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Abstract: The paper presents a mathematical modeling approach for a novel drilling
strategy with coolant flow. Numerical tools for efficient simulations of such drilling
applications are explained. We model the fluid flow with the Navier-Stokes equation in a
rotational frame of reference and the solid domain is treated with the Fictitious Boundary
Method (FBM). This enables us to utilize a unified mesh for the solid and fluid part of the
domain and heat transfer between these is treated in an implicit way.
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1. Introduction

Mathematical modeling and designing efficient numerical methods for application in industrial engineering is a challenging
task. Prototypically we consider the numerical simulation of drilling processes of the nickel-base alloy Inconel 718 as depicted
in figure 1.1. Inconel 718 is widely used in aerospace industry, power plant construction as well as in chemical industries due

(a) Experimental setup (b) drill with coolant inside acrylic glass

Fig. 1.1. Experimental setup of drilling processes using coolant

to its low thermal conductivity and high toughness. These properties also mean that the alloy is hard to machine which leads
to high thermal loads on the cutting edge and thus accelerated tool wear. To reduce the influence of high temperatures on the
tool the use of coolant is essential.
Since drilling is a process with a fast rotating tool and the contact zone is inaccessible to measurement instruments, the
experimental analysis of coolant flow and heat transfer is nearly impossible. Thus, in order to gain insight into the process,
the application of high resolution numerical simulation is a key tool. In this paper we will focus on numerical components to
simulate the coolant flow and the heat transfer between tool, workpiece and fluid, omitting chip formation and solid mechanics.
The simulation for the fluid flow as well as the temperature development will be performed with the open source Finite Element
Method (FEM) CFD software FeatFlow [1], which has proven its efficiency and accuracy in several benchmarks [2, 5, 11].
Fully three-dimensional CFD simulations tend to be very time consuming, so efficient numerical solvers are essential. FeatFlow
is a highly parallelized general purpose 3D CFD-simulation software, with great scalability properties making it capable as
FEM package for High Performance Computer Clusters. The combination of robust domain decomposition techniques and fast
multigrid solvers specially tailored for complex 3D fluid flow simulations ensure computational efficiency. Several extensions
concerning numerical methods for non-Newtonian viscosity, shear rate and temperature dependent, and for particulate flow
and moving internal obstacles have been implemented making FeatFlow a powerful simulation software for both academic and
industrial applications [9, 13, 14].
First let us translate the machining process into algorithmic challenges in the context of Finite Element simulations: rotational
movement of the drill results in a highly time-dependent computational domain in addition to the complex geometry of the
drilling tool and its coolant channels. An accurate representation of the geometry demands a high-resolution computational
mesh during all times. Not only that we have to deal with high angular velocities but also high velocities due to the inflow,
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resulting in high Reynolds numbers. Further, we need a detailed representation of the fluid and solid domain, solving the
Navier-Stokes equation in the fluid part and the heat equation in a coupled manner in the union of the solid and fluid domain.
An efficient and flexible combination of the aforementioned task is immensely challenging. The high frequent motion of the
drilling tool makes it difficult to construct an appropriate computational grid at all timesteps while still taking fluid structure
interaction due to the rigid body motion into account. Very small timestep sizes are needed to track the interface of the
solid body and accurately calculate velocities making the simulations time consuming and computational costly. Additionally,
construction of an highly resolved mesh for all times is demanding since the mesh nodes have to be adapted frequently to the
nonstationary domain. Mesh free methods can circumvent these difficulties, albeit having lower accuracy. Supplementary heat
transfer between solid and fluid and consequently the solid-fluid interface has to be captured precisely.
To our knowledge mathematical models for CFD simulations of deep hole drilling and algorithmic details of temperature
simulations of drilling applications in its entirely are rare. Steady-state simulation analysis of the flow characteristics of drilling
applications were done in [12] using a rotational frame of reference, however effects of nonstationary flow and heat transfer
were omitted. Mathematical modeling of fluid flow inside coolant channels for different rotational velocities were conducted
in [6], showing that the flow field inside the cooling channels does not depend on the angular velocities. Numerical algorithms
for Finite Element simulations of temperature due to friction and deformations during drilling of Inconel 718 with minimal
quantity lubrication were introduced in [3], using simulated results to take the deformation of the workpiece due to temperatures
into account.
In our approach, we will transform the momentum equation into a rotational frame of reference, thus gaining a time independent
computational domain. However, Coriolis forces have to be taken into account and modifications of the solver have to be made.
This transformation grants us the possibility to make use of a highly resolved mesh for all time steps for both the fluid and
solid part of the domain. The Fictitious Boundary Method (FBM) in combination with mesh deformation techniques enables
us to differentiate between solid and fluid domain, the transition boundary from solid to fluid can be described with high
accuracy using mesh deformation to align the computational grid with the tool or workpiece geometry. The heat equation is
then solved on the unified mesh. The proposed tools are finally applied on prototypical simulations for a novel discontinuous
drilling strategy.

2. Numerical components for coolant flow

The fluid motion is modeled by the nonstationary incompressible Navier-Stokes equation

ρ
∂vvv
∂ t −ν∆vvv+(vvv ·∇)vvv+∇p = fff in Ω f × (0,T )

div vvv = 0 in Ω f × (0,T )
(2.1)

with given forces fff , constant density ρ and kinematic viscosity ν . We simplify the rotation of the drill so that the angular
velocity ωωω := (0,0,ω)⊤ with ω ∈ R is constant and the tool rotates around the z-axis. We denote the fluid and solid domain
with Ω f and Ωs, respectively, and Ω = Ω f ∪Ωs. Note that Ω is time dependent and rotates around the z-axis. With a radius
vector rrr we get the transformed velocity uuu= vvv+(ωωω×rrr) and hence the Navier-Stokes equation in a rotational frame of reference
becomes

ρ
∂uuu
∂ t −ν∆uuu+(uuu ·∇)uuu+2ωωω ×uuu+ωωω × (ωωω ×rrr)+∇p = fff in Ω f × (0,T )

div uuu = 0 in Ω f × (0,T )
(2.2)

with Coriolis forces 2ωωω ×uuu and centrifugal forces ωωω × (ωωω ×rrr). Using the identity ωωω × (ωωω ×rrr) =− 1
2 ∇(ωωω ×rrr)2 we can include

the centrifugal forces into the pressure with P = p− 1
2 (ωωω ×rrr)2 and finally we have

ρ
∂uuu
∂ t −ν∆uuu+(uuu ·∇)uuu+2ωωω ×uuu+∇P = fff in Ω f × (0,T )

div uuu = 0 in Ω f × (0,T ).
(2.3)

For detailed derivation and analysis of equation (2.3) we like to direct your attention to the literature [16].
First we discretize the transformed Navier-Stokes Equation (2.3) in time with the θ -scheme. Let uuun be the velocity and a given
time tn, solve for uuun+1 at time tn+1 with timestep ∆t = tn+1 − tn

ρ
uuun+1−uuun

∆t +θ
(
(uuu∗ ·∇)uuun+1 −ν∆uuun+1 +2ωωω ×uuun+1)+∇Pn+1 = rhsrhsrhsn+1 in Ω f × (0,T )

div uuun+1 = 0 in Ω f × (0,T )
(2.4)

with right-hand side
rhsrhsrhsn+1 = θ fff n+1 +(1−θ) fff n − (1−θ)

(
(uuu∗ ·∇)uuun −ν∆uuun +2ωωω ×uuun)

with a suitable approximation uuu∗ of uuun+1. Setting uuu∗ = uuun+1 or uuu∗ = uuun results in an implicit or explicit scheme, respectively.
We consider the mixed Finite Element spaces Q2P1 for the velocity and pressure, respectively, as the spatial discretization. It
is well known that this element is numerically stable and satisfies the Babuska-Brezzi condition

inf
ph∈P1

sup
uuuh∈Q2

(ph,∇ ·uuuh)

||ph||0||∇huuuh||0
≥ γ > 0
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with a mesh independent constant γ > 0 [4]. Defining N(uuu) and L as the discrete counterpart to the continuous operators uuu ·∇
and ∆, respectively, the discrete gradient B and the mass matrix M, we get the discrete coupled equation of (2.4)

A −2∆tθωM 0 ∆tB1
2∆tθωM A 0 ∆tB2

0 0 A ∆tB3
B⊤

1 B⊤
2 B⊤

3 0




uuu1
uuu2
uuu3
ppp

=


rhsrhsrhsn+1

1
rhsrhsrhsn+1

2
rhsrhsrhsn+1

3
000

 (2.5)

with A = M+θ∆t(N(uuu)+νL). For the sake of simplicity we set B⊤ = (B⊤
1 B⊤

2 B⊤
3 ), rhsrhsrhs⊤ = (rhsrhsrhsn+1

1
⊤

rhsrhsrhsn+1
2

⊤
rhsrhsrhsn+1

3
⊤
) and

S :=

 A −2∆tθωM 0
2∆tθωM A 0

0 0 A

 (2.6)

and hence we obtain the saddlepoint problem(
S B

B⊤ 0

)(
uuu
ppp

)
=

(
rhsrhsrhs
000

)
. (2.7)

Now the well-known Discrete Projection Method (DPM) [17] can be applied to equation (2.7).

2.1. Modified Discrete Projection Method

The DPM consists of 3 main steps for each time step. Each linear system is solved by a geometric multigrid solver [18]. We
will give an outline of the algorithm and give remarks concerning modifications due to Coriolis forces. In the first step of

Algorithm 2.1 Discrete Projection Method

1. Solve the viscous Burgers equation for the intermediate solution ūuu

S(uuun)ūuu = rhsrhsrhs−θ∆tBpppn

2. Solve the Pressure Poisson problem for the intermediate solution qqq

B⊤S−1Bqqq =
1
∆t

B⊤ūuu

3. Correction of the pressure and velocity

pppn+1 = pppn +qqq+αM−1
ppp B⊤ūuu

uuun+1 = ūuu−∆tS−1Bqqq

the DPM the nonlinear Burgers equation is solved using several steps of fixpoint iterations. The inclusion of Coriolis forces
in S(uuun) does not call for modifications in the solver. An investigation of different preconditioners can be found in [16]. The
second is the main step to ensure efficiency for DPM with Coriolis forces. The inverse matrix S−1 is usually dense and its
computation is too expensive. We choose some variant of the mass matrix denoted by M(.) as an approximation of S−1. The
use of the lumped mass matrix Ml would be an appropriate choice, since its inverse is easy to calculate. Our goal is to construct
a modified matrix that is as easy to invert but also includes the screw-symmetric part of (2.6). The straightforward option is to
include the full screw symmetric part, so we have

Mcoriolis :=

 Ml −2ω∆tθMl 0
2ω∆tθMl Ml 0

0 0 Ml

 (2.8)

and its inverse is given by

M−1
coriolis :=

1
(1+[2ω∆tθ ]2)

 M−1
l 2ω∆tθM−1

l 0
−2ω∆tθM−1

l M−1
l 0

0 0 (1+[2ω∆tθ ]2)M−1
l

 . (2.9)

The matrix M−1
coriolis has a block-diagonal structure and can be explicitly calculated. It has to be noted that M−1

coriolis is screw-
symmetric and thus B⊤M−1

coriolisB is in general not symmetric and special care has to be taken in the choice of preconditioners
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and coarse grid solvers. In [15] Sokolov et al. provided a proof that for the discretization with a nonconforming Stokes element
Q̃1Q0, the matrix B⊤M−1

coriolisB regains symmetry. In order to obtain a symmetric Pressure Poisson matrix we consider

M−1
ysm :=

1
2

(
M−1

coriolis +M−⊤
coriolis

)
=

1
(1+[2ω∆tθ ]2)

 M−1
l 0 0
0 M−1

l 0
0 0 (1+[2ω∆tθ ]2)M−1

l

 (2.10)

the symmetric part of M−1
coriolis, but first let us have a closer look at B⊤M−1

coriolisB and its continuous counterpart. Defining
Mcoriolis := [(θ∆t)−1I +ωωω×] with ωωω = (0,0,ω)⊤ we get the continuous counterpart of the ”Pressure Poisson” matrix as
∇ ·M−1

coriolis∇ with the analytic inverse

M−1
coriolis =−θ∆t(1+ |ω̃ωω|2)−1 [I +ω̃ωω ⊗ω̃ωω −ω̃ωω×] , with ω̃ωω = θ∆tωωω.

Now note that for a scalar function q it holds ω̃ωω ×∇q = ∇× qω̃ωω and ∇ · (∇×) ≡ 0 and thus the screw-symmetric operator
−ω̃ωω ×· can be omitted and we have

M−1
coriolis =−θ∆t(1+ |ω̃ωω|2)−1 [I +ω̃ωω ⊗ω̃ωω] . (2.11)

In consequence the continuous counterpart to B⊤M−1
coriolisB is in fact symmetric which is not recovered by our choice of the

Finite Element space Q2P1. However (2.11) is the continuous equivalent operator to the symmetric inverse matrix (2.10). This
equivalence justifies the choice if M−1

sym as an appropriate preconditioner for the Pressure Poisson problem including Coriolis
forces. Finally note that both M−1

coriolis and M−1
sym converge to the lumped mass matrix as ∆t approaches zero.

2.2. Stabilization via multiscale artificial diffusion techniques

Looking back at the drilling application, not only high angular velocities due to the rotational movement of the drill have
to be taken into account, but also high velocities compared to the length scale of the drilling hole caused by the inflow of
the coolant. Consequently large Reynolds numbers (Re) are to be expected and numerical inaccuracies resulting in physics-
violating oscillations in the solution may arise, that can even lead to divergence of the iterative solver. To prevent unwanted
oscillations we propose a new multiscale artificial diffusion stabilization following the ideas of [8]. In order to counteract the
major contribution of the convection dominated flow, artificial diffusion is added to the momentum equation. Let us consider
the weak formulation of (2.4)

1
∆t

∫
Ω f

ϕϕϕhuuun+1
h dx+ν

∫
Ω f

∇uuun+1
h ∇ϕϕϕh dx+

∫
Ω f

ϕϕϕh ·uuun+1
h ·∇uuun+1

h dx−
∫

Ω f
∇ ·ϕϕϕhPn+1 dx = 0∫

Ω f
∇ ·uuun+1

h qh dx = 0
in Ω f × (0,T ), (2.12)

with some suitable testfunctions ϕϕϕh and qh. For the sake of simplicity we omit boundary conditions and Coriolis forces in
equation (2.12) and set θ = 1 and fff = 0. Now we add an additional diffusive term to equation (2.12) with a stabilization
parameter 𝜖 ≥ 0, which has to be compensated in a reasonable manner and we have

1
∆t

∫
Ω f

ϕϕϕhuuun+1
h dx+ν

∫
Ω f

∇uuun+1
h ∇ϕϕϕh dx+

∫
Ω f

ϕϕϕh ·uuun+1
h ·∇uuun+1

h dx−
∫

Ω f
∇ ·ϕϕϕhPn+1 dx

+
∫

Ω f
𝜖∇uuun+1

h ∇ϕϕϕhdx+
∫

Ω f
𝜖ggg∇ϕϕϕhdx = 0∫

Ω f
(∇uuun+1

h −ggg)ϕϕϕHdx = 0
in Ω f × (0,T ), (2.13)

with the incompressibility condition
∫

Ω f
∇ ·uuun+1

h qh dx = 0 and ϕϕϕH ∈ Q2 a higher order testfunction. Note that ggg is the L2-

projection of ∇uuuh into a function space of higher order and thus the added diffusive term
∫

Ω f
𝜖(∇uuun+1

h −ggg)∇ϕϕϕhdx can be
interpreted as a local measure for the smoothness of ∇uuuh and so stabilization is only added in region that suffer from non
smooth velocity gradients, e.g. regions with oscillations. As an extension to the proposed stabilization technique we define the
diffusion parameter 𝜖 as elementwise parameter such that with a global parameter 𝜖global ≥ 0 we have

𝜖T = 𝜖globalhT ∥uuuh∥∞,T

with the local mesh size hT of an element T . In this way the local diffusion is dependent of the local velocity and in this
way the whole range of velocities is stabilized somewhat equally. Looking again at equation (2.13), the L2-projection of
∇uuun+1

h is coupled in an implicit way, which can be a drawback solving the stabilized equation. If we assume that the timestep
∆t is sufficiently small (which is a viable assumption in context of the drilling application) we can take ∇uuun

h as an suitable
approximation of ∇uuun+1

h and in this manner
∫

Ω f
𝜖ggg∇ϕϕϕhdx can explicitly added to the right hand side. In figure 2.1 the effect of

the stabilization technique is depicted for 𝜖global = 0.1.

3. Geometrical modeling of the drilling process

The transformation of the Navier-Stokes equation into a rotational frame of reference, as described in the previous section 2,
allows us to model the drill as a static obstacle inside the fluid domain, and only to prescribe rotational boundary conditions on
the cylindrical walls of the drilling hole and on the cone-like shaped drilling ground. As a consequence only one mesh has to
be constructed for all time steps, eliminating the need for cumbersome remeshing or surface tracking techniques to account for
the high rotational domain. Although the transformation enables us to construct only one computational mesh, the construction
for the fluid and solid domain is no trivial task. The geometry of the drill is complex and consists of elements of different length
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(a) No stabilization (b) Stabilization with 𝜖global = 0.1

Fig. 2.1. Comparison of different timesteps (top and bottom) with and without stabilization

scales, i.e. the coolant channels and the chip flutes. Constructing a case specific mesh, where the mesh nodes are aligned with
the fluid solid interface, is to our knowledge not possible (at least for hexahedral grids) or suffers from the lack of flexibility to
study the variation of process parameters, like the distance of the tool to the drilling ground, or tool parameters like the shape
of the coolant channels. Our strategy to model the geometry of the drill is twofold: 1) The Fictitious Boundary Method (FBM)
is used to assign each element an indicator, based on a surface representation of the tool (or workpiece), which decomposes
the computational domain into a solid and fluid part, while still maintaining one unified mesh for the whole domain; 2) Mesh
deformation techniques dependent on some monitor function M in combination with mesh regularization algorithms let us
concentrate mesh nodes in regions of high interest, i.e. in vicinity of the tool surface, without changing the connectivity of the
grid. These two points will ensure a flexible and robust grid generation for drilling applications.

3.1. Fictitious Boundary Method

The Fictitious Boundary Method is a filtering-related technique that creates a decomposition of the computational domain into
a solid and a fluid part. With an indicator function

α(xxx) :=

{
1, xxx ∈ Ωs

0, xxx ∈ Ω f
(3.1)

for coordinates xxx ∈ R3, each node in the computational grid is either assigned to be solid (α(xxx) = 1) or fluid (α(xxx) = 0). The
interaction between solid and fluid is driven by internal Dirichlet boundary condition, e.g. the velocity in the solid nodes are
set to zero. Since we model the drill as a static object, the calculation of α only has to be done in a preprocessing step. With a
given surface triangulation, that can be derived from the exact CAD data, a signed distance function is computed to determine
the inside (solid) and outside (fluid) of the given surface triangulation and thus the values for α are assigned. Note that with the
definition (3.1) the solid-fluid interface is implicitly given by the derivative of α , as ∇α ̸= 0 in vicinity of the solid boundary
and zero everywhere else. This can be used to compute fluid-solid interaction like hydrodynamic forces. Details can be found
in [11].

3.2. Mesh deformation

The main idea of the proposed mesh deformation technique is to determine a mesh size distribution using a monitor function M
and move mesh nodes according to the desired mesh size distribution without changing the connectivity. The monitor function
M can be constructed arbitrarily, i.e. it can take several goal quantities into account like shear rate, temperature gradients or
some custom defined values. Since we aim to construct a computational grid that is highly resolved at the solid-fluid interface,
the node distance to the solid surface is a straightforward goal quantity. Further the signed distance function is already given as
it was needed in context of FBM to evaluate the indicator function (3.1). Now the monitor function M can be used to calculate
weights wi to nodes xxxi. The weights determine how the mesh nodes are moved as depicted in algorithm 3.1. Algorithm 3.1 is
applied iteratively to adjust the mesh successively. An exemplary deformed mesh according to a signed distance function of a
drill is depicted in figure 3.1. The relaxation parameter τ is usually set to 0.25 and Laplacian smoothing procedure improves the
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Algorithm 3.1 Algebraic mesh deformation
For given weights wi, edges ei j and node coordinates xxxi calculate the new coordinates

for i = 1, . . . ,n do

xxxnew
i = (1− τ)xxxold

i + τ
∑

if ∃ei j
j=1,n w jxxxold

j

∑
if ∃ei j
j=1,n w j

end do

with a relaxation parameter τ ∈ (0,1].

(a) Successive mesh deformation (b) Signed distance to tool drill sur-
face

Fig. 3.1. Mesh deformation based on calculated signed distance function

mesh quality. It has to be noted that the properties of the resulting mesh have (yet) to be proven from a mathematical standpoint,
but several examples like simulations of co-rotating twin-screw extruders show the robustness and validity of algorithm 3.1
[10]. Mesh deformation is performed purely algebraic, unlike PDE based counterparts, and thus it is computationally cheap
and still flexible in regards to complex geometries. Additionally, the use of computational grids generated by algorithm 3.1 in
combination with FBM does not deteriorate the convergence behavior and accuracy of the Navier-Stokes solver as shown in
[2, 11]. So mesh deformation and FBM enables us to accurately simulate fluid flow around complex geometries like drilling
tools.

4. Mathematical modeling of heat transfer

The previous sections focused on the efficient simulation of coolant flow around drills. While the flow field of the lubricant is
an important factor in drilling applications, the main quantity of interest is the temperature of the tool, especially heating due
to friction and dissipation in the shear band and how the fluid can transport the heat away from the contact zone to cool the
drill down. High temperatures at the cutting edge are a driving factor for tool wear and since measurements of the temperatures
are tedious (or nearly impossible), accurate modeling of heat generation and transfer is the key. Here we want to give a brief
description of the underlying heat equation and its discretization. We consider the heat equation

∂t(cpρΘ)−∇ · (λ∇Θ)+ cpρuuu ·∇Θ = h in Ω× (0,T ) (4.1)

with temperature Θ , velocity uuu, density ρ , heat capacity cp, heat conductivity λ and volumetric heat source h. In this work we
only consider Dirichlet boundary conditions and we omit frictional heat generation. We discretize equation (4.1) in space with
Q1 Finite Elements and with implicit Euler in time and get the discrete heat equation

cpρ
Θ

n+1
h −Θ n

h
∆t −∇ · (λ∇Θ

n+1
h )+ cpρuuuh ·∇Θ

n+1
h = hn+1 in Ωh × (0,T ). (4.2)

The heat equation (4.2) is solved in both the solid and fluid part at the same time by taking advantage of the meshing techniques
described in section 3. The mesh is decomposed into a solid and fluid domain using the indicator function (3.1) acting as filter
for internal boundary conditions for the velocity in equation (4.2). The velocity is set to zero if α = 1 (solid) and thus the
convective term vanishes. In consequence we make use of one mesh for the heat equation, the distinction between the different
parts of the domain is implicitly managed by FBM. Further, the material parameters for fluid and solid can be automatically
assigned according to values of α and the thermal fluid-solid interaction is implicitly governed by different material properties.
Temperature distribution in the solid is solely diffusion driven. Heat transport in the fluid is mainly due to convection, which
can lead to numerical difficulties like oscillating solution. In order to deal the convection dominated heat transport, an algebraic
Flux Correcting is incorporated, details can be found in [7].

5. Modeling of the Drilling process

The previous sections established a toolbox of numerical techniques and algorithms that will now be plugged together to
develop an robust simulation model for drilling application. In this context we will give a short summary of the proposed

6



methods and how they are employed. First, from a given surface triangulation (constructed from exact CAD data) of a tool the
distance function is evaluated to adapt the computational grid to the fluid-solid interface. The FBM indicator is set accordingly
and material properties are assigned to the corresponding elements as described in section 3. From there on a multigrid mesh
hierarchy is constructed and matrices for the rotational Navier-Stokes equation (2.4) are assembled. The resulting algebraic
equations are solved using DPM with a geometric multigrid solver. Rotational boundary conditions are set at the drilling ground
and wall and parabolic inflow is prescribed for the coolant channels. Possible numerical inaccuracies that may arise due to high
Reynolds numbers are counteracted by the proposed two scale artificial diffusion technique as explained in section 2. Choice
of an appropriate diffusion parameter is a delicate task since it should be large enough to ensure a nonoscillatory solution
but not too large so the velocity field is not ”smeared out”. Numerical tests show that 𝜖global = 0.1 is viable a choice for our
applications, however the influence of different 𝜖global values should be investigated in future work. Finally the temperature
simulation makes use of FBM. Having a unified mesh for both solid and fluid enables us to solve the heat equation in the drill
and coolant simultaneously. The model does not distinguish between fluid and solid domain, instead only assigned material
properties and the velocity filter corresponding to α differ, as mentioned in section 4. Needless to say, the timestep size is
limited by the convective term in the fluid domain.

5.1. Algorithmic details of Drilling simulation

Since the order of velocities (∼20 m/s) is significantly greater than the spatial dimension of the drilling hole (diameter 8
mm), small timesteps are necessary. In consequence fully coupled fluid flow and temperature would be highly inefficient.
Alternatively we do not consider the full rotational movement of the drill, and instead we solve the Navier-Stokes equation and
the heat equation in a decoupled way. Figure 5.1 illustrates the steps of the simulation model for drilling applications.

Preprocessing: FBM, Material properties, Boundary Conditions

Isothermal flow simulation, only in fluid domain

Fully
developed?

Temperature simulation, fluid and solid domain simultaneously

End time
reached?

Postprocessing

yes

yes

no

no

Fig. 5.1. Drilling application simulation flow chart

The central idea to simulate the cooling process of drilling applications due to coolant flow is to calculate the fluid flow and
the heat distribution sequentially. First, simulation of the coolant flow is carried until the velocity field is fully developed.
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Assuming the velocities to be statistically in nature, taking the velocity field of a fully developed flow field as an representation
for the nonstationary flow field is a viable simplification. Time averaging techniques or looping quasi-periodically over a set of
flow fields are considered for future work. The velocity field is used as input data for the temperature simulation in the second
step. The timestep size is increased in order to increase the efficiency of the simulation. By construction of the simulation
model and exploiting FBM, the same grid is used for the heat equation. We omit chip formation and heat generation due to
frictional contact for now and internal heat sources are set conceptional in the elements in vicinity of the cutting edge that
geometrically penetrate the drilling ground.

5.1.1. Numerical Test

In order to test the algorithmic model as described in figure 5.4 conceptually, we will use parameters found in the actual
experimental setup. We consider a lubrication oil, carbide tool (90% WC, 10 %Co) and workpiece made of Inconel 718.
Process and material parameters are summarized in table 5.1. The heat source h is taken as a fictional value, and calibration
with experiments or chip formation simulations has to be done in future works. A coolant flow simulation with ∆t = 5 ·10−6 is

Processparameters Coolant Workpiece Tool
Q̇ : 3.3 l/min ρ : 0.85 g/cm3 ρ : 8.19 g/cm3 ρ : 14.45 g/cm3

U : 995 min−1 cp : 2.02 J/(g ·K) cp : 0.45 J/(g ·K) cp : 0.2 J/(g ·K)
h : 70 kW λ : 0.00139 W/(cm ·K) λ : 0.095 W/(cm ·K) λ : 0.86 W/(cm ·K)

ν : 0.02 Pa · s

Table 5.1. Process- and materialparameters of coolant, Inconel718 and tool

carried out until a fully developed flow is reached. Thereafter temperature is simulated using the previously calculated velocities
with a time step size ∆t = 10−4 s until T = 3.6 ·10−2 s is reached. The resulting temperature at the cutting edge at the end of the
simulation and the maximum temperature at the cutting edge can be seen in figure 5.2. As seen in figure 5.2a the temperature

(a) Temperature at cutting edge at last
timestep

(b) Maximum Temperature over time

Fig. 5.2. Conceptional simulation of heating process with coolant flow

increases gradually, resembling a saturation function, until a temperature of ∼1400 ◦C is reached at T = 3.6 · 10−2 s. Time
stamps ti with i = 0, . . . ,7, ti+1 − ti = 6 · 10−3 s and t7 = T denote certain times of interest that will be of importance in the
following section.

5.2. Outlook Discontinuous Drilling

With the established simulation model for drilling applications, we want take the proposed algorithmic toolbox further. Let us
consider the newly developed discontinuous drilling strategy for hard to machine alloys, like Inconel 718, as proposed in [19].
Continuously drilling until a certain depth is reached results in high temperature and thus high tool wear. The main idea of
discontinuous drilling strategy is to interrupt the process by moving the rotating drill away from the contact zone in order to
reduce the temperature of the cutting edge. We want to construct a simulation model of the temperature during discontinuous
drilling, considering both the ’contact’ and ’no contact’ phases in one simulation, extending the algorithmic ideas of section
5.1. In a preprocessing step we simulate the flow field of the ’contact’ and ’no contact’ phase, in order to obtain a velocity
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field for both cases that will be used for the corresponding temperature simulations. FBM and mesh deformation are crucial
for the efficiency of the developed model, since one single mesh is constructed for both configurations (’contact’ and ’no
contact’) simply by switching the corresponding α values assigned to the workpiece. Hence no projection schemes are needed
to transfer temperature values to another mesh. Figure 5.3 illustrates this idea: First a mesh is constructed for the ’contact’

Fig. 5.3. FBM decomposition of the domain into fluid, workpiece and tool elements

setup and elements belonging to the drilling ground are marked as workpiece elements (red in figure 5.3). Since we utilize a
rotational frame of reference, rotational boundary condition is set in those elements. Switching from one configuration to the
other, only the temperature values are carried over, and velocities and the indicator α from preprocessed fluid flow simulations
are used as input values. Configuration ’contact’ and ’no contact’ are alternated until an end time T is reached. The modelling
idea is summarized in figure 5.4.

Isothermal
flow simulation

contact

Temperature simulation
contact

Temperature
transfer

Temperature simulation
no contact

Isothermal
flow simulation

no contact

Temperature
transfer

uuu, α uuu, α

Fig. 5.4. Discontinuous drilling application simulation flow chart

5.2.1. Numerical Tests

Before simulations of the full discontinuous drilling setup are considered, the question arises, which distance during the ’no
contact’ phase is more beneficial for the cooling process. Therefore we examine two different distances, 1 mm and 2 mm, with
same process and material parameters as listed in table 5.1. A visualization of streamlines and velocities can be found in figure
5.5. The flow fields can further be used for the full discontinuous drilling configuration. In order to study the properties of
the simulated flow fields, we analyze how fast the volume of the fluid is exchanged, rinsing the possible heated lubricant. So
residence times of the streamlines are calculated and the distribution of cumulative residence times are evaluated, as seen in
figure 5.6. The distance of 1 mm seems to have better properties to rinse hot coolant out, as the volume exchange is faster in
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(a) Distance 1 mm (b) Distance 2 mm

Fig. 5.5. Velocity magnitude of streamlines for different distances between drill and drilling ground

comparison to 2 mm distance of the tool to the drilling ground. To exchange 60% of the fluid volume, with a distance of 1 mm it
takes 0.59 s and with a distance of 2 mm it takes 0.73 s. To put the difference of 0.14 s into perspective, converting this implies
that the difference is more than two full rotations of the drill. With this interpretation, a smaller distance is more favorable for
heat transport during the ’no contact’ phase. A detailed analysis of the influence of the distance in context of discontinuous
drilling strategy is planned for future works. Consequently, we will use a distance 1 mm for further simulations of the full
discontinuous setup. Same parameters as in section 5.1 are incorporated except that we alternate between ’contact’ and ’no
contact’ configuration at times ti, i = 0, . . . ,7 with ti+1 − ti = 6 · 10−3 according to figure 5.4. The comparison of maximum
temperature at the cutting edge over time to the temperature resulting from the continuous drilling strategy is depicted in
figure 5.7. As expected, we observe that the temperature declines during the ’no contact’ phases, leading to significant smaller
temperature overall compared to continuous drilling. The cooling and heating process for last simulated interval respectively
is portrayed in figure 5.8

6. Summary and Outlook

In this work we presented numerical components and algorithmic details for a simulation model of a novel drilling strategy
with coolant, the discontinuous drilling approach. Modification of the underlying partial differential equations were made and
discretization and the solver routines were adapted. Further, a flexible and robust meshing technique was introduced that, for
given geometries, works in a black-box fashion, thus (almost) arbitrary driller shapes, and also possibly workpiece shapes, can
be studied. Combining the introduced numerical algorithms, a temperature simulation for discontinuous drilling application
was conducted. Extensions concerning the presence of uncut chips and subsequently approximations of realistic heat sources
due to friction or deformation are planned. Finally, the developed simulation model is a substantial tool in order to analyze the
novel discontinuous drilling approach without costly experiments and giving insight where no measurements are possible.
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Fig. 5.6. Cumulative residence time for different distances between drill and drilling ground

Fig. 5.7. Maximum temperature over time, comparison of continuous and discontinuous drilling
strategy
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(a) Temperature at cutting edge in ’no contact’ phase in [t5, t6]

(b) Temperature at cutting edge in ’contact’ phase in [t6, t7]

Fig. 5.8. Comparison of temperature distribution for ’no contact’ and ’contact’ phase
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