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Viscoplastic Lubrication

(a) Viscoplastically lubricated flow (b) Cross-section of flow with

Newtonian Ω1 lubricated by Bingham fluid Ω2 (c) Velocity and Stress

profiles along radial section

Examples: Heavy crude oil transpotation along pipelines, coal-water

slurry transpotation and co-extrusion operations
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VPL Application

Stabilization of interfaces in

multi-layer flows by means of

viscoplastic fluids

Fluid encapsulation by

entrapping one substance

within another

Oil/gas fracking, site-specific

drug delivery, medical imaging,

food, cosmetic, and

pharmaceutical product

manufacturing, ...

Process of fracking of oil/gas
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Classification of Fluids

Classification according to stress τ and deformation rate du
dy

Linear relation → Newtonian

Otherwise → Non-Newtonian
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Viscoplastic Fluids

Bingham Constitutive Law











τ = 2ηD(u) + τs

D(u)

||D(u)||
if ||D(u)|| 6= 0

||τ || ≤ τs if ||D(u)|| = 0

(1)

Applied stress ≥ critical value of τs → Shear region

Applied stress ≤ critical value of τs → Rigid or plug region
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Primitive Variable Formulation

Viscosity model for Bingham flow

η(||D(u)||ǫ) = 2η + τs

1

||D(u)||ǫ
(2)

Generalized N-S equation















−∇ · η ((||D(u)||ǫ)D(u)) + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(3)

Bercovier-Engelman → ||D(u)||ǫ =
√

D : D + ǫ2 (4)
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Three Fields Formulation

Bingham model with additional symmetric viscoplastic stress tensor

σ =
D(u)

||D(u)||ǫ































||D(u)||ǫ σ − D(u) = 0 in Ω

−∇ · (2ηD(u) + τsσ) + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(5)
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Newton Method

First, the system (5) is linearized using Newton method

U = (σ, u, p) and RU denote the discrete residuals

Nonlinear iteration, updated with the correction → δU ,

Un+1 = Un + δU

Approximation for the residuals:→ R(Un+1) = R(Un) +
[

∂R(Un)
∂U

]

δU
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Newton Method

First, the system (3) is linearized using Newton method

U = (u, p) and RU denote the discrete residuals

Nonlinear iteration, updated with the correction → δU ,

Un+1 = Un + δU

Approximation for the residuals:→ R(Un+1) = R(Un) +
[

∂R(Un)
∂U

]

δU
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Jacobian Calculation

In primitive variable

[

∂Ru(Un)

∂u

]

v = − ∇ ·
[

2ηD(v) − 2

[

D(un)

||D(un)||ǫ
: D(v)

]

D(un)

||D(un)||ǫ

]

[

∂Ru(Un)

∂p

]

q =∇q (8)

[

∂Rp(Un)

∂u

]

v = − ∇ · v

[

∂Rp(Un)

∂p

]

q =0 (9)
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Jacobian Calculation

In three fields formulation
[

∂Rσ(Un)

∂σ

]

τ = ||(D(un))||ǫ τ

[

∂Rσ(Un)

∂u

]

v =

(

σ
n : D(v)

)

σ
n − D(v)

[

∂Rσ(Un)

∂p

]

q =0

(10)

[

∂Ru(Un)

∂σ

]

τ = − τs∇ · τ

[

∂Ru(Un)

∂u

]

v = − 2η∇ · D(v)

[

∂Ru(Un)

∂p

]

q =∇q

(11)
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Jacobian Calculation

In three fields formulation

[

∂Rp(Un)

∂σ

]

τ =0

[

∂Rp(Un)

∂u

]

v = − ∇ · v

[

∂Rp(Un)

∂p

]

q =0

(12)
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Variational Formulation

V = H1
0(Ω) :=

(

H1
0 (Ω)

)2
→ velocity and dual space → V′

Q = L2
0(Ω) → pressure and dual space → Q′

M =
(

L2(Ω)
)4

sym
→ stress and dual space → M′

〈A1u, v〉 := 2η

∫

Ω

D(u) : D(v) dx (13)

〈A2σ, τ 〉 = τs ||(D(un)||ǫ

∫

Ω

σ : τ dx (14)
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Variational Formulation

The associated bilinear forms

a1(u, v) = 〈A1u, v〉, a2(σ, τ ) = 〈A2σ, τ 〉 (15)

〈B1v , q〉 := −

∫

Ω

∇·v q dx (16)

〈B2v , τ 〉 :=τs

∫

Ω

τ : D(v) dx

〈

B̃2v , τ

〉

:=τs

∫

Ω

(

σ
n : D(v)

) (

σ
n : τ

)

dx

(17)
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Variational Formulation

The associated bilinear forms

b1(v , q) :=
〈

B1v , q
〉

, c2(v , τ ) :=
〈

C2v , τ

〉

(18)

b2(v , τ ) :=
〈

B2v , τ

〉

, b̃2(v , q) :=
〈

B̃2v , τ

〉

(19)

C2 = B2 + B̃2 (20)

Newton iteration (6) becomes:
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(21)
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Saddle Point Problem

〈A(u, σ), (v , τ )〉 = 〈A1u, v〉 + 〈A2σ, τ 〉 + 〈C2v , σ〉 − 〈B2u, τ 〉 (22)

a(U , V) = a1(u, v) + a2(σ, τ ) + c2(v , σ) − b2(u, τ ) (23)

〈BV, q〉 := 〈B1v , q〉 (24)

The Jacobian has a saddle point structure

J =





A BT

B 0



 (25)
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Solvability of Problem

Find U ∈ KerB such that:

a(U , V) = 〈f , V〉 ∀V ∈ KerB (26)

Theorem

Let X = V × M be a Hilbert space and f ∈ X′, topological dual space of

X, and let a(., .) be a bilinear form on X satisfying the following three

hypothesis:

(H1) There exists a constant α > 0 such that :

a(U , V) ≤ α ||U|| ||V|| ∀U , V ∈ X (27)
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Solvability of Problem

Theorem (cont...)

(H2) There exists a constant β > 0 such that :

sup
U∈X

a(U , V)

||U||
≥ β ||V|| ∀V ∈ X (28)

(H3) There exists a constant β′ > 0 such that :

sup
V∈X

a(U , V)

||V||
≥ β′ ||U|| ∀U ∈ X (29)

then problem has a unique solution U ∈ X such that ||U|| ≤ 1
β′

||f ||
X′

J. BARANGER,D. S ANDRI,”A formulation of Stokes problem and the linear elasticity equations suggested by the Oldroyd model for

viscoelastic flow”Mathematical Modeling and Numerical Aanalysis
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Solution of the problem

a(U , V) = a1(u, v) + a2(σ, τ ) + c2(v , σ) − b2(u, τ )

b̃2(v , τ ) :=τs

∫

Ω

(

σ
n : D(v)

) (

σ
n : τ

)

dx

With the extension of ||.||L2 using the second order symmetric tensor σ
n

b̃2(v , τ ) ≡ τs ||σn||
2

∫

Ω

(

D(v) : τ

)

sup
τ∈M

b̃2(v , τ )

||τ ||
≥ β ||σn||

2
||v || ∀v ∈ V

and

sup
v∈V

b̃2(v , τ )

||v ||
≥ β ||σn||

2
||τ || ∀τ ∈ M
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Finite Element Discretization

Domain Ω ⊂ Rd −→ grid Th consisting of elements K ∈ Th

Approximation spaces

Vh =
{

vh ∈ V, vh|K ∈ Q2(K )
}

Mh =
{

τ h ∈ M, σh|K ∈ Q2(K )
}

Qh =
{

qh ∈ Q, qh|K ∈ Pdisc
1 (K )

}

(30)

Xh = Vh × Mh. Find (Uh, ph) ∈ Xh × Qh such that:







a(Uh, Vh) + b(Vh, ph) = 〈f , Vh〉 ∀Vh ∈ Xh

b(Uh, qh) = 0 ∀qh ∈ Qh
(31)

Vh and Qh satisfy the inf-sup condition
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Discrete saddle point problem

Vh and Mh do not satisfy the inf-sup condition

Find Uh ∈ KerBh such that:

a(Uh, Vh) + j(Uh, Vh) = 〈f , Vh〉 ∀Vh ∈ KerBh (32)

j(Uh, Vh) = γ
∑

e∈Eh

hτs (1 + ||σn
h||

2
)

∫

e

[∇uh] : [∇vh] dΩ (33)

|||Vh|||
2

= ||Vh||
2

+ j(Vh, Vh) (34)
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Solvability of Problem

Theorem

Let Xh = Vh × Mh be a Hilbert space and fh ∈ Xh′, topological dual

space of Xh, and let a(., .) be a bilinear form on Xh satisfying the

following three hypothesis:

(H1) There exists a constant α > 0 such that :

a(Uh, Vh) ≤ α |||Uh||| |||Vh||| ∀Uh, Vh ∈ Xh (35)
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Solvability of Problem

Theorem

(H2) There exists a constant β > 0 such that :

sup
Uh∈Xh

a(Uh, Vh)

|||Uh|||
≥ β |||Vh||| ∀Vh ∈ Xh (36)

(H3) There exists a constant β′ > 0 such that :

sup
Vh∈Xh

a(Uh, Vh)

|||Vh|||
≥ β′ |||Uh||| ∀Uh ∈ Xh (37)

then problem has a unique solution Uh ∈ Xh such that |||Uh||| ≤ 1
β′

|||fh|||
Xh′
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Bingham fluid flow in channel

Channel domain: two parallel plates with h length apart and long

Dirichlet boundary conditions

u2 = 0, p = −x , η = 1, f = 0 and yield stress τs

Analytical solution for velocity

u1 =



























1

8

[

(h − 2τs)
2 − (h − 2τs − 2y)2

]

, 0 ≤ y <
h

2
− τs

1

8
(h − 2τs)

2,
h

2
− τs ≤ y ≤

h

2
+ τs

1

8

[

(h − 2τs)
2 − (2y − 2τs − h)2

]

,
h

2
+ τs < y ≤ h

,

(38)
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Numerical Results

Table: Number of Newton iterations for fitted mesh at yield stress τs = 0.25

Level ǫ=10−1 ǫ=10−2 ǫ=10−3 ǫ=10−4 ǫ=10−5 ǫ=0

3 6 45 14 49 39 18

4 3 4 6 5 13 4

5 2 3 4 4 5 3
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Numerical Results

Table: L
2 errors of velocity for fitted mesh: ||u − uex || at yield stress τs = 0.25

Level ǫ=10−1 ǫ=10−2 ǫ=10−3

3 2.598 × 10−3 5.873 × 10−4 6.257 × 10−5

4 2.597 × 10−3 5.818 × 10−4 6.415 × 10−5

5 2.597 × 10−3 5.815 × 10−4 6.416 × 10−5

ǫ=10−4 ǫ=10−5 ǫ=0

3 6.407 × 10−6 6.788 × 10−7 2 × 10−11

4 6.262 × 10−6 6.378 × 10−7 7 × 10−12

5 6.298 × 10−6 6.297 × 10−7 4 × 10−12
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Numerical Results

Figure: ||u − uex || at yield stress i.e. τs = 0.25 with step size h
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Numerical Results

Table: Number of Newton Iterations for fitted mesh at different values of yield

stress i.e. τs = 0.125, 0.25, 0.75 and 0.875

Level τs=0.125 τs=0.25 τs=0.75 τs=0.875

3 3 5 4 11

4 4 3 2 5

5 5 2 2 4

Table: L
2 errors of velocity for fitted mesh: ||u − uex || at different values of

yield stress i.e. τs = 0.125, 0.25, 0.75 and 0.875

Level τs=0.125 τs=0.25 τs=0.75 τs=0.875

3 4.0257 × 10−3 6.5687 × 10−4 3.3499 × 10−4 1.5016 × 10−3

4 2.0836 × 10−3 1.4250 × 10−4 1.5318 × 10−4 4.6894 × 10−5

5 1.9920 × 10−3 3.6533 × 10−5 4.6423 × 10−5 2.4105 × 10−5
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Numerical Results

Figure: ||u − uex || at different values of yield stress i.e. τs = 0.125, 0.25, 0.75

and 0.875 with step size h
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Summary

A new regularization free solver for yield stress fluid is under development

By introducing a new auxiliary stress in three fields formulation

Resulting saddle-point problem with monolithic finite element

method

to simulate viscoplastic lubricated flows for stabilization of the interfaces

in multi-layer shear flows

Advantages

Solves efficiently and accurately

Method does not effect the shape of the yield surfaces

The formulation does not need any regularization
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