third

column: h = 1
200)

18

0 50 100 150 200 250 300 350 400 450 500

time step

10 -20

10 -15

10 -10

10 -5

10 0

re
si

du
al

r
1

r
7

r
13

r
19

r
25

r
31

(a) ω = 1.0

0 50 100 150 200 250 300 350 400 450 500

time step

10 -15

10 -10

10 -5

10 0

re
si

du
al

r
1

r
7

r
13

r
19

r
25

r
31

(b) ω = 0.5

0 50 100 150 200 250 300 350 400 450 500

time step

10 -20

10 -15

10 -10

10 -5

10 0

re
si

du
al

r
1

r
4

r
7

r
10

r
13

(c) ω adaptively chosen

Figure 8: Advection equation: Discrete residual per time step in selected Newton iterations
using the low order solution as initial guess, h = 0.01, τ = 0.002, T = 1

19

4 Conclusion
We have presented an algebraically motivated approach for solving linear PDE problems
leading to time-simultaneous geometric multigrid methods which are closely related to
multigrid waveform relaxation techniques. In the shown numerical examples the proposed
method yields a numerical convergence behavior that is robust w.r.t. the number of simul-
taneously treated time steps, the spatial mesh size and the time step size. In these cases,
where the number of iterations does not grow significantly with increasing K, the com-
putational cost is only slightly higher than in the corresponding sequential time-stepping
case, but the time-simultaneous multigrid approach enhances the scalability of the spatial
parallelization. Therefore, it is possible to use a higher degree of parallelism.

The application of this new approach to nonlinear nonstationary problems is also possi-
ble by using an adapted time-simultaneous Newton solver with suitable initial starting val-
ues and corresponding adaptive damping strategies while solving linearized subproblems,
corresponding to the related Jacobian matrices, with the introduced time-simultaneous
multigrid techniques in each Newton step. While this paper mainly aims to introduce and
explain the underlying basic principles of this approach and explains the corresponding
algorithmic and computational aspects to exploit an improved scaling behavior of spatial
parallelism, the presented numerical tests of prototypical character illustrate the potential
towards real life problems in the context of nonstationary nonlinear PDE problems for
long time horizons.

Acknowledgements Calculations have been carried out on the LiDO3 cluster at TU
Dortmund University. The support by the LiDO3 team at the ITMC at TU Dortmund
University is gratefully acknowledged.

References
[1] J. Dünnebacke, S. Turek, P. Zajac, and A. Sokolov. A time–simultaneous multigrid

method for parabolic evolution equations. Technical report, Fakultät für Mathematik,
TU Dortmund, December 2019. Ergebnisberichte des Instituts für Angewandte Math-
ematik, Nummer 619.

[2] M. Emmett and M. Minion. Toward an efficient parallel in time method for partial
differential equations. Commun. Appl. Math. Comput. Sci., 7(1):105–132, 2012.

[3] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, and J. Schroder. Parallel time
integration with multigrid. SIAM J. Sci. Comput., 36(6):C635–C661, 2014.

[4] R. Falgout, T. Manteuffel, B. O’Neill, and J. Schroder. Multigrid reduction in time for
nonlinear parabolic problems: A case study. SIAM J. Sci. Comput., 39(5):S298–S322,
2017.

[5] M. Gander. 50 years of time parallel time integration. In T. Carraro, M. Geiger,
S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time Domain Decom-
position Methods, pages 69–113, Cham, 2015. Springer International Publishing.

[6] M. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid algo-
rithm for parabolic problems. SIAM J. Sci. Comput., 38(4):A2173–A2208, 2016.

20

[7] W. Hackbusch. Parabolic Multi-Grid Methods. In R. Glowinski and J.-L. Lions,
editors, Computing Methods in Applied Sciences and Engineering, VI, pages 189–
197. North-Holland, 06 1984.

[8] A. Hessenthaler, B. Southworth, D. Nordsletten, O. Röhrle, R. Falgout, and
J. Schroder. Multilevel convergence analysis of multigrid-reduction-in-time. SIAM J.
Sci. Comput., 42(2):A771–A796, 2020.

[9] C. Hofer, U. Langer, M. Neumüller, and R. Schneckenleitner. Parallel and robust
preconditioning for space-time isogeometric analysis of parabolic evolution problems.
SIAM J. Sci. Comput., 41(3):A1793–A1821, 2019.

[10] G. Horton and S. Vandewalle. A space-time multigrid method for parabolic partial
differential equations. SIAM J. Sci. Comput., 16(4):848–864, 1995.

[11] J. Janssen and S. Vandewalle. Multigrid waveform relaxation on spatial finite element
meshes: The discrete-time case. SIAM J. Sci. Comput., 17(1):133–155, 01 1996.

[12] D. Kuzmin and S. Turek. High-resolution fem-tvd schemes based on a fully multidi-
mensional flux limiter. Journal of Computational Physics, 198(1):131–158, 2004.

[13] J. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps
«pararéel ». Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
332(7):661 – 668, 2001.

[14] C. Lohmann. On the solvability and iterative solution of algebraic flux correction
problems for convection–reaction equations. Technical report, Fakultät für Mathe-
matik, TU Dortmund, August 2019. Ergebnisberichte des Instituts für Angewandte
Mathematik, Nummer 612.

[15] C. Lohmann. Physics-Compatible Finite Element Methods for Scalar and Tensorial
Advection Problems. Springer Fachmedien Wiesbaden, Wiesbaden, 2019.

[16] C. Lubich and A. Ostermann. Multi-grid dynamic iteration for parabolic equations.
BIT, 27(2):216–234, 1987.

[17] M. Neumüller and A. Thalhammer. Combining space-time multigrid techniques with
multilevel monte carlo methods for sdes. In Domain Decomposition Methods in Sci-
ence and Engineering XXIV, pages 493–501. 01 2018.

[18] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, New York,
NY, 2006.

[19] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869,
1986.

[20] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M.Winkel, and P. Gibbon.
A massively space-time parallel N-body solver. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 92:1–92:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[21] S. Ta’asan and H. Zhang. On the multigrid waveform relaxation method. SIAM J.
Sci. Comput., 16(5):1092–1104, 1995.

21

[22] H. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
13(2):631–644, 1992.

[23] J. van Lent and S. Vandewalle. Multigrid waveform relaxation for anisotropic partial
differential equations. Numer. Algorithms, 32:361–380, 2002.

[24] S. Vandewalle and G. Horton. Fourier mode analysis of the multigrid waveform
relaxation and time-parallel multigrid methods. Computing, 54:317–330, 1995.

[25] S. Vandewalle and R. Piessens. Numerical experiments with nonlinear multigrid
waveform relaxation on a parallel processor. Appl. Numer. Math., 8(2):149–161, 1991.

[26] S. Vandewalle and E. Van de Velde. Space-time concurrent multigrid waveform re-
laxation. Ann. Numer. Math., 1(1-4):347–363, 1994.

[27] T. Weinzierl and T. Köppl. A geometric space-time multigrid algorithm for the heat
equation. Numer. Math. Theor. Meth. Appl., 5:110–130, 02 2012.

22

	EB 634_1.Seite
	EB 634
	Motivation
	Time-simultaneous multigrid solvers
	Intuitive explanation for small and large time steps
	Relation to multigrid waveform relaxation
	Computational characteristics
	Extension to nonlinear problems

	Numerical results
	Linear problems
	Convection-Diffusion equation

	Nonlinear problems
	Viscous Burgers' equation
	Allen-Cahn equation
	Nonlinear stabilization method for advection problems

	Conclusion

