

Monolithic Finite Element Method for Three Fields Formulation of Yield Stress Fluids

Arooj Fatima

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund

Oberseminar 2017

Motivation

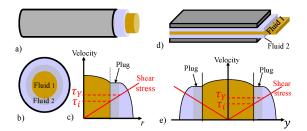
- Overning Equations
- On-Linear Solver
- 4 Variational Formulation
- 5 Finite Element Approaximation
- 6 Application

Motivation

- 2 Governing Equations
- On-Linear Solver
- 4 Variational Formulation
- 6 Finite Element Approaximation
- 6 Application

Viscoplastic Lubrication

(a) Viscoplastically lubricated flow (b) Cross-section of flow with Newtonian Ω_1 lubricated by Bingham fluid Ω_2 (c) Velocity and Stress profiles along radial section

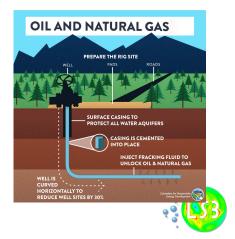


• Examples: Heavy crude oil transpotation along pipelines, coal-water slurry transpotation and co-extrusion operations

VPL Application

- Stabilization of interfaces in multi-layer flows by means of viscoplastic fluids
- Fluid encapsulation by entrapping one substance within another
- Oil/gas fracking, site-specific drug delivery, medical imaging, food, cosmetic, and pharmaceutical product manufacturing, ...

Process of fracking of oil/gas



Motivation

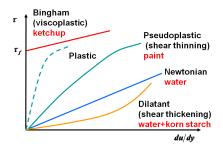
Overning Equations

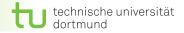
- 3 Non-Linear Solver
- 4 Variational Formulation
- 5 Finite Element Approaximation
- 6 Application

Summary

Classification of Fluids

- Classification according to stress τ and deformation rate $\frac{du}{dv}$
- $\bullet \ \ \mathsf{Linear} \ \mathsf{relation} \ \to \ \mathsf{Newtonian}$
- $\bullet \ \ Otherwise \rightarrow Non-Newtonian$





Bingham Constitutive Law

$$\begin{cases} \boldsymbol{\tau} = 2\eta \mathbf{D}(\boldsymbol{u}) + \tau_s \frac{\mathbf{D}(\boldsymbol{u})}{\|\mathbf{D}(\boldsymbol{u})\|} & \text{if } \|\mathbf{D}(\boldsymbol{u})\| \neq 0 \\ \|\boldsymbol{\tau}\| \leq \tau_s & \text{if } \|\mathbf{D}(\boldsymbol{u})\| = 0 \end{cases}$$
(1)

- Applied stress \geq critical value of $au_s \rightarrow$ Shear region
- Applied stress \leq critical value of $\tau_s \rightarrow$ Rigid or plug region

• Viscosity model for Bingham flow

$$\eta(\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon}) = 2\eta + \tau_{s} \frac{1}{\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon}}$$
(2)

Generalized N-S equation

$$\begin{cases} -\nabla \cdot \eta \left((\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon})\mathbf{D}(\boldsymbol{u}) \right) + \nabla p = 0 & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{on } \Gamma_{D} \end{cases}$$

 $\mathsf{Bercovier}\mathsf{-}\mathsf{Engelman} \to \left\| \mathbf{D}(\boldsymbol{u}) \right\|_{\epsilon} = \sqrt{\mathbf{D}:\mathbf{D}+\epsilon^2}$

(3)

4

• Bingham model with additional symmetric viscoplastic stress tensor

$$oldsymbol{\sigma} = rac{\mathsf{D}(oldsymbol{u})}{\|\mathsf{D}(oldsymbol{u})\|_\epsilon}$$

$$\begin{cases} \|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \,\boldsymbol{\sigma} - \mathbf{D}(\boldsymbol{u}) = 0 & \text{in } \Omega \\ -\nabla \cdot (2\eta \mathbf{D}(\boldsymbol{u}) + \tau_{s} \boldsymbol{\sigma}) + \nabla p = 0 & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{on } \Gamma_{D} \end{cases}$$

(5)

Motivation

2 Governing Equations

On-Linear Solver

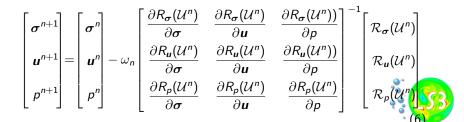
4 Variational Formulation

- 5 Finite Element Approaximation
- 6 Application

🕜 Summary

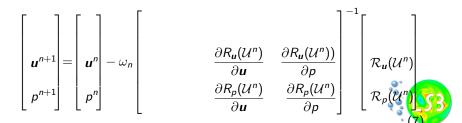
First, the system (5) is linearized using Newton method

- $\mathcal{U} = (\boldsymbol{\sigma}, \boldsymbol{u}, p)$ and $\mathcal{R}_{\mathcal{U}}$ denote the discrete residuals
- Nonlinear iteration, updated with the correction $\rightarrow \delta U$, $U^{n+1} = U^n + \delta U$
- Approximation for the residuals: $\rightarrow \mathcal{R}(\mathcal{U}^{n+1}) = \mathcal{R}(\mathcal{U}^n) + \left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}}\right] \delta \mathcal{U}$



First, the system (3) is linearized using Newton method

- $\mathcal{U} = (\boldsymbol{u}, \boldsymbol{p})$ and $\mathcal{R}_{\mathcal{U}}$ denote the discrete residuals
- Nonlinear iteration, updated with the correction $\rightarrow \delta U$, $U^{n+1} = U^n + \delta U$
- Approximation for the residuals: $\rightarrow \mathcal{R}(\mathcal{U}^{n+1}) = \mathcal{R}(\mathcal{U}^n) + \left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}}\right] \delta \mathcal{U}$



Jacobian Calculation

• In primitive variable

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\boldsymbol{u}}(\mathcal{U}^{n})}{\partial \boldsymbol{u}} \end{bmatrix} \boldsymbol{v} = -\nabla \cdot \left[2\eta D(\boldsymbol{v}) - 2 \left[\frac{D(\boldsymbol{u}^{n})}{\|\mathbf{D}(\boldsymbol{u}^{n})\|_{\epsilon}} : D(\boldsymbol{v}) \right] \frac{D(\boldsymbol{u}^{n})}{\|\mathbf{D}(\boldsymbol{u}^{n})\|_{\epsilon}} \right]$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\boldsymbol{u}}(\mathcal{U}^{n})}{\partial p} \end{bmatrix} q = \nabla q \tag{8}$$

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{p}(\mathcal{U}^{n})}{\partial \boldsymbol{u}} \end{bmatrix} \boldsymbol{v} = -\nabla \cdot \boldsymbol{v}$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{p}(\mathcal{U}^{n})}{\partial p} \end{bmatrix} q = 0$$

(9)

Jacobian Calculation

• In three fields formulation

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\sigma}(\mathcal{U}^{n})}{\partial \sigma} \end{bmatrix} \boldsymbol{\tau} = \|(\mathbf{D}(\boldsymbol{u}^{n}))\|_{\epsilon} \boldsymbol{\tau}$$

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\sigma}(\mathcal{U}^{n})}{\partial \boldsymbol{u}} \end{bmatrix} \boldsymbol{v} = \left(\boldsymbol{\sigma}^{n} : \mathbf{D}(\boldsymbol{v})\right) \boldsymbol{\sigma}^{n} - \mathbf{D}(\boldsymbol{v})$$

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\sigma}(\mathcal{U}^{n})}{\partial p} \end{bmatrix} \boldsymbol{q} = 0$$
(10)

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\boldsymbol{u}}(\mathcal{U}^{n})}{\partial \boldsymbol{\sigma}} \end{bmatrix} \boldsymbol{\tau} = -\tau_{s} \nabla \cdot \boldsymbol{\tau}$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\boldsymbol{u}}(\mathcal{U}^{n})}{\partial \boldsymbol{u}} \end{bmatrix} \boldsymbol{v} = -2\eta \nabla \cdot \mathbf{D}(\boldsymbol{v})$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{\boldsymbol{u}}(\mathcal{U}^{n})}{\partial \boldsymbol{p}} \end{bmatrix} \boldsymbol{q} = \nabla \boldsymbol{q}$$

• In three fields formulation

$$\begin{bmatrix} \frac{\partial \mathcal{R}_{p}(\mathcal{U}^{n})}{\partial \sigma} \end{bmatrix} \boldsymbol{\tau} = 0$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{p}(\mathcal{U}^{n})}{\partial \boldsymbol{u}} \end{bmatrix} \boldsymbol{v} = -\nabla \cdot \boldsymbol{v}$$
$$\begin{bmatrix} \frac{\partial \mathcal{R}_{p}(\mathcal{U}^{n})}{\partial p} \end{bmatrix} \boldsymbol{q} = 0$$

(12)

Motivation

- 2 Governing Equations
- On-Linear Solver
- 4 Variational Formulation
- 5 Finite Element Approaximation
- 6 Application

•
$$\mathbb{V} = oldsymbol{H}_0^1(\Omega) := ig(H_0^1(\Omega)ig)^2 o$$
 velocity and dual space $o \mathbb{V}'$

•
$$\mathbb{Q} = L^2_0(\Omega) o$$
 pressure and dual space $o \mathbb{Q}'$

•
$$\mathbb{M} = \left(\mathcal{L}^2(\Omega)
ight)^4_{\mathsf{sym}} o$$
 stress and dual space $o \mathbb{M}'$

$$\langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle := 2\eta \int_{\Omega} \mathbf{D}(\boldsymbol{u}) : \mathbf{D}(\boldsymbol{v}) \, dx$$
 (13)

$$\langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle = \tau_s \| (\mathbf{D}(\boldsymbol{u}^n)) \|_{\epsilon} \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\tau} \, dx$$
 (14)

Variational Formulation

• The associated bilinear forms

$$a_1(\boldsymbol{u}, \boldsymbol{v}) = \langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle, \quad a_2(\boldsymbol{\sigma}, \boldsymbol{\tau}) = \langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle$$
 (15)

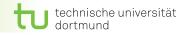
$$\langle \mathcal{B}_1 \boldsymbol{v}, q \rangle := -\int_{\Omega} \nabla \cdot \boldsymbol{v} \ q \ dx$$
 (16)

$$\langle \mathcal{B}_2 \boldsymbol{v}, \boldsymbol{\tau} \rangle := \tau_s \int_{\Omega} \boldsymbol{\tau} : \mathbf{D}(\boldsymbol{v}) \, dx$$

$$\langle \tilde{\mathcal{B}}_2 \boldsymbol{v}, \boldsymbol{\tau} \rangle := \tau_s \int_{\Omega} \left(\boldsymbol{\sigma}^n : \mathbf{D}(\boldsymbol{v}) \right) \left(\boldsymbol{\sigma}^n : \boldsymbol{\tau} \right) dx$$

(17)

Variational Formulation



• The associated bilinear forms

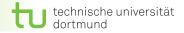
$$b_1(\mathbf{v},q) := \langle \mathcal{B}_1 \mathbf{v}, q \rangle, \quad c_2(\mathbf{v}, \mathbf{\tau}) := \langle \mathcal{C}_2 \mathbf{v}, \mathbf{\tau} \rangle$$
 (18)

$$b_2(oldsymbol{v},oldsymbol{ au}) := ig\langle \mathcal{B}_2oldsymbol{v},oldsymbol{ au}ig
angle, \ ilde{b}_2(oldsymbol{v},q) := ig\langle ilde{\mathcal{B}}_2oldsymbol{v},oldsymbol{ au}ig
angle$$
 (19)

$$C_2 = \mathcal{B}_2 + \tilde{\mathcal{B}}_2 \tag{20}$$

• Newton iteration (6) becomes:

$$\begin{bmatrix} \boldsymbol{u}^{n+1} \\ \boldsymbol{\sigma}^{n+1} \\ \boldsymbol{p}^{n+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}^{n} \\ \boldsymbol{\sigma}^{n} \\ \boldsymbol{p}^{n} \end{bmatrix} - \omega_{n} \begin{bmatrix} \mathcal{A}_{1} & \mathcal{C}_{2}^{\mathsf{T}} & \mathcal{B}_{1}^{\mathsf{T}} \\ \mathcal{B}_{2} & -\mathcal{A}_{2} & \boldsymbol{0} \\ \mathcal{B}_{1} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{R}_{\boldsymbol{u}}(\boldsymbol{\sigma}^{n}, \boldsymbol{u}^{n}, \boldsymbol{p}^{n}) \\ \mathcal{R}_{\boldsymbol{\sigma}}(\boldsymbol{\sigma}^{n}, \boldsymbol{u}^{n}, \boldsymbol{p}^{n}) \\ \mathcal{R}_{p}(\boldsymbol{\sigma}^{n}, \boldsymbol{u}^{n}, \boldsymbol{p}^{n}) \end{bmatrix}$$



$$\langle \mathcal{A}(\boldsymbol{u},\boldsymbol{\sigma}),(\boldsymbol{v},\boldsymbol{\tau})\rangle = \langle \mathcal{A}_1\boldsymbol{u},\boldsymbol{v}\rangle + \langle \mathcal{A}_2\boldsymbol{\sigma},\boldsymbol{\tau}\rangle + \langle \mathcal{C}_2\boldsymbol{v},\boldsymbol{\sigma}\rangle - \langle \mathcal{B}_2\boldsymbol{u},\boldsymbol{\tau}\rangle \quad (22)$$

$$a(\mathcal{U},\mathcal{V}) = a_1(\boldsymbol{u},\boldsymbol{v}) + a_2(\boldsymbol{\sigma},\boldsymbol{\tau}) + c_2(\boldsymbol{v},\boldsymbol{\sigma}) - b_2(\boldsymbol{u},\boldsymbol{\tau})$$
(23)

$$\langle \mathcal{BV}, q \rangle := \langle \mathcal{B}_1 \mathbf{v}, q \rangle \tag{24}$$

• The Jacobian has a saddle point structure

$$\mathbf{J} = \begin{bmatrix} \mathcal{A} & \mathcal{B}^\mathsf{T} \\ \mathcal{B} & \mathbf{0} \end{bmatrix}$$

Solvability of Problem

• Find $\mathcal{U} \in \text{Ker}\mathcal{B}$ such that:

$$a(\mathcal{U},\mathcal{V}) = \langle \boldsymbol{f},\mathcal{V} \rangle \qquad \forall \mathcal{V} \in \mathsf{Ker}\mathcal{B}$$
(26)

Theorem

Let $\mathbb{X} = \mathbb{V} \times \mathbb{M}$ be a Hilbert space and $\mathbf{f} \in \mathbb{X}'$, topological dual space of \mathbb{X} , and let a(.,.) be a bilinear form on \mathbb{X} satisfying the following three hypothesis:

(H1) There exists a constant $\alpha > 0$ such that :

$$a(\mathcal{U}, \mathcal{V}) \le \alpha \|\mathcal{U}\| \|\mathcal{V}\| \qquad \forall \mathcal{U}, \mathcal{V} \in \mathbb{X}$$

(27)

Solvability of Problem

Theorem (cont)					
(H2) There exists a constant $\beta > 0$ such that :					
$\sup_{\mathcal{U}\in\mathbb{X}}rac{a(\mathcal{U},\mathcal{V})}{\ \mathcal{U}\ }\geqeta\ \mathcal{V}\ $	$\forall \mathcal{V} \in \mathbb{X}$	(28)			
(H3) There exists a constant $\beta' > 0$ such that :					
$\sup_{\mathcal{V}\in\mathbb{X}}\frac{a(\mathcal{U},\mathcal{V})}{\ \mathcal{V}\ }\geq\beta'\ \mathcal{U}\ $	$\forall \mathcal{U} \in \mathbb{X}$	(29)			
then problem has a unique solution $\mathcal{U}\in\mathbb{X}$ such that $\ \mathcal{U}\ \leq rac{1}{eta'}\ m{f}\ _{\mathbb{X}'}$					
J. BARANGER,D. S ANDRI,"A formulation of Stokes problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow"Mathematical Modeling and Numerical Aanalysis					



$$a(\mathcal{U},\mathcal{V}) = a_1(\boldsymbol{u},\boldsymbol{v}) + a_2(\boldsymbol{\sigma},\boldsymbol{\tau}) + c_2(\boldsymbol{v},\boldsymbol{\sigma}) - b_2(\boldsymbol{u},\boldsymbol{\tau})$$
$$\tilde{b}_2(\boldsymbol{v},\boldsymbol{\tau}) := \tau_s \int_{\Omega} \left(\boldsymbol{\sigma}^n : \mathbf{D}(\boldsymbol{v})\right) \left(\boldsymbol{\sigma}^n : \boldsymbol{\tau}\right) dx$$

With the extension of $\|.\|_{L^2}$ using the second order symmetric tensor σ^n

$$ilde{b}_2(oldsymbol{v},oldsymbol{ au})\equiv au_s\left\|oldsymbol{\sigma}^n
ight\|^2\int_\Omega\left(\mathsf{D}(oldsymbol{v}):oldsymbol{ au}
ight)$$

$$\sup_{\boldsymbol{\tau}\in\mathcal{M}}\frac{\tilde{b}_{2}(\boldsymbol{\nu},\boldsymbol{\tau})}{\|\boldsymbol{\tau}\|}\geq\beta\left\|\boldsymbol{\sigma}^{n}\right\|^{2}\left\|\boldsymbol{\nu}\right\|\quad\forall\boldsymbol{\nu}\in\mathcal{V}$$

and

$$\sup_{\boldsymbol{v}\in\mathcal{V}}\frac{\tilde{b}_{2}(\boldsymbol{v},\boldsymbol{\tau})}{\|\boldsymbol{v}\|}\geq\beta\|\boldsymbol{\sigma}^{n}\|^{2}\|\boldsymbol{\tau}\|\quad\forall\boldsymbol{\tau}\in\mathcal{M}$$

Motivation

- 2 Governing Equations
- 3 Non-Linear Solver
- 4 Variational Formulation
- 5 Finite Element Approaximation
- 6 Application

7 Summary

Finite Element Discretization

- Domain $\Omega \subset \mathbb{R}^d \longrightarrow \textit{grid } \mathcal{T}_h$ consisting of elements $K \in \mathcal{T}_h$
- Approximation spaces

$$\mathbb{V}^{h} = \left\{ \boldsymbol{v}_{h} \in \mathbb{V}, \boldsymbol{v}_{h|K} \in Q_{2}(K) \right\}$$
$$\mathbb{M}^{h} = \left\{ \boldsymbol{\tau}_{h} \in \mathbb{M}, \boldsymbol{\sigma}_{h|K} \in Q_{2}(K) \right\}$$
$$\mathbb{Q}^{h} = \left\{ q_{h} \in \mathbb{Q}, q_{h|K} \in P_{1}^{\text{disc}}(K) \right\}$$
(30)

• $\mathbb{X}^h = \mathbb{V}^h \times \mathbb{M}^h$. Find $(\mathcal{U}_h, p_h) \in \mathbb{X}^h \times \mathbb{Q}^h$ such that:

$$\left\{egin{array}{ll} \mathsf{a}(\mathcal{U}_h,\mathcal{V}_h)+\mathsf{b}(\mathcal{V}_h,\mathsf{p}_h)=\langle m{f},\mathcal{V}_h
angle & orall \mathcal{V}_h\in\mathbb{X}^h\ \mathsf{b}(\mathcal{U}_h,q_h)&=0 & orall q_h\in\mathbb{Q}^h \end{array}
ight.$$

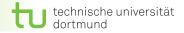
• \mathbb{V}^h and \mathbb{Q}^h satisfy the inf-sup condition

- \mathbb{V}^h and \mathbb{M}^h do not satisfy the inf-sup condition
- Find $U_h \in \text{Ker}\mathcal{B}_h$ such that:

$$a(\mathcal{U}_h, \mathcal{V}_h) + j(\mathcal{U}_h, \mathcal{V}_h) = \langle \boldsymbol{f}, \mathcal{V}_h \rangle \qquad \forall \mathcal{V}_h \in \mathsf{Ker}\mathcal{B}_h$$
(32)

$$j(\mathcal{U}_h, \mathcal{V}_h) = \gamma \sum_{\boldsymbol{e} \in \mathcal{E}_h} h\tau_s \left(1 + \|\boldsymbol{\sigma}_h^n\|^2\right) \int_{\boldsymbol{e}} [\nabla \boldsymbol{u}_h] : [\nabla \boldsymbol{v}_h] \ d\Omega$$
(33)

$$\|\mathcal{V}_{h}\|^{2} = \|\mathcal{V}_{h}\|^{2} + j(\mathcal{V}_{h}, \mathcal{V}_{h})$$
(34)

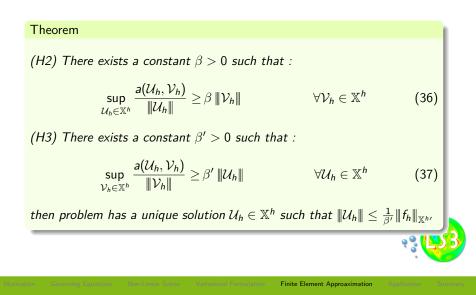


Theorem

Let $\mathbb{X}^h = \mathbb{V}^h \times \mathbb{M}^h$ be a Hilbert space and $f_h \in \mathbb{X}^{h'}$, topological dual space of \mathbb{X}^h , and let a(.,.) be a bilinear form on \mathbb{X}^h satisfying the following three hypothesis:

(H1) There exists a constant $\alpha > 0$ such that :

Solvability of Problem



Motivation

- 2 Governing Equations
- 3 Non-Linear Solver
- 4 Variational Formulation
- 6 Finite Element Approaximation
- 6 Application

Bingham fluid flow in channel

- Channel domain: two parallel plates with h length apart and long
- Dirichlet boundary conditions
- $u_2 = 0$, p = -x, $\eta = 1$, f = 0 and yield stress τ_s
- Analytical solution for velocity

$$u_{1} = \begin{cases} \frac{1}{8} \left[(h - 2\tau_{s})^{2} - (h - 2\tau_{s} - 2y)^{2} \right], & 0 \le y < \frac{h}{2} - \tau_{s} \\ \frac{1}{8} (h - 2\tau_{s})^{2}, & \frac{h}{2} - \tau_{s} \le y \le \frac{h}{2} + \tau_{s}, \\ \frac{1}{8} \left[(h - 2\tau_{s})^{2} - (2y - 2\tau_{s} - h)^{2} \right], & \frac{h}{2} + \tau_{s} < y \le h \end{cases}$$

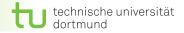


Table: Number of Newton iterations for fitted mesh at yield stress $\tau_s = 0.25$

Level	$\epsilon = 10^{-1}$	$\epsilon \!=\! 10^{-2}$	$\epsilon = 10^{-3}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	<i>ϵ</i> =0
3	6	45	14	49	39	18
4	3	4	6	5	13	4
5	2	3	4	4	5	3

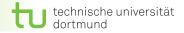


Table: L^2 errors of velocity for fitted mesh: $||u - u_{ex}||$ at yield stress $\tau_s = 0.25$

Level	$\epsilon = 10^{-1}$	$\epsilon \!=\! 10^{-2}$	$\epsilon = 10^{-3}$
3	2.598×10^{-3}	$5.873 imes10^{-4}$	$6.257 imes10^{-5}$
4	2.597×10^{-3}	$5.818 imes10^{-4}$	6.415×10^{-5}
5	2.597×10^{-3}	5.815×10^{-4}	6.416×10^{-5}
	$\epsilon \!=\! 10^{-4}$	$\epsilon \!=\! 10^{-5}$	<i>ϵ</i> =0
3	$6.407 imes10^{-6}$	$6.788 imes 10^{-7}$	$2 imes 10^{-11}$
4	$6.262 imes 10^{-6}$	$6.378 imes10^{-7}$	$7 imes 10^{-12}$
5	6.298×10^{-6}	$6.297 imes 10^{-7}$	$4 imes 10^{-12}$

Numerical Results

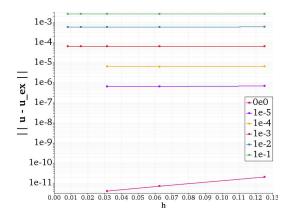


Figure: $\|\boldsymbol{u} - \boldsymbol{u}_{ex}\|$ at yield stress i.e. $\tau_s = 0.25$ with step size h

Table: Number of Newton Iterations for fitted mesh at different values of yield stress i.e. $\tau_s = 0.125, 0.25, 0.75$ and 0.875

Level	<i>τs</i> =0.125	<i>τs</i> =0.25	<i>τs</i> =0.75	<i>τ_s</i> =0.875
3	3	5	4	11
4	4	3	2	5
5	5	2	2	4

Table: L^2 errors of velocity for fitted mesh: $||u - u_{ex}||$ at different values of yield stress i.e. $\tau_s = 0.125, 0.25, 0.75$ and 0.875

Level		<i>τ_s</i> =0.25	<i>τ_s</i> =0.75	τ _s =0.875	
3	4.0257×10^{-3}	6.5687×10^{-4}	3.3499×10^{-4}	1.5016 × 10 ⁻³	
4	2.0836×10^{-3}	1.4250×10^{-4}	1.5318×10^{-4}	$4.6894 imes 10^{-5}$	I GR
5	1.9920×10^{-3}	3.6533×10^{-5}	4.6423×10^{-5}	$\begin{array}{c} 1.5016 \times 10^{-3} \\ 4.6894 \times 10^{-5} \\ 2.4105 \times 10^{-5} \end{array}$	V

Numerical Results

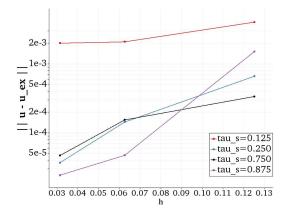


Figure: $\|\boldsymbol{u} - \boldsymbol{u}_{ex}\|$ at different values of yield stress i.e. $\tau_s = 0.125, 0.25, 0.75$ and 0.875 with step size *h*

Motivation

- 2 Governing Equations
- 3 Non-Linear Solver
- 4 Variational Formulation
- 6 Finite Element Approaximation
- 6 Application

technische universität dortmund

A new regularization free solver for yield stress fluid is under development

- By introducing a new auxiliary stress in three fields formulation
- Resulting saddle-point problem with monolithic finite element method

to simulate viscoplastic lubricated flows for stabilization of the interfaces in multi-layer shear flows

Advantages

- Solves efficiently and accurately
- Method does not effect the shape of the yield surfaces
- The formulation does not need any regularization

Summarv