An Adaptive Discrete Newton Method for Regularization-Free Bingham Model in Yield Stress Fluids

Arooj Fatima arooj.fatima@math.tu-dortmund.de

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund University

12th December 2022

Contents

Motivation

- Q Governing Equations
- Sinite Element Approximation
- Newton Solver
- Oumerical Results: Newton
- 6 Adaptive Discrete Newton
- 📀 Numerical Results: Adaptive Discrete Newton

Summary

O References

Contents

Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

8 Summary

9 References

Motivation

- Viscoplastic lubrication in transport process
- Stabilization of interfaces in multi-layer flows
- Oil/gas fracking, site-specific drug delivery, medical imaging, food, cosmetic, and pharmaceutical product manufacturing, ...

Contents

Motivation

Q Governing Equations

3 Finite Element Approximation

4 Newton Solver

- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Classification of Fluids

Classification

- Linear relation ightarrow Newtonian
- Otherwise \rightarrow Non-Newtonian

Bingham Constitutive Law

$$egin{aligned} oldsymbol{ au} &= 2\eta \mathbf{D}(oldsymbol{u}) + au_s rac{\mathbf{D}(oldsymbol{u})}{\|\mathbf{D}(oldsymbol{u})\|} & ext{ if } \|\mathbf{D}(oldsymbol{u})\|
eq 0 \ \|oldsymbol{ au}\| &\leq au_s & ext{ if } \|\mathbf{D}(oldsymbol{u})\| = 0 \end{aligned}$$

- Applied stress \geq critical value of $au_s \rightarrow$ Shear region
- Applied stress \leq critical value of $\tau_s \rightarrow$ Rigid or plug region

Two-Field Formulation

• Viscosity model for Bingham flow

$$\eta(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + rac{ au_s}{\|\mathbf{D}(\boldsymbol{u})\|}$$

- First, Shear region $\rightarrow \|\mathbf{D}(\boldsymbol{u})\| \neq 0$
- Second, Rigid or plug region $\rightarrow \|\mathbf{D}(\boldsymbol{u})\| = 0$
- Special treatment of plug zone: Regularization

$$\eta_{\epsilon}(\|\mathsf{D}(u)\|) = 2\eta + \frac{\tau_s}{\epsilon + \|\mathsf{D}(u)\|}$$
 Allouche et al.¹

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + rac{ au_s(1 - exp(rac{-\|\mathbf{D}(\boldsymbol{u})\|}{\epsilon}))}{\|\mathbf{D}(\boldsymbol{u})\|} \quad extsf{Papanastasiou}^2$$

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = \begin{cases} 2\eta + \frac{\tau_{s}}{\|\mathbf{D}(\boldsymbol{u})\|} & \text{if } \|\mathbf{D}(\boldsymbol{u})\| \geq \epsilon\tau_{s} \\ \frac{2\eta}{\epsilon} & \text{if } \|\mathbf{D}(\boldsymbol{u})\| \leq \epsilon\tau_{s} & \text{Tanner et al.}^{3} \end{cases}$$

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + \frac{\tau_{s}}{\sqrt{\mathbf{D}:\mathbf{D}+\epsilon^{2}}}$$

Bercovier Engelman⁴

Two-Field Formulation:

$$\begin{cases} -\nabla \cdot \eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|)\mathbf{D}(\boldsymbol{u}) + \nabla p = 0 & \text{ in } \Omega\\ \nabla \cdot \boldsymbol{u} = 0 & \text{ in } \Omega\\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{ on } \Gamma_{D} \end{cases}$$

Two-Field (u, p)

- Solve only for non vanishing regularization parameter $\epsilon \neq 0$
- Accuracy is compromised where yield properties are important

Three-Field (u, σ, p)

- Introducing auxiliary stress tensor σ
- Accurately solves regularization-free (ε = 0) Bingham fluid

flow

Bingham model with additional symmetric viscoplastic stress tensor

$$\sigma = rac{\mathsf{D}(\pmb{u})}{\|\mathsf{D}(\pmb{u})\|_\epsilon}$$

$$\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \boldsymbol{\sigma} - \mathbf{D}(\boldsymbol{u}) = 0 \quad \text{in } \Omega$$
$$-\nabla \cdot (2\eta \mathbf{D}(\boldsymbol{u}) + \tau_{s} \boldsymbol{\sigma}) + \nabla \boldsymbol{p} = 0 \quad \text{in } \Omega$$
$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega$$
$$\boldsymbol{u} = \boldsymbol{g}_{D} \quad \text{on } \Gamma_{D}$$

• τ_s =yield stress • $\mathbf{D}(\boldsymbol{u}) = \frac{1}{2} \Big(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \Big)$

- $\eta =$ viscosity
- **u**, *p*= velocity, pressure

Weak Formulation

• Spaces for the velocity, pressure and stress

•
$$\mathbb{V}=\left(H_0^1(\Omega)
ight)^2$$
, $\mathbb{Q}=L_0^2(\Omega)$, $\mathbb{M}=\left(L^2(\Omega)
ight)_{\mathsf{sym}}^{2 imes 2}$

$$\int_{\Omega} \left(\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \,\boldsymbol{\sigma}:\boldsymbol{\tau} \right) dx - \int_{\Omega} \left(\mathbf{D}(\boldsymbol{u}):\boldsymbol{\tau} \right) dx = 0 \quad \text{in } \Omega$$
$$\int_{\Omega} \left(2\eta \mathbf{D}(\boldsymbol{u}):\mathbf{D}(\boldsymbol{v}) \right) dx + \int_{\Omega} \left(\tau_{s} \mathbf{D}(\boldsymbol{v}):\boldsymbol{\sigma} \right) dx - \int_{\Omega} p \,\nabla \cdot \boldsymbol{v} \, dx = 0 \quad \text{in } \Omega$$
$$\int_{\Omega} q \,\nabla \cdot \boldsymbol{u} \, dx = 0 \quad \text{in } \Omega$$

$$\begin{array}{ll} \langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle := \int_{\Omega} 2\eta \mathbf{D}(\boldsymbol{u}) : \mathbf{D}(\boldsymbol{v}) \, dx &, \quad \langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle = \int_{\Omega} \tau_s \| \mathbf{D}(\boldsymbol{u}) \|_{\epsilon} \boldsymbol{\sigma} : \boldsymbol{\tau} \, dx \\ \langle \mathcal{B}_1 \boldsymbol{v}, \boldsymbol{q} \rangle := - \int_{\Omega} \nabla \cdot \boldsymbol{v} \, \boldsymbol{q} \, dx &, \quad \langle \mathcal{B}_2 \boldsymbol{v}, \boldsymbol{\sigma} \rangle := - \int_{\Omega} \tau_s \mathbf{D}(\boldsymbol{v}) : \boldsymbol{\sigma} \, dx \end{array}$$

$$\langle \mathcal{A}(\boldsymbol{u}, \boldsymbol{\sigma}), (\boldsymbol{v}, \boldsymbol{\tau}) \rangle = \langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle + \langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle + \langle \mathcal{B}_2^{\mathsf{T}} \boldsymbol{v}, \boldsymbol{\sigma} \rangle + \langle \mathcal{B}_2 \boldsymbol{u}, \boldsymbol{\tau} \rangle$$

$$\begin{bmatrix} \mathcal{A}_1 & \mathcal{B}_2^{\mathsf{T}} & \mathcal{B}_1^{\mathsf{T}} \\ \mathcal{B}_2 & -\mathcal{A}_2 & \mathbf{0} \\ \mathcal{B}_1 & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\sigma} \\ \boldsymbol{\rho} \end{bmatrix} = \begin{bmatrix} rhs_{\mathbf{u}} \\ rhs_{\boldsymbol{\sigma}} \\ rhs_{\boldsymbol{\rho}} \end{bmatrix}$$

The associated bilinear form for $\mathcal{U}=(\textit{\textbf{u}},\sigma)$ and $\mathcal{V}=(\textit{\textbf{v}},\tau)$ as

$$a(\mathcal{U},\mathcal{V}) = a_1(\boldsymbol{u},\boldsymbol{v}) + a_2(\boldsymbol{\sigma},\boldsymbol{\tau}) + b_2(\boldsymbol{v},\boldsymbol{\sigma}) + b_2(\boldsymbol{u},\boldsymbol{\tau})$$

Find $(\mathcal{U}, p) \in \mathbb{X} \times \mathbb{Q}$ such that:

$$\left\{ egin{array}{ll} \mathsf{a}(\mathcal{U},\mathcal{V})+\mathsf{b}(\mathcal{V},p) = \langle m{f},\mathcal{V}
angle & orall \mathcal{V} \in \mathbb{X} \ \mathsf{b}(\mathcal{U},q) &= \langle m{g},q
angle & orall q \in \mathbb{Q} \end{array}
ight.$$

Contents

Motivation

- 2 Governing Equations
- Sinite Element Approximation
 - 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Finite Element Discretization

- Domain $\Omega \subset \mathbb{R}^d \longrightarrow$ grid \mathcal{T}^h consisting of elements $K \in \mathcal{T}^h$
- Approximation spaces

$$\mathbb{V}^{h} = \left\{ \boldsymbol{v}_{h} \in \mathbb{V}, \boldsymbol{v}_{h|K} \in (Q_{2}(K))^{2} \right\}$$
$$\mathbb{M}^{h} = \left\{ \boldsymbol{\tau}_{h} \in \mathbb{M}, \boldsymbol{\sigma}_{h|K} \in (Q_{2}(K))^{2 \times 2} \right\}$$
$$\mathbb{Q}^{h} = \left\{ q_{h} \in \mathbb{Q}, q_{h|K} \in P_{1}^{\mathsf{disc}}(K) \right\}$$

Contents

Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Algorithm

- Provide the input parameters, e.g. tolerance, parameters of the non-linear solver, initial guess and the iteration number *n*
- Repeat until the tolerance is achieved
- Calculate the residual $\mathcal{R}(\mathcal{U}^n) = A \mathcal{U}^n b$
- Build the Jacobian $J(\mathcal{U}^n) = rac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}$
- Solve $J(\mathcal{U}^n) \ \delta \mathcal{U}^n = \mathcal{R}(\mathcal{U}^n)$
- Find the optimal value of the damping factor $\omega^n \in (-1,0]$
- Approximate $\mathcal{U}^{n+1} = \mathcal{U}^n \omega^n \, \delta \mathcal{U}^n$

Sensitive parameters: initial guess, damping factor $\boldsymbol{\omega}$

Discrete Newton Method

$$J(\mathcal{U}^{n}) = \begin{bmatrix} \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial p} \\ \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial p} \\ \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial p} \end{bmatrix}$$

Jacobian calculation method

Analytical \longrightarrow Knowledge of the Jacobian a priori

 $\textbf{Approximation} \longrightarrow \mathsf{Black} \text{ box manner}$

$$\left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}\right]_j \approx \frac{\mathcal{R}(\mathcal{U}^n + \chi \delta_j) - \mathcal{R}(\mathcal{U}^n - \chi \delta_j)}{2\chi}$$

Contents

Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- Oumerical Results: Newton
 - 6 Adaptive Discrete Newton
 - 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

- Channel domain: Unit square $\Omega = [0,1]^2$
- Boundary conditions:
 Dirichlet⁵

•
$$u_y = 0, \ p = -x + c, \ \eta = 1$$

$$u_{x} = \begin{cases} \frac{1}{8} \Big[(h - 2\tau_{s})^{2} - (h - 2\tau_{s} - 2y)^{2} \Big], & 0 \le y < \frac{h}{2} - \tau_{s}, \\ \frac{1}{8} (h - 2\tau_{s})^{2}, & \frac{h}{2} - \tau_{s} \le y \le \frac{h}{2} + \tau_{s}, \\ \frac{1}{8} \Big[(h - 2\tau_{s})^{2} - (2y - 2\tau_{s} - h)^{2} \Big], & \frac{h}{2} + \tau_{s} < y \le h. \end{cases}$$

Two-field (u, p) formulation $\epsilon = 0$ not solve-able

ϵ	Level	NL	$\ u-u_{ex}\ $	ϵ	NL	$\ u-u_{ex}\ $
10^{-1}	3	3	3.346×10^{-3}	10^{-2}	9	1.760×10^{-3}
	4	3	2.790×10^{-3}		6	$1.041 imes 10^{-3}$
	5	2	2.563×10^{-3}		3	6.771×10^{-4}

Three-field (u, σ, p) formulation $\epsilon = 0$ solved

ε	Level	NL	$\ u-u_{ex}\ $
10-1	3	6	2.598×10^{-3}
10	4	3	2.597×10^{-3}
	5	2	2.597×10^{-3}
10-2	3	45	$5.873 imes10^{-4}$
10 -	4	4	$5.818 imes 10^{-4}$
	5	3	5.815×10^{-4}
10-3	3	14	6.257×10^{-5}
10 -	4	6	6.415×10^{-5}
	5	4	6.416×10^{-5}

ε	Level	NL	$\ u-u_{ex}\ $
10-4	3	49	6.407×10^{-6}
10	4	5	$6.262 imes 10^{-6}$
	5	4	6.298×10^{-6}
10-5	3	39	$6.788 imes10^{-7}$
10 -	4	13	$6.378 imes10^{-7}$
	5	5	6.297×10^{-7}
	3	18	2.000×10^{-11}
	4	4	7.000×10^{-12}
	5	3	4.000×10^{-12}

• Velocity for $\tau_s = 0.25$

(a) $\epsilon = 10^{-1}$

(b) $\epsilon = 10^{-2}$

(c) $\epsilon = 10^{-3}$

• Pressure distribution and contours for $\tau_s = 0.25$

• $\|\mathbf{D}\|$ for $\tau_s = 0.25$

(a) $\epsilon = 10^{-1}$

(b) $\epsilon = 10^{-2}$

(c) $\epsilon = 10^{-3}$

Boundary conditions: Pressure drop^{6,7}

$u_2 = 0$	at inflow and outflow					
u = 0	at upper and lower walls					
$\boldsymbol{\tau} \boldsymbol{n}. \boldsymbol{n} = LC$	at inflow					
<i>τn.n = 0</i>	at outflow					

•
$$L=1$$

• $C = \frac{\partial p}{\partial x}$

Exact solution for velocity^{8,5} :

$$u_{1} = \begin{cases} \frac{C}{2\eta}y(1-y) - \frac{\tau_{s}}{\eta}y & 0 \le y < \frac{1}{2} - \frac{\tau_{s}}{C} \\ \frac{C}{2\eta}(\frac{1}{2} - \frac{\tau_{s}}{\eta})^{2} & \frac{1}{2} - \frac{\tau_{s}}{C} \le y \le \frac{1}{2} + \frac{\tau_{s}}{C} \\ \frac{C}{2\eta}y(1-y) - \frac{\tau_{s}}{\eta}(1-y) & \frac{1}{2} + \frac{\tau_{s}}{C} < y \le 1 \end{cases}$$
(2)

Exact solution for pressure 8,5 :

$$p(x,y) = -C(x-L)$$
(3)

(c) $\|\sigma\|, \epsilon = 10^{-3}$

25 / 60

26 / 60

Three-field (u, σ, p) formulation $\epsilon = 0$

DOF	L	NL	$\ \boldsymbol{u}-\boldsymbol{u}_{ex}\ _{L^2}$	$\ \boldsymbol{u}-\boldsymbol{u}_{ex}\ _{H^1}$
4741	3	6	3.43509 <i>e</i> - 08	2.49700 <i>e</i> - 06
18309	4	6	1.63979 <i>e</i> - 08	1.32702 <i>e</i> - 06
71941	5	5	1.63729 <i>e</i> - 08	8.92504 <i>e</i> - 07

• Newton-Multigrid solver behaviour for $\tau_s = 0.25$

ϵ	Level	NL/L	$\ u-u_{ex}\ $
10-1	3	6/1	2.598×10^{-3}
10	4	3/1	2.597×10^{-3}
	5	2/1	2.597×10^{-3}
	6	2/1	2.597×10^{-3}
10-2	3	5/1	5.873×10^{-4}
10	4	4/1	$5.818 imes 10^{-4}$
	5	3/1	5.815×10^{-4}
	6	3/1	5.815×10^{-4}
10-3	3	8/7	$6.257 imes 10^{-5}$
10	4	4/7	6.415×10^{-5}
	5	6/9	6.416×10^{-5}
	6	4/9	6.394×10^{-5}

Problem in convergence for small value of regularization parameter ϵ .

Possible Remedy: Add EOFEM or artificial diffusion stabilization $j_{u}(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}) = \sum_{E \in \mathcal{E}_{h}^{i}} \gamma_{u} h \int_{E} [\nabla \boldsymbol{u}_{h}] : [\nabla \boldsymbol{v}_{h}] d\Omega$ $j_{\sigma}(\boldsymbol{\sigma}_{h}, \boldsymbol{\tau}_{h}) = \sum_{E \in \mathcal{E}_{h}^{i}} \gamma_{\sigma} h \int_{E} [\nabla \boldsymbol{\sigma}_{h}] : [\nabla \boldsymbol{\tau}_{h}] d\Omega$

• Newton solver \rightarrow EOFEM(u) $\gamma_u h$, $\gamma_u = 10^{-1}$ for $\tau_s = 0.25$

ϵ	Level	NL	$\ u-u_{ex}\ $	NL	$\ u - u_{ex}\ $	ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u-u_{ex}\ $
		No stab.		stab.				No stab.		stab.	
10-1	2	6	2.641×10^{-3}	6	2.627×10^{-3}	10-3	2	19	6.237×10^{-5}	15	6.228×10^{-5}
	3	3	2.598×10^{-3}	3	2.598×10^{-3}		3	7	6.257×10^{-5}	5	6.296×10^{-5}
	4	2	2.596×10^{-3}	3	2.597×10^{-3}		4	5	6.415×10^{-5}	5	6.426×10^{-5}
	5	2	2.597×10^{-3}	2	2.597×10^{-3}		5	4	6.416×10^{-5}	5	6.418×10^{-5}
10^{-2}	2	9	6.079×10^{-4}	9	6.130×10^{-4}	10^{-4}	2	15	7.835×10^{-6}	14	7.564×10^{-6}
	3	5	5.873×10^{-4}	5	5.893×10^{-4}		3	14	6.407×10^{-6}	9	6.300×10^{-6}
	4	4	5.818×10^{-4}	4	5.819×10^{-4}		4	4	6.262×10^{-6}	5	6.265×10^{-6}
	5	4	5.815×10^{-4}	3	5.815×10^{-4}		5	4	6.298×10^{-6}	4	6.308×10^{-6}

EOFEM stabilization does not effect the solution accuracy!

• Newton-Multigrid solver ightarrow EOFEM($m{u}$) $\gamma_u h$, $\gamma_u = 10^{-1}$ for $au_s = 0.25$

ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u - u_{ex}\ $	ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u - u_{ex}\ $
		No stab.		stab.				No stab.		stab.	
10^{-1}	2	6/1	2.641×10^{-3}	6/1	2.627×10^{-3}	10-3	2	15/1	6.237×10^{-5}	15/1	6.228×10^{-5}
	3	4/1	2.598×10^{-3}	4/1	2.598×10^{-3}		3	7/7	6.257×10^{-5}	6/2	6.296×10^{-5}
	4	3/1	2.596×10^{-3}	3/1	2.597×10^{-3}		4	4/3	6.415×10^{-5}	5/1	6.426×10^{-5}
	5	3/1	2.597×10^{-3}	3/1	2.597×10^{-3}		5	4/4	6.416×10^{-5}	5/2	6.418×10^{-5}
10^{-2}	2	9/1	6.079×10^{-4}	9/1	6.130×10^{-4}	10-4	2			14/1	6.228×10^{-6}
	3	5/1	5.873×10^{-4}	5/1	5.893×10^{-4}		3			12/4	6.504×10^{-6}
	4	4/1	5.818×10^{-4}	4/2	5.819×10^{-4}		4			10/7	6.339×10^{-6}
	5	4/1	5.815×10^{-4}	3/1	5.814×10^{-4}		5			11/8	6.338×10^{-6}

EOFEM stabilization helped MG to solve smaller ϵ !

• Newton-Multigrid solver ightarrow EOFEM($m{u}$) $\gamma_u h^2$, $\gamma_u = 10^{-1}$ for $au_s = 0.25$

			Newton	Ne	ewton-MG			Newton		Newton-MG	
ϵ	Level	NL	$\ u-u_{ex}\ $	NL/L	$\ u-u_{ex}\ $	ϵ	Level	NL	$\ u-u_{ex}\ $	NL/L	$\ u-u_{ex}\ $
10^{-1}	2	5	2.621×10^{-3}	5/1	2.621×10^{-3}	10-3	2	11	6.234×10^{-5}	11/1	6.234×10^{-5}
	3	2	2.597×10^{-3}	4/1	2.598×10^{-3}		3	3	6.258×10^{-5}	6/2	6.262×10^{-5}
	4	2	2.596×10^{-3}	3/1	2.597×10^{-3}		4	4	6.415×10^{-5}	5/2	6.415×10^{-5}
	5	1	2.597×10^{-3}	2/1	2.597×10^{-3}		5	3	6.415×10^{-5}	5/3	6.416×10^{-5}
10-2	2	7	6.100×10^{-4}	7/1	6.100×10^{-4}	10-4	2	13	7.713×10^{-6}	13/1	7.713×10^{-6}
	3	2	5.779×10^{-4}	5/1	5.876×10^{-4}		3	2	5.481×10^{-6}	8/7	6.382×10^{-6}
	4	2	5.794×10^{-4}	4/1	5.818×10^{-4}		4	2	6.139×10^{-6}	7/9	6.265×10^{-6}
	5	2	5.808×10^{-4}	3/1	5.815×10^{-4}		5	1	6.297×10^{-6}	8/18	6.298×10^{-6}

Adding $\gamma_u \ h^2 ightarrow$ non-linear iterations slightly reduced

• Newton-Multigrid solver \to EOFEM(σ) $\gamma_{\sigma}h$, $\gamma_{\sigma}=10^{-2}$ for $\tau_s=0.25$

								/ =	I EX	/ =	EX
	Level	NI /I	$\ u - u_{\varepsilon}\ $	NI /I	u = u				No stab.		stab.
	Lever	142/2	No stab	NE/ E	atab	10-3	2	15/1	6.237×10^{-5}	15/1	6.257×10^{-5}
			NO SLAD.		stab.		3	7/7	6.257×10^{-5}	6/3	$6.287 imes10^{-5}$
10^{-1}	2	6/1	$2.641 imes 10^{-3}$	3/1	$2.616 imes10^{-3}$		4	4/3	$6.415 imes 10^{-5}$	6/2	$6.437 imes10^{-5}$
	3	4/1	$2.598 imes10^{-3}$	4/1	$2.598 imes10^{-3}$		5	4/4	6.416×10^{-5}	5/4	6.417×10^{-5}
	4	3/1	$2.596 imes10^{-3}$	3/1	$2.597 imes10^{-3}$		-	·/ ·		-, .	
	5	3/1	2.597×10^{-3}	3/1	2.597×10^{-3}	10^{-4}	2			21/1	$8.919 imes 10^{-6}$
		,		,			3			7/7	$6.650 imes10^{-6}$
10^{-2}	2	9/1	$6.079 imes 10^{-4}$	3/1	$6.018 imes 10^{-4}$		4			7/4	$6.985 imes 10^{-6}$
	3	5/1	$5.873 imes10^{-4}$	4/1	$5.874 imes10^{-4}$		5			6/6	6.900×10^{-6}
	4	4/1	5.818×10^{-4}	5/1	5.819×10^{-4}		-			•/ •	
	5	4/1	$5.815 imes 10^{-4}$	4/2	$5.815 imes 10^{-4}$	10^{-5}	2			9/1	$9.772 imes 10^{-7}$
	-	/		1			3			5/1	$2.743 imes10^{-6}$
							4			11/34	$3.003 imes 10^{-6}$

e

Level NL/L $\|\mu - \mu_{ex}\|$

NL/L

 $\|\mu - \mu_{ox}\|$

EOFEM stabilization helped MG to solve more smaller ϵ !

• Artificial diff. stab. $\gamma_{\sigma}h^2\nabla^2\sigma$, $\gamma_{\sigma}=10^{-2}$ for $\tau_s=0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	5	2.633×10^{-3}	5/1	2.633×10^{-3}
3	3	2.621×10^{-3}	3/2	2.621×10^{-3}
4	3	2.607×10^{-3}	3/4	2.607×10^{-3}
5	2	2.601×10^{-3}	2/5	2.601×10^{-3}
6	2	2.598×10^{-3}	2/5	2.598×10^{-3}
$\epsilon = 10^{-2}$				
2	7	1.384×10^{-3}	7/1	1.384×10^{-3}
3	4	8.964×10^{-4}	4/6	8.964×10^{-4}
4	3	6.887×10^{-4}	3/3	6.887×10^{-4}
5	2	6.159×10^{-4}	3/4	6.159×10^{-4}
6	2	5.919×10^{-4}	3/5	5.919×10^{-4}
<i>ϵ</i> =10 ^{−3}				
2	7	1.245×10^{-3}	7/1	1.245×10^{-3}
3	4	5.811×10^{-4}	5/9	5.811×10^{-4}
4	4	2.326×10^{-4}	4/8	2.326×10^{-4}
5	4	1.107×10^{-4}	3/6	1.107×10^{-4}
6	4	7.725×10^{-5}	3/8	7.725×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u-u_{ex}\ $
$\epsilon = 10^{-4}$				
2	7	1.243×10^{-3}	7/1	1.243×10^{-3}
3	4	5.724×10^{-4}	4/6	5.724×10^{-4}
4	4	2.056×10^{-4}	4/5	2.056×10^{-4}
5	4	6.740×10^{-5}	4/6	6.740×10^{-5}
6	4	2.670×10^{-5}	5/6	2.670×10^{-5}
$\epsilon = 10^{-5}$				
2	7	1.243×10^{-3}	7/1	1.243×10^{-3}
3	4	5.724×10^{-4}	6/2	5.724×10^{-4}
4	4	2.056×10^{-4}	4/3	2.056×10^{-4}
5	4	6.636×10^{-5}	4/5	6.636×10^{-5}
6	4	2.458×10^{-5}	5/6	2.458×10^{-5}
<i>ϵ</i> =0				
2	3	1.243×10^{-3}	3/1	1.243×10^{-3}
3	3	5.724×10^{-4}	4/1	5.724×10^{-4}
4	3	2.056×10^{-4}	5/2	2.056×10^{-4}
5	3	6.635×10^{-5}	5/2	6.635×10^{-5}
6	6	2.459×10^{-5}	6/9	2.459×10^{-5}

Regularization-free Bingham

• Artificial diff. stab. $\gamma_{\sigma}h^2\nabla^2\sigma$, $\gamma_{\sigma}=10^{-3}$ for $\tau_s=0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	6	2.648×10^{-3}	6/1	2.648×10^{-3}
3	3	2.603×10^{-3}	3/2	2.603×10^{-3}
4	2	2.598×10^{-3}	3/2	2.598×10^{-3}
5	2	2.597×10^{-3}	2/4	2.597×10^{-3}
6	2	2.597×10^{-3}	2/4	2.597×10^{-3}
$\epsilon = 10^{-2}$				
2	8	7.764×10^{-4}	8/1	7.764×10^{-4}
3	3	6.364×10^{-4}	3/2	6.364×10^{-4}
4	3	5.974×10^{-4}	3/3	5.974×10^{-4}
5	3	5.860×10^{-4}	3/3	5.860×10^{-4}
6	2	5.827×10^{-4}	2/4	5.827×10^{-4}
$\epsilon = 10^{-3}$				
2	9	3.457×10^{-4}	9/1	3.457×10^{-4}
3	4	1.452×10^{-4}	4/2	1.452×10^{-4}
4	4	8.630×10^{-5}	4/2	8.630×10^{-5}
5	4	7.022×10^{-5}	4/3	7.022×10^{-5}
6	5	6.569×10^{-5}	4/4	6.569×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
$\epsilon \!=\! 10^{-4}$				
2	9	3.306×10^{-4}	10/1	3.306×10^{-4}
3	6	1.117×10^{-4}	6/4	1.117×10^{-4}
4	7	4.155×10^{-5}	5/5	4.155×10^{-5}
5	5	1.787×10^{-5}	7/6	1.787×10^{-5}
6	6	9.418×10^{-6}	6/8	9.418×10^{-6}
$\epsilon \!=\! 10^{-5}$				
2	17	3.304×10^{-4}	17/1	3.304×10^{-4}
3	7	1.112×10^{-4}	6/4	1.112×10^{-4}
4	6	4.041×10^{-5}	5/3	4.041×10^{-5}
5	5	1.563×10^{-5}	7/6	1.563×10^{-5}
6	6	5.840×10^{-6}	7/8	5.840×10^{-6}
<i>ϵ</i> =0				
2	3	3.304×10^{-4}	3/1	3.304×10^{-4}
3	4	1.112×10^{-4}	6/2	$1.112 imes 10^{-4}$
4	4	4.040×10^{-5}	6/4	4.040×10^{-5}
5	5	1.557×10^{-5}	6/11	1.557×10^{-5}
6	11	5.694×10^{-6}	12/22	5.694×10^{-6}

 $\gamma = 10^{-3} \longrightarrow$ Regularization-free Bingham

• Artificial diff. stab. $\gamma_{\sigma} h^2 \nabla^2 \sigma$, $\gamma_{\sigma} = 10^{-4}$ for $\tau_s = 0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	6	2.642×10^{-3}	6/1	2.642×10^{-3}
3	3	2.599×10^{-3}	3/2	2.599×10^{-3}
4	3	2.597×10^{-3}	3/3	2.597×10^{-3}
5	2	2.597×10^{-3}	2/3	2.597×10^{-3}
6	2	2.597×10^{-3}	2/3	2.597×10^{-3}
$\epsilon = 10^{-2}$				
2	9	6.232×10^{-4}	9/1	6.232×10^{-4}
3	5	5.937×10^{-4}	5/4	5.937×10^{-4}
4	4	5.836×10^{-4}	4/3	5.836×10^{-4}
5	4	5.820×10^{-4}	4/4	5.820×10^{-4}
6	3	5.816×10^{-4}	3/4	5.816×10^{-4}
<i>ϵ</i> =10 ^{−3}				
2	21	9.234×10^{-5}	21/1	9.234×10^{-5}
3	6	7.413×10^{-5}	7/6	7.413×10^{-5}
4	5	6.728×10^{-5}	8/9	6.728×10^{-5}
5	5	6.486×10^{-5}	6/8	6.486×10^{-5}
6	6	6.414×10^{-5}	6/12	6.414×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
$\epsilon = 10^{-4}$				
2	29	4.428×10^{-5}	24/1	4.428×10^{-5}
3	6	2.418×10^{-5}	12/11	2.418×10^{-5}
4	6	1.299×10^{-5}	11/4	1.299×10^{-5}
5	8	8.243×10^{-6}	10/4	8.243×10^{-6}
6	5	7.023×10^{-6}	9/4	7.023×10^{-6}
$\epsilon = 10^{-5}$				
2	12	4.304×10^{-5}	12/1	4.304×10^{-5}
3	3	2.226×10^{-5}	4/11	2.224×10^{-5}
4	5	1.075×10^{-5}	6/12	1.062×10^{-5}
5	9	4.953×10^{-6}	13/28	4.567×10^{-6}
6	10	2.577×10^{-6}	16/47	2.313×10^{-6}
<i>e</i> =0				
2	4	4.292×10^{-5}	4/1	4.292×10^{-5}
3	5	2.225×10^{-5}	6/7	2.225×10^{-5}
4	6	1.012×10^{-5}	7/6	1.012×10^{-5}
5	10	4.448×10^{-6}	13/15	4.448×10^{-6}

 $\gamma = 10^{-4} \longrightarrow$ Regularization-free Bingham

• Artificial diff. stab. $\gamma_{m{\sigma}} h^3 abla^2 m{\sigma}$, $\gamma_{m{\sigma}} = 10^{-3}$

ϵ	Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u-u_{ex}\ $	ϵ	Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
10^{-1}	2	3	2.651×10^{-3}	3/1	2.651×10^{-3}	10-4	2	6	6.046×10^{-4}	6/1	6.046×10^{-4}
	3	2	2.604×10^{-3}	3/1	2.604×10^{-3}		3	3	1.306×10^{-4}	6/2	1.306×10^{-4}
	4	2	2.598×10^{-3}	3/1	2.598×10^{-3}		4	4	3.203×10^{-5}	6/5	3.206×10^{-5}
	5	1	2.597×10^{-3}	2/1	2.597×10^{-3}		5	3	1.110×10^{-5}	9/6	1.113×10^{-6}
	6	1	2.597×10^{-3}	3/2	2.597×10^{-3}		6	4	6.867×10^{-6}	7/6	6.823×10^{-6}
10^{-2}	2	6	9.336×10^{-4}	6/1	9.336×10^{-4}	10-5	2	6	6.045×10^{-4}	6/1	6.045×10^{-4}
	3	2	6.465×10^{-4}	5/1	6.465×10^{-4}		3	3	1.302×10^{-4}	6/2	1.302×10^{-4}
	4	2	5.920×10^{-4}	4/1	5.920×10^{-4}		4	4	3.076×10^{-5}	6/2	3.076×10^{-5}
	5	2	5.830×10^{-4}	4/1	5.830×10^{-4}		5	5	8.498×10^{-6}	8/12	8.498×10^{-6}
	6	1	5.816×10^{-4}	3/2	5.816×10^{-4}		6	15	2.443×10^{-6}	7/15	2.443×10^{-6}
10-3	2	6	$6.121 imes10^{-4}$	6/1	$6.121 imes10^{-4}$	0	2	6	$6.045 imes10^{-4}$	6/1	$6.045 imes 10^{-4}$
	3	3	1.622×10^{-4}	6/1	1.622×10^{-4}		3	3	1.302×10^{-4}	6/2	1.302×10^{-4}
	4	3	7.902×10^{-5}	8/1	7.902×10^{-5}		4	4	3.072×10^{-5}	6/5	3.072×10^{-5}
	5	3	6.626×10^{-5}	10/1	6.626×10^{-5}		5	5	8.436×10^{-6}	10/15	8.436×10^{-6}
	6	2	6.432×10^{-5}	5/2	6.432×10^{-5}		6	17	2.274×10^{-6}	33/25	2.263×10^{-6}

Convergence rate is slower but accuracy not improved

Contents

1 Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
 - Discrete Newton Numerical Results: Adaptive Discrete Newton

Summary

9 References

Adaptive Step Size in Newton

$$\begin{split} \left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}\right]_j &\approx \frac{\mathcal{R}(\mathcal{U}^n + \chi \delta_j) - \mathcal{R}(\mathcal{U}^n - \chi \delta_j)}{2\chi}\\ \delta_j &= \begin{cases} 1 & \text{j-index} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Choice of the free parameter χ

- Fixed constant: Based on the perturbation analysis on the residum⁹ selected as machine precision
- Adaptive choice: The sensitivity study of the nonlinear behavior of power law models w.r.t. the χ, h and strength of nonlinearity¹⁰
 - $\chi >> \rightarrow$ loss of the advantageous quasi-quadratic convergence
 - $\chi << \rightarrow$ divergence due to numerical instabilities

Adaptive Step Size

• Effect of χ w.r.t tolerance: Number of Newton iterations for Bingham fluid flow in a channel at $\tau_s = 0.25$

$\chi/{ m TOL}$	10 ⁻⁵	10^{-6}	10^{-7}	10^{-8}
10 ⁻²	13	16	19	22
10 ⁻³	13	14	14	16
10 ⁻⁴	14	14	15	diverge
10 ⁻⁵	15	15	oscillate	oscillate
10 ⁻⁶	15	oscillate	oscillate	diverge
10 ⁻⁷	16	diverge	oscillate	diverge
10 ⁻⁸	17	37	diverge	diverge

• Step size choice based on the current nonlinear reduction

$$\mathbf{r}_n = \frac{\|\mathcal{R}(\mathcal{U}^n)\|}{\|\mathcal{R}(\mathcal{U}^{n-1})\|}$$

• Characteristic Function¹¹ $f(r_n) = 0.2 + \frac{0.4}{0.7 + \exp(1.5r_n)}$

 $\chi_c = constant
ightarrow \chi_{c_1} = 10^{-1}$, $\chi_{c_4} = 10^{-4}$ and $\chi_{a} = adaptive$

Contents

1 Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- Ø Numerical Results: Adaptive Discrete Newton

Summary

9 References

Two-Field (u, p) for $\tau_s = 0.23$

\downarrow L/ ϵ $ ightarrow$	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
			Newtor		Adap	tive Ne	wton			
3	2	3	-	-	-	4	4	5	5	9
4	2	3	-	-	-	4	4	5	5	9
5	2	3	-	-	-	4	4	6	5	9

Three-Field (u, σ, p) for $\tau_s = 0.23$

\downarrow L/ ϵ $ ightarrow$	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	0	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	0
Newton								Ad	aptive l	Vewton		
3	2	3	4	6	9	1	2	2	2	5	1	2
4	2	3	4	8	9	1	1	2	2	4	2	2
5	1	2	3	9	5	2	1	1	1	1	3	1

Nonlinear convergence w.r.t χ for regularization-free Bingham

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.3$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ Defect $\chi_{c_7}=10^{-7}$ • $\chi_a = adaptive$

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.35$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ $\chi_{c_7} = 10^{-7}$ • $\chi_a = adaptive$

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.4$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ $\chi_{c_7}=10^{-7}$ • $\chi_a = adaptive$

Lid Driven Cavity

- Bingham flow in a unit square $\Omega = [0,1]^2 \label{eq:sigma}$
- Dirichlet boundary conditions:
 - Lid: $u_x = 1$, everywhere else

$$u = 0$$
 at yield stress $\tau_s = 2.0$

ε	Level	Newton	Adaptive Newton
10-1	2	7	3
10	3	3	3
	4	4	3
10-2	2	12	4
10 -	3	17	4
	4	11	4
10-3	2	13	4
10 -	3	21	4
	4	19	5

Non-Yielded Zone

Figure: Non-yielded zone: The superposition of non yielded zone on the streamline contours for the yield stress $\tau_s = 2.0$

Three-Field Formulation: Number of non-linear iterations for lid-driven cavity computed at the yield stress $\tau_s = 5.0$ for the Newton and adaptive discrete Newton

ϵ	Level	Newton	Adaptive Newton	ϵ	Level	Newton	Adaptive Newton
10-1	2	10	4	10-4	2	21	5
10	3	11	3	10	3	31	6
	4	4	3		4	-	6
10-2	2	21	4	10-5	2	21	5
10	3	28	4	10	3	31	4
	4	27	3		4	-	6
10-3	2	21	5	0	2	5	5
10	3	31	5	0	3	-	5
	4	-	3		4	-	6

τ_s	Level	$\epsilon = 10^{-1}$	$\epsilon = 10^{-2}$	$\epsilon = 10^{-3}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 0$
7.5	3	14	29	37	40	4	2
	4	4	5	6	6	6	6
	5	4	4	6	4	4	2
10	3	13	22	31	100	101	101
	4	4	4	4	6	12	4
	5	3	4	5	7	9	3
15	3	20	29	54	65	78	79
	4	5	5	5	5	5	5
	5	4	4	7	2	2	5

Regularization-free Bingham

$\downarrow {\rm L}/\tau_{\rm s} \rightarrow$	2	5	7.5	10	15	20	40	50
3	5	5	2	101	79	3	8	18
4	5	6	6	4	5	5	6	7
5	6	6	2	3	5	5	6	9

Non-Yielded Zone

Rotational Bingham in a Square Reservoir

- Domain $\Omega = [0, 1]^2$
- $f(x_1, x_2) = 300 (x_2 0.5, 0.5 x_1)$
- Yield stress: $\tau_s = 14.5$
- Central solid rigid zone

(c) Plug zones

Contents

1 Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

💿 Summary

A new adaptive discrete Newton and regularization-free solver for yield stress fluids is developed

- \bullet Three-field formulation \longrightarrow New auxiliary stress
- \bullet Adaptive step size \longrightarrow Accurate and efficient

Advantages

- Accurate non-regularized viscoplastic solution $\longrightarrow \epsilon = 0$
- The method does not effect the shape of the yield surfaces
- Faster convergence ✓
- ullet Significant reduction in nonlinear iterations \checkmark

Contents

1 Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

8 Summary

References I

- M. Allouche, I. A. Frigaard, and G. Sona.
 Static wall layers in the displacement of two visco-plastic fluids in a plane channel. Journal of Fluid Mechanics, 424:243–277, 2000.
- ² T. C. Papanastasiou. Flows of materials with yield. <u>Journal of Rheology</u>, 31(5):385–404, 1987.

E.J. O'Donovan and R.I. Tanner. Numerical study of the bingham squeeze film problem. Journal of Non-Newtonian Fluid Mechanics, 15(1):75–83, 1984.

M. Bercovier and M. Engelman. A finite-element method for incompressible non-newtonian flows.

Journal of Computational Physics, 36(3):313-326, 1980.

⁵ M. El-Borhamy.

Numerical Simulation for viscoplastic fluids via finite element methods. TU Dortmund, Germany, 2012. PhD Thesis.

⁶ J. Málek, V. Průša, and K.R. Rajagopal.

Generalizations of the navier-stokes fluid from a new perspective. International Journal of Engineering Science, 48(12):1907–1924, 2010.

Jaroslav Hron, J. Málek, J. Stebel, and K. Touska.

A novel view on computations of steadyflows of bingham fluids using implicit constitutive relations. August 2017.

References II

A. Aposporidis, E. Haber, M. Olshanskii, and A. Veneziani.
 A mixed formulation of the bingham fluid flow problem: Analysis and numerical solution.
 Computer Methods in Applied Mechanics and Engineering, 200:2434–2446, 2011.

C. T. Kelley.

Iterative methods for linear and nonlinear equations.

SIAM, Philadelphia, 1995.

¹⁰ J. Hron, A. Ouazzi, and S. Turek.

A computational comparison of two FEM solvers for nonlinear incompressible flow.

In Lecture Notes in Computational Science and Engineering, volume 35, pages 87–109. Springer, 2003. New York.

¹¹ S. Mandal.

Efficient FEM solver for quasi-Newtonian flow problems with application to granular material.

TU Dortmund, Germany, 2016.

PhD Thesis.

¹² Evan Mitsoulis and Thanasis Zisis.

Flow of bingham plastics in a lid-driven square cavity.

Journal of Non-newtonian Fluid Mechanics - J NON-NEWTONIAN FLUID MECH, 101:173-180, 11 2001.

¹³ Sergio González, Sofía López, and Pedro Merino.

Nonsmooth exact penalization second-order methods for incompressible bingham flows.

2020.

Thank you for your attention!

arooj.fatima@math.tu-dortmund.de

Figure: The regularization models compared with the exact Bingham model: stress versus strain rate at $\epsilon = 0.01$ and $\tau_s = 1$.