An Adaptive Discrete Newton Method for Regularization-Free Bingham Model in Yield Stress Fluids

> <u>A. Fatima</u>, S. Turek, M. A. Afaq afatima@math.tu-dortmund.de

Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund University

Computational Methods in Applied Mathematics (CMAM 2022), TU Wien, August 29 - September 2, 2022

technische universität

ortmund

ASC | TU Wien Computational Methods in Applied Mathematics (CMAM-9)

Contents

🚺 Motivation

- Q Governing Equations
- Sinite Element Approximation
- Newton Solver
- Oumerical Results: Newton
- 6 Adaptive Discrete Newton
- 📀 Numerical Results: Adaptive Discrete Newton

Summary

O References

Contents

Motivation

- 2 Governing Equations
- Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

8 Summary

9 References

Motivation

- Viscoplastic lubrication in transport process
- Stabilization of interfaces in multi-layer flows
- Oil/gas fracking, site-specific drug delivery, medical imaging, food, cosmetic, and pharmaceutical product manufacturing, ...

Contents

Motivation

Q Governing Equations

- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Classification of Fluids

Classification

- Linear relation ightarrow Newtonian
- Otherwise \rightarrow Non-Newtonian

Bingham Constitutive Law

$$egin{aligned} \mathbf{T} &= 2\eta \mathbf{D}(oldsymbol{u}) + au_s rac{\mathbf{D}(oldsymbol{u})}{\|\mathbf{D}(oldsymbol{u})\|} & ext{ if } \|\mathbf{D}(oldsymbol{u})\|
eq 0 \ & \|oldsymbol{ au}\| \leq au_s & ext{ if } \|\mathbf{D}(oldsymbol{u})\| = 0 \end{aligned}$$

- Applied stress \geq critical value of $au_s \rightarrow$ Shear region
- Applied stress \leq critical value of $\tau_s \rightarrow$ Rigid or plug region

Two-Field Formulation

• Viscosity model for Bingham flow

$$\eta(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + rac{ au_s}{\|\mathbf{D}(\boldsymbol{u})\|}$$

- First, Shear region $\rightarrow \|\mathbf{D}(\boldsymbol{u})\| \neq 0$
- Second, Rigid or plug region $\rightarrow \|\mathbf{D}(\boldsymbol{u})\| = 0$
- Special treatment of plug zone: Regularization

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + \frac{\tau_s}{\epsilon + \|\mathbf{D}(\boldsymbol{u})\|}$$
 Allouche et al.¹

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + rac{ au_s(1 - exp(rac{-\|\mathbf{D}(\boldsymbol{u})\|}{\epsilon}))}{\|\mathbf{D}(\boldsymbol{u})\|} \quad extsf{Papanastasiou}^2$$

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = \begin{cases} 2\eta + \frac{\tau_{s}}{\|\mathbf{D}(\boldsymbol{u})\|} & \text{if } \|\mathbf{D}(\boldsymbol{u})\| \geq \epsilon\tau_{s} \\ \frac{2\eta}{\epsilon} & \text{if } \|\mathbf{D}(\boldsymbol{u})\| \leq \epsilon\tau_{s} & \text{Tanner et al.}^{3} \end{cases}$$

$$\eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|) = 2\eta + \frac{\tau_{s}}{\sqrt{\mathbf{D}:\mathbf{D}+\epsilon^{2}}}$$

Bercovier Engelman⁴

Two-Field Formulation:

$$\begin{cases} -\nabla \cdot \eta_{\epsilon}(\|\mathbf{D}(\boldsymbol{u})\|)\mathbf{D}(\boldsymbol{u}) + \nabla p = 0 & \text{ in } \Omega\\ \nabla \cdot \boldsymbol{u} = 0 & \text{ in } \Omega\\ \boldsymbol{u} = \boldsymbol{g}_{D} & \text{ on } \Gamma_{D} \end{cases}$$

Two-Field (u, p)

- Solve only for non vanishing regularization parameter $\epsilon \neq 0$
- Accuracy is compromised where yield properties are important

Three-Field (u, σ, p)

- Introducing auxiliary stress tensor σ
- Accurately solves regularization-free (\epsilon = 0) Bingham fluid

flow

Bingham model with additional symmetric viscoplastic stress tensor

$$\sigma = rac{\mathsf{D}(\pmb{u})}{\|\mathsf{D}(\pmb{u})\|_\epsilon}$$

$$\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \boldsymbol{\sigma} - \mathbf{D}(\boldsymbol{u}) = 0 \quad \text{in } \Omega$$
$$-\nabla \cdot (2\eta \mathbf{D}(\boldsymbol{u}) + \tau_{s} \boldsymbol{\sigma}) + \nabla \boldsymbol{p} = 0 \quad \text{in } \Omega$$
$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega$$
$$\boldsymbol{u} = \boldsymbol{g}_{D} \quad \text{on } \Gamma_{D}$$

• τ_s =yield stress • $\mathbf{D}(\boldsymbol{u}) = \frac{1}{2} \Big(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \Big)$

- $\eta =$ viscosity
- **u**, *p*= velocity, pressure

Weak Formulation

• Spaces for the velocity, pressure and stress

•
$$\mathbb{V}=\left(H_0^1(\Omega)
ight)^2$$
, $\mathbb{Q}=L_0^2(\Omega)$, $\mathbb{M}=\left(L^2(\Omega)
ight)_{\mathsf{sym}}^{2 imes 2}$

$$\int_{\Omega} \left(\|\mathbf{D}(\boldsymbol{u})\|_{\epsilon} \,\boldsymbol{\sigma}:\boldsymbol{\tau} \right) dx - \int_{\Omega} \left(\mathbf{D}(\boldsymbol{u}):\boldsymbol{\tau} \right) dx = 0 \quad \text{in } \Omega$$
$$\int_{\Omega} \left(2\eta \mathbf{D}(\boldsymbol{u}):\mathbf{D}(\boldsymbol{v}) \right) dx + \int_{\Omega} \left(\tau_{s} \mathbf{D}(\boldsymbol{v}):\boldsymbol{\sigma} \right) dx - \int_{\Omega} p \,\nabla \cdot \boldsymbol{v} \, dx = 0 \quad \text{in } \Omega$$
$$\int_{\Omega} q \,\nabla \cdot \boldsymbol{u} \, dx = 0 \quad \text{in } \Omega$$

$$\begin{array}{ll} \langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle := \int_{\Omega} 2\eta \mathbf{D}(\boldsymbol{u}) : \mathbf{D}(\boldsymbol{v}) \, dx &, \quad \langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle = \int_{\Omega} \tau_s \| \mathbf{D}(\boldsymbol{u}) \|_{\epsilon} \boldsymbol{\sigma} : \boldsymbol{\tau} \, dx \\ \langle \mathcal{B}_1 \boldsymbol{v}, \boldsymbol{q} \rangle := - \int_{\Omega} \nabla \cdot \boldsymbol{v} \, \boldsymbol{q} \, dx &, \quad \langle \mathcal{B}_2 \boldsymbol{v}, \boldsymbol{\sigma} \rangle := - \int_{\Omega} \tau_s \mathbf{D}(\boldsymbol{v}) : \boldsymbol{\sigma} \, dx \end{array}$$

$$\langle \mathcal{A}(\boldsymbol{u}, \boldsymbol{\sigma}), (\boldsymbol{v}, \boldsymbol{\tau}) \rangle = \langle \mathcal{A}_1 \boldsymbol{u}, \boldsymbol{v} \rangle + \langle \mathcal{A}_2 \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle + \langle \mathcal{B}_2^{\mathsf{T}} \boldsymbol{v}, \boldsymbol{\sigma} \rangle + \langle \mathcal{B}_2 \boldsymbol{u}, \boldsymbol{\tau} \rangle$$

$$\begin{bmatrix} \mathcal{A}_1 & \mathcal{B}_2^{\mathsf{T}} & \mathcal{B}_1^{\mathsf{T}} \\ \mathcal{B}_2 & -\mathcal{A}_2 & \mathbf{0} \\ \mathcal{B}_1 & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\sigma} \\ \boldsymbol{p} \end{bmatrix} = \begin{bmatrix} rhs_{\mathbf{u}} \\ rhs_{\boldsymbol{\sigma}} \\ rhs_{\boldsymbol{p}} \end{bmatrix}$$

The associated bilinear form for $\mathcal{U}=(\textit{\textbf{u}},\sigma)$ and $\mathcal{V}=(\textit{\textbf{v}},\tau)$ as

$$a(\mathcal{U},\mathcal{V}) = a_1(\boldsymbol{u},\boldsymbol{v}) + a_2(\boldsymbol{\sigma},\boldsymbol{\tau}) + b_2(\boldsymbol{v},\boldsymbol{\sigma}) + b_2(\boldsymbol{u},\boldsymbol{\tau})$$

Find $(\mathcal{U}, p) \in \mathbb{X} \times \mathbb{Q}$ such that:

$$\left\{ egin{aligned} & \mathsf{a}(\mathcal{U},\mathcal{V})+\mathsf{b}(\mathcal{V},p)=\langle m{f},\mathcal{V}
angle & orall \mathcal{V}\in\mathbb{X} \ & \mathsf{b}(\mathcal{U},q) & =\langle m{g},q
angle & orall q\in\mathbb{Q} \end{aligned}
ight.$$

Contents

Motivation

- 2 Governing Equations
- Sinite Element Approximation
 - 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Finite Element Discretization

- Domain $\Omega \subset \mathbb{R}^d \longrightarrow$ grid \mathcal{T}^h consisting of elements $K \in \mathcal{T}^h$
- Approximation spaces

$$\mathbb{V}^{h} = \left\{ \boldsymbol{v}_{h} \in \mathbb{V}, \boldsymbol{v}_{h|K} \in (Q_{2}(K))^{2} \right\}$$
$$\mathbb{M}^{h} = \left\{ \boldsymbol{\tau}_{h} \in \mathbb{M}, \boldsymbol{\sigma}_{h|K} \in (Q_{2}(K))^{2 \times 2} \right\}$$
$$\mathbb{Q}^{h} = \left\{ q_{h} \in \mathbb{Q}, q_{h|K} \in P_{1}^{\mathsf{disc}}(K) \right\}$$

Contents

Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Algorithm

- Provide the input parameters, e.g. tolerance, parameters of the non-linear solver, initial guess and the iteration number *n*
- Repeat until the tolerance is achieved
- Calculate the residual $\mathcal{R}(\mathcal{U}^n) = A \mathcal{U}^n b$
- Build the Jacobian $J(\mathcal{U}^n) = rac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}$
- Solve $J(\mathcal{U}^n) \ \delta \mathcal{U}^n = \mathcal{R}(\mathcal{U}^n)$
- Find the optimal value of the damping factor $\omega^n \in (-1,0]$
- Approximate $\mathcal{U}^{n+1} = \mathcal{U}^n \omega^n \, \delta \mathcal{U}^n$

Sensitive parameters: initial guess, damping factor $\boldsymbol{\omega}$

Discrete Newton Method

$$J(\mathcal{U}^{n}) = \begin{bmatrix} \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{u}(\mathcal{U}^{n})}{\partial p} \\ \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{\sigma}(\mathcal{U}^{n})}{\partial p} \\ \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial u} & \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial \sigma} & \frac{\partial R_{p}(\mathcal{U}^{n})}{\partial p} \end{bmatrix}$$

Jacobian calculation method

Analytical \longrightarrow Knowledge of the Jacobian a priori

 $\textbf{Approximation} \longrightarrow \mathsf{Black} \text{ box manner}$

$$\left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}\right]_j \approx \frac{\mathcal{R}(\mathcal{U}^n + \chi \delta_j) - \mathcal{R}(\mathcal{U}^n - \chi \delta_j)}{2\chi}$$

Contents

1 Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- Oumerical Results: Newton
 - 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

- Channel domain: Unit square $\Omega = [0,1]^2$
- Boundary conditions:
 Dirichlet

•
$$u_y = 0$$
, $p = -x + c$, $^5 \eta = 1$

$$u_{x} = \begin{cases} \frac{1}{8} \Big[(h - 2\tau_{s})^{2} - (h - 2\tau_{s} - 2y)^{2} \Big], & 0 \le y < \frac{h}{2} - \tau_{s}, \\ \frac{1}{8} (h - 2\tau_{s})^{2}, & \frac{h}{2} - \tau_{s} \le y \le \frac{h}{2} + \tau_{s}, \\ \frac{1}{8} \Big[(h - 2\tau_{s})^{2} - (2y - 2\tau_{s} - h)^{2} \Big], & \frac{h}{2} + \tau_{s} < y \le h. \end{cases}$$

Two-field (u, p) formulation $\epsilon = 0$ not solve-able

ϵ	Level	NL	$\ u-u_{ex}\ $	ϵ	NL	$\ u-u_{ex}\ $
10^{-1}	3	3	3.346×10^{-3}	10^{-2}	9	1.760×10^{-3}
	4	3	2.790×10^{-3}		6	$1.041 imes 10^{-3}$
	5	2	2.563×10^{-3}		3	$6.771 imes 10^{-4}$

Three-field (u, σ, p) formulation $\epsilon = 0$ solved

ϵ	Level	NL	$\ u-u_{ex}\ $
10-1	3	6	2.598×10^{-3}
10	4	3	2.597×10^{-3}
	5	2	2.597×10^{-3}
10-2	3	45	$5.873 imes10^{-4}$
10 -	4	4	$5.818 imes10^{-4}$
	5	3	5.815×10^{-4}
10-3	3	14	$6.257 imes 10^{-5}$
10 -	4	6	6.415×10^{-5}
	5	4	$\textbf{6.416}\times 10^{-5}$

ϵ	Level	NL	$\ u-u_{ex}\ $
10-4	3	49	$6.407 imes10^{-6}$
10	4	5	$6.262 imes 10^{-6}$
	5	4	6.298×10^{-6}
10-5	3	39	$6.788 imes10^{-7}$
10 -	4	13	6.378×10^{-7}
	5	5	6.297×10^{-7}
0	3	18	2.000×10^{-11}
	4	4	7.000×10^{-12}
	5	3	4.000×10^{-12}

• Velocity for $\tau_s = 0.25$

(a) $\epsilon = 10^{-1}$

(b) $\epsilon = 10^{-2}$

(c) $\epsilon = 10^{-3}$

• Pressure distribution and contours for $\tau_s = 0.25$

• $\|\mathbf{D}\|$ for $\tau_s = 0.25$

(m) $\epsilon = 10^{-1}$

(n) $\epsilon = 10^{-2}$

(o) $\epsilon = 10^{-3}$

• Newton-Multigrid solver behaviour for $\tau_s = 0.25$

ϵ	Level	NL/L	$\ u-u_{ex}\ $
10-1	3	6/1	2.598×10^{-3}
10	4	3/1	2.597×10^{-3}
	5	2/1	2.597×10^{-3}
	6	2/1	2.597×10^{-3}
10-2	3	5/1	$5.873 imes10^{-4}$
10 -	4	4/1	$5.818 imes10^{-4}$
	5	3/1	5.815×10^{-4}
	6	3/1	5.815×10^{-4}
10-3	3	8/7	6.257×10^{-5}
10	4	4/7	6.415×10^{-5}
	5	6/9	6.416×10^{-5}
	6	4/9	6.394×10^{-5}

Problem in convergence for small value of regularization parameter ϵ .

Possible Remedy: Add EOFEM or artificial diffusion stabilization $j_{\boldsymbol{u}}(\boldsymbol{u}_h, \boldsymbol{v}_h) = \sum_{E \in \mathcal{E}_h^i} \gamma_{\boldsymbol{u}} h \int_E [\nabla \boldsymbol{u}_h] : [\nabla \boldsymbol{v}_h] d\Omega$ $j_{\boldsymbol{\sigma}}(\boldsymbol{\sigma}_h, \boldsymbol{\tau}_h) = \sum_{E \in \mathcal{E}_h^i} \gamma_{\boldsymbol{\sigma}} h \int_E [\nabla \boldsymbol{\sigma}_h] : [\nabla \boldsymbol{\tau}_h] d\Omega$

• Newton solver \rightarrow EOFEM(u) $\gamma_u h$, $\gamma_u = 10^{-1}$ for $\tau_s = 0.25$

ϵ	Level	NL	$\ u-u_{ex}\ $	NL	$\ u - u_{ex}\ $		ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u - u_{ex}\ $
		No stab.			stab.				No stab.		stab.	
10^{-1}	2	6	2.641×10^{-3}	6	2.627×10^{-3}		10-3	2	19	6.237×10^{-5}	15	6.228×10^{-5}
	3	3	2.598×10^{-3}	3	2.598×10^{-3}			3	7	6.257×10^{-5}	5	6.296×10^{-5}
	4	2	2.596×10^{-3}	3	2.597×10^{-3}			4	5	6.415×10^{-5}	5	6.426×10^{-5}
	5	2	2.597×10^{-3}	2	2.597×10^{-3}			5	4	6.416×10^{-5}	5	6.418×10^{-5}
10^{-2}	2	9	6.079×10^{-4}	9	6.130×10^{-4}		10^{-4}	2	15	7.835×10^{-6}	14	7.564×10^{-6}
	3	5	5.873×10^{-4}	5	5.893×10^{-4}			3	14	6.407×10^{-6}	9	6.300×10^{-6}
	4	4	5.818×10^{-4}	4	5.819×10^{-4}			4	4	6.262×10^{-6}	5	6.265×10^{-6}
	5	4	5.815×10^{-4}	3	5.815×10^{-4}			5	4	6.298×10^{-6}	4	6.308×10^{-6}

EOFEM stabilization does not effect the solution accuracy!

• Newton-Multigrid solver ightarrow EOFEM($m{u}$) $\gamma_u h$, $\gamma_u = 10^{-1}$ for $au_s = 0.25$

ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u - u_{ex}\ $		ϵ	Level	NL	$\ u - u_{ex}\ $	NL	$\ u - u_{ex}\ $
		No stab.			stab.				No stab.		stab.	
10^{-1}	2	6/1	2.641×10^{-3}	6/1	2.627×10^{-3}		10-3	2	15/1	6.237×10^{-5}	15/1	6.228×10^{-5}
	3	4/1	2.598×10^{-3}	4/1	2.598×10^{-3}			3	7/7	6.257×10^{-5}	6/2	6.296×10^{-5}
	4	3/1	2.596×10^{-3}	3/1	2.597×10^{-3}			4	4/3	6.415×10^{-5}	5/1	6.426×10^{-5}
	5	3/1	2.597×10^{-3}	3/1	2.597×10^{-3}			5	4/4	6.416×10^{-5}	5/2	6.418×10^{-5}
10^{-2}	2	9/1	6.079×10^{-4}	9/1	6.130×10^{-4}		10-4	2			14/1	6.228×10^{-6}
	3	5/1	5.873×10^{-4}	5/1	5.893×10^{-4}			3			12/4	6.504×10^{-6}
	4	4/1	5.818×10^{-4}	4/2	5.819×10^{-4}			4			10/7	6.339×10^{-6}
	5	4/1	5.815×10^{-4}	3/1	5.814×10^{-4}			5			11/8	6.338×10^{-6}

EOFEM stabilization helped MG to solve smaller ϵ !

• Newton-Multigrid solver ightarrow EOFEM($m{u}$) $\gamma_u h^2$, $\gamma_u = 10^{-1}$ for $au_s = 0.25$

			Newton	Ne	ewton-MG			Newton		Newton-MG	
ϵ	Level	NL	$\ u-u_{ex}\ $	NL/L	$\ u-u_{ex}\ $	ϵ	Level	NL	$\ u-u_{ex}\ $	NL/L	$\ u-u_{ex}\ $
10^{-1}	2	5	2.621×10^{-3}	5/1	2.621×10^{-3}	10-3	2	11	6.234×10^{-5}	11/1	6.234×10^{-5}
	3	2	2.597×10^{-3}	4/1	2.598×10^{-3}		3	3	6.258×10^{-5}	6/2	6.262×10^{-5}
	4	2	2.596×10^{-3}	3/1	2.597×10^{-3}		4	4	6.415×10^{-5}	5/2	6.415×10^{-5}
	5	1	2.597×10^{-3}	2/1	2.597×10^{-3}		5	3	6.415×10^{-5}	5/3	6.416×10^{-5}
10-2	2	7	6.100×10^{-4}	7/1	6.100×10^{-4}	10-4	2	13	7.713×10^{-6}	13/1	7.713×10^{-6}
	3	2	5.779×10^{-4}	5/1	5.876×10^{-4}		3	2	5.481×10^{-6}	8/7	6.382×10^{-6}
	4	2	5.794×10^{-4}	4/1	5.818×10^{-4}		4	2	6.139×10^{-6}	7/9	6.265×10^{-6}
	5	2	5.808×10^{-4}	3/1	5.815×10^{-4}		5	1	6.297×10^{-6}	8/18	6.298×10^{-6}

Adding $\gamma_u \ h^2 ightarrow$ non-linear iterations slightly reduced

• Newton-Multigrid solver \to EOFEM(σ) $\gamma_{\sigma}h$, $\gamma_{\sigma}=10^{-2}$ for $\tau_s=0.25$

								/ =	I EX I	/ =	EX
	Level	NI /I	$\ u - u_{\varepsilon}\ $	NI /I	u = u				No stab.		stab.
	Lever	142/2	No stab	NE/ E	atab	10-3	2	15/1	6.237×10^{-5}	15/1	6.257×10^{-5}
			NO SLAD.		stab.		3	7/7	6.257×10^{-5}	6/3	$6.287 imes10^{-5}$
10^{-1}	2	6/1	$2.641 imes 10^{-3}$	3/1	$2.616 imes10^{-3}$		4	4/3	$6.415 imes 10^{-5}$	6/2	$6.437 imes10^{-5}$
	3	4/1	$2.598 imes10^{-3}$	4/1	$2.598 imes10^{-3}$		5	4/4	6.416×10^{-5}	5/4	6.417×10^{-5}
	4	3/1	$2.596 imes10^{-3}$	3/1	$2.597 imes10^{-3}$		-	·/ ·		-, .	
	5	3/1	2.597×10^{-3}	3/1	2.597×10^{-3}	10^{-4}	2			21/1	$8.919 imes 10^{-6}$
		,		,			3			7/7	$6.650 imes10^{-6}$
10^{-2}	2	9/1	$6.079 imes 10^{-4}$	3/1	$6.018 imes 10^{-4}$		4			7/4	$6.985 imes10^{-6}$
	3	5/1	$5.873 imes10^{-4}$	4/1	$5.874 imes10^{-4}$		5			6/6	6.900×10^{-6}
	4	4/1	5.818×10^{-4}	5/1	5.819×10^{-4}		-			•/ •	
	5	4/1	$5.815 imes 10^{-4}$	4/2	$5.815 imes 10^{-4}$	10^{-5}	2			9/1	$9.772 imes 10^{-7}$
	-	/		1			3			5/1	$2.743 imes10^{-6}$
							4			11/34	$3.003 imes 10^{-6}$

e

Level NL/L $\|\mu - \mu_{ex}\|$

NL/L

 $\|\mu - \mu_{ox}\|$

EOFEM stabilization helped MG to solve more smaller ϵ !

• Artificial diff. stab. $\gamma_{\sigma}h^2\nabla^2\sigma$, $\gamma_{\sigma}=10^{-2}$ for $\tau_s=0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	5	2.633×10^{-3}	5/1	2.633×10^{-3}
3	3	2.621×10^{-3}	3/2	2.621×10^{-3}
4	3	2.607×10^{-3}	3/4	2.607×10^{-3}
5	2	2.601×10^{-3}	2/5	2.601×10^{-3}
6	2	2.598×10^{-3}	2/5	2.598×10^{-3}
$\epsilon = 10^{-2}$				
2	7	1.384×10^{-3}	7/1	1.384×10^{-3}
3	4	8.964×10^{-4}	4/6	8.964×10^{-4}
4	3	6.887×10^{-4}	3/3	6.887×10^{-4}
5	2	6.159×10^{-4}	3/4	6.159×10^{-4}
6	2	5.919×10^{-4}	3/5	5.919×10^{-4}
<i>ϵ</i> =10 ^{−3}				
2	7	1.245×10^{-3}	7/1	1.245×10^{-3}
3	4	5.811×10^{-4}	5/9	5.811×10^{-4}
4	4	2.326×10^{-4}	4/8	2.326×10^{-4}
5	4	1.107×10^{-4}	3/6	1.107×10^{-4}
6	4	7.725×10^{-5}	3/8	7.725×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u-u_{ex}\ $
$\epsilon = 10^{-4}$				
2	7	1.243×10^{-3}	7/1	1.243×10^{-3}
3	4	5.724×10^{-4}	4/6	5.724×10^{-4}
4	4	2.056×10^{-4}	4/5	2.056×10^{-4}
5	4	6.740×10^{-5}	4/6	6.740×10^{-5}
6	4	2.670×10^{-5}	5/6	2.670×10^{-5}
$\epsilon = 10^{-5}$				
2	7	1.243×10^{-3}	7/1	1.243×10^{-3}
3	4	5.724×10^{-4}	6/2	5.724×10^{-4}
4	4	2.056×10^{-4}	4/3	2.056×10^{-4}
5	4	6.636×10^{-5}	4/5	6.636×10^{-5}
6	4	2.458×10^{-5}	5/6	2.458×10^{-5}
<i>ϵ</i> =0				
2	3	1.243×10^{-3}	3/1	1.243×10^{-3}
3	3	5.724×10^{-4}	4/1	5.724×10^{-4}
4	3	2.056×10^{-4}	5/2	2.056×10^{-4}
5	3	6.635×10^{-5}	5/2	6.635×10^{-5}
6	6	2.459×10^{-5}	6/9	2.459×10^{-5}

Regularization-free Bingham

• Artificial diff. stab. $\gamma_{\sigma}h^2\nabla^2\sigma$, $\gamma_{\sigma}=10^{-3}$ for $\tau_s=0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	6	2.648×10^{-3}	6/1	2.648×10^{-3}
3	3	2.603×10^{-3}	3/2	2.603×10^{-3}
4	2	2.598×10^{-3}	3/2	2.598×10^{-3}
5	2	2.597×10^{-3}	2/4	2.597×10^{-3}
6	2	2.597×10^{-3}	2/4	2.597×10^{-3}
$\epsilon = 10^{-2}$				
2	8	7.764×10^{-4}	8/1	7.764×10^{-4}
3	3	6.364×10^{-4}	3/2	6.364×10^{-4}
4	3	5.974×10^{-4}	3/3	5.974×10^{-4}
5	3	5.860×10^{-4}	3/3	5.860×10^{-4}
6	2	5.827×10^{-4}	2/4	5.827×10^{-4}
$\epsilon = 10^{-3}$				
2	9	3.457×10^{-4}	9/1	3.457×10^{-4}
3	4	1.452×10^{-4}	4/2	1.452×10^{-4}
4	4	8.630×10^{-5}	4/2	8.630×10^{-5}
5	4	7.022×10^{-5}	4/3	7.022×10^{-5}
6	5	6.569×10^{-5}	4/4	6.569×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
$\epsilon \!=\! 10^{-4}$				
2	9	3.306×10^{-4}	10/1	3.306×10^{-4}
3	6	1.117×10^{-4}	6/4	1.117×10^{-4}
4	7	4.155×10^{-5}	5/5	4.155×10^{-5}
5	5	1.787×10^{-5}	7/6	1.787×10^{-5}
6	6	9.418×10^{-6}	6/8	9.418×10^{-6}
$\epsilon \!=\! 10^{-5}$				
2	17	3.304×10^{-4}	17/1	3.304×10^{-4}
3	7	1.112×10^{-4}	6/4	1.112×10^{-4}
4	6	4.041×10^{-5}	5/3	4.041×10^{-5}
5	5	1.563×10^{-5}	7/6	1.563×10^{-5}
6	6	5.840×10^{-6}	7/8	5.840×10^{-6}
<i>ϵ</i> =0				
2	3	3.304×10^{-4}	3/1	3.304×10^{-4}
3	4	1.112×10^{-4}	6/2	$1.112 imes 10^{-4}$
4	4	4.040×10^{-5}	6/4	4.040×10^{-5}
5	5	1.557×10^{-5}	6/11	1.557×10^{-5}
6	11	5.694×10^{-6}	12/22	5.694×10^{-6}

 $\gamma = 10^{-3} \longrightarrow$ Regularization-free Bingham

• Artificial diff. stab. $\gamma_{\sigma} h^2 \nabla^2 \sigma$, $\gamma_{\sigma} = 10^{-4}$ for $\tau_s = 0.25$

Level	NL	$ u - u_{ex} $	NL/L	$ u - u_{ex} $
$\epsilon = 10^{-1}$				
2	6	2.642×10^{-3}	6/1	2.642×10^{-3}
3	3	2.599×10^{-3}	3/2	2.599×10^{-3}
4	3	2.597×10^{-3}	3/3	2.597×10^{-3}
5	2	2.597×10^{-3}	2/3	2.597×10^{-3}
6	2	2.597×10^{-3}	2/3	2.597×10^{-3}
$\epsilon = 10^{-2}$				
2	9	6.232×10^{-4}	9/1	6.232×10^{-4}
3	5	5.937×10^{-4}	5/4	5.937×10^{-4}
4	4	5.836×10^{-4}	4/3	5.836×10^{-4}
5	4	5.820×10^{-4}	4/4	5.820×10^{-4}
6	3	5.816×10^{-4}	3/4	5.816×10^{-4}
<i>ϵ</i> =10 ^{−3}				
2	21	9.234×10^{-5}	21/1	9.234×10^{-5}
3	6	7.413×10^{-5}	7/6	7.413×10^{-5}
4	5	6.728×10^{-5}	8/9	6.728×10^{-5}
5	5	6.486×10^{-5}	6/8	6.486×10^{-5}
6	6	6.414×10^{-5}	6/12	6.414×10^{-5}

Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
$\epsilon = 10^{-4}$				
2	29	4.428×10^{-5}	24/1	4.428×10^{-5}
3	6	2.418×10^{-5}	12/11	2.418×10^{-5}
4	6	1.299×10^{-5}	11/4	1.299×10^{-5}
5	8	8.243×10^{-6}	10/4	8.243×10^{-6}
6	5	7.023×10^{-6}	9/4	7.023×10^{-6}
$\epsilon = 10^{-5}$				
2	12	4.304×10^{-5}	12/1	4.304×10^{-5}
3	3	2.226×10^{-5}	4/11	2.224×10^{-5}
4	5	1.075×10^{-5}	6/12	1.062×10^{-5}
5	9	4.953×10^{-6}	13/28	4.567×10^{-6}
6	10	2.577×10^{-6}	16/47	2.313×10^{-6}
<i>e</i> =0				
2	4	4.292×10^{-5}	4/1	4.292×10^{-5}
3	5	2.225×10^{-5}	6/7	2.225×10^{-5}
4	6	1.012×10^{-5}	7/6	1.012×10^{-5}
5	10	4.448×10^{-6}	13/15	4.448×10^{-6}

 $\gamma = 10^{-4} \longrightarrow$ Regularization-free Bingham

• Artificial diff. stab. $\gamma_{m{\sigma}} h^3 abla^2 m{\sigma}$, $\gamma_{m{\sigma}} = 10^{-3}$

ϵ	Level	NL	$\ u-u_{ex}\ $	NL/L	$\ u-u_{ex}\ $	ϵ	Level	NL	$\ u - u_{ex}\ $	NL/L	$\ u - u_{ex}\ $
10^{-1}	2	3	2.651×10^{-3}	3/1	2.651×10^{-3}	10-4	2	6	6.046×10^{-4}	6/1	6.046×10^{-4}
	3	2	2.604×10^{-3}	3/1	2.604×10^{-3}		3	3	1.306×10^{-4}	6/2	1.306×10^{-4}
	4	2	2.598×10^{-3}	3/1	2.598×10^{-3}		4	4	3.203×10^{-5}	6/5	3.206×10^{-5}
	5	1	2.597×10^{-3}	2/1	2.597×10^{-3}		5	3	1.110×10^{-5}	9/6	1.113×10^{-6}
	6	1	2.597×10^{-3}	3/2	2.597×10^{-3}		6	4	6.867×10^{-6}	7/6	6.823×10^{-6}
10^{-2}	2	6	9.336×10^{-4}	6/1	9.336×10^{-4}	10-5	2	6	6.045×10^{-4}	6/1	6.045×10^{-4}
	3	2	6.465×10^{-4}	5/1	6.465×10^{-4}		3	3	1.302×10^{-4}	6/2	1.302×10^{-4}
	4	2	5.920×10^{-4}	4/1	5.920×10^{-4}		4	4	3.076×10^{-5}	6/2	3.076×10^{-5}
	5	2	5.830×10^{-4}	4/1	5.830×10^{-4}		5	5	8.498×10^{-6}	8/12	8.498×10^{-6}
	6	1	5.816×10^{-4}	3/2	5.816×10^{-4}		6	15	2.443×10^{-6}	7/15	2.443×10^{-6}
10-3	2	6	$6.121 imes 10^{-4}$	6/1	$6.121 imes10^{-4}$	0	2	6	$6.045 imes10^{-4}$	6/1	$6.045 imes 10^{-4}$
	3	3	1.622×10^{-4}	6/1	1.622×10^{-4}		3	3	1.302×10^{-4}	6/2	1.302×10^{-4}
	4	3	7.902×10^{-5}	8/1	7.902×10^{-5}		4	4	3.072×10^{-5}	6/5	3.072×10^{-5}
	5	3	6.626×10^{-5}	10/1	6.626×10^{-5}		5	5	8.436×10^{-6}	10/15	8.436×10^{-6}
	6	2	6.432×10^{-5}	5/2	6.432×10^{-5}		6	17	2.274×10^{-6}	33/25	2.263×10^{-6}

Convergence rate is slower but accuracy not improved

Contents

1 Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
 - 7 Numerical Results: Adaptive Discrete Newton

Summary

9 References

Adaptive Step Size in Newton

$$\begin{split} \left[\frac{\partial \mathcal{R}(\mathcal{U}^n)}{\partial \mathcal{U}^n}\right]_j &\approx \frac{\mathcal{R}(\mathcal{U}^n + \chi \delta_j) - \mathcal{R}(\mathcal{U}^n - \chi \delta_j)}{2\chi}\\ \delta_j &= \begin{cases} 1 & \text{j-index} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Choice of the free parameter χ

- Fixed constant: Based on the perturbation analysis on the residum⁶ selected as machine precision
- Adaptive choice: The sensitivity study of the nonlinear behavior of power law models w.r.t. the χ, h and strength of nonlinearity⁷
 - $\chi >> \rightarrow$ loss of the advantageous quasi-quadratic convergence
 - $\chi << \rightarrow$ divergence due to numerical instabilities

Adaptive Step Size

• Effect of χ w.r.t tolerance: Number of Newton iterations for Bingham fluid flow in a channel at $\tau_s = 0.25$

$\chi/{ m TOL}$	10 ⁻⁵	10^{-6}	10^{-7}	10^{-8}
10 ⁻²	13	16	19	22
10 ⁻³	13	14	14	16
10 ⁻⁴	14	14	15	diverge
10 ⁻⁵	15	15	oscillate	oscillate
10 ⁻⁶	15	oscillate	oscillate	diverge
10 ⁻⁷	16	diverge	oscillate	diverge
10 ⁻⁸	17	37	diverge	diverge

• Step size choice based on the current nonlinear reduction

$$r_n = \frac{\|\mathcal{R}(\mathcal{U}^n)\|}{\|\mathcal{R}(\mathcal{U}^{n-1})\|}$$

• Characteristic Function⁸ $f(r_n) = 0.2 + \frac{0.4}{0.7 + \exp(1.5r_n)}$

 $\chi_c = constant
ightarrow \chi_{c_1} = 10^{-1}$, $\chi_{c_4} = 10^{-4}$ and $\chi_{a} = adaptive$

Contents

1 Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- Ø Numerical Results: Adaptive Discrete Newton

Summary

9 References

Two-Field (u, p) for $\tau_s = 0.23$

\downarrow L/ ϵ $ ightarrow$	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
			Newtor		Adap	tive Ne	wton			
3	2	3	-	-	-	4	4	5	5	9
4	2	3	-	-	-	4	4	5	5	9
5	2	3	-	-	-	4	4	6	5	9

Three-Field (u, σ, p) for $\tau_s = 0.23$

\downarrow L/ ϵ $ ightarrow$	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	0	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	0
			Newt	on				Ad	aptive l	Vewton		
3	2	3	4	6	9	1	2	2	2	5	1	2
4	2	3	4	8	9	1	1	2	2	4	2	2
5	1	2	3	9	5	2	1	1	1	1	3	1

Regularization – free Bingham
$$\epsilon = \mathbf{0}$$

Figure: Visualization of the velocity contours, pressure and $\|\mathbf{D}(\boldsymbol{u})\|$ for the non-regularized Bingham fluid flow in a channel with $\tau_s = 0.23$ at refinement level L=5 ($h_x = 1/32$, $h_y = 1/96$).

Nonlinear convergence w.r.t χ for regularization-free Bingham

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.3$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ Defect $\chi_{c_7}=10^{-7}$ • $\chi_a = adaptive$

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.35$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ $\chi_{c_7} = 10^{-7}$ • $\chi_a = adaptive$

Nonlinear convergence w.r.t χ for regularization-free Bingham

 $au_{
m s}=0.4$ • $h_x = \frac{1}{4}, h_y = \frac{1}{12}$ • $\chi_c = constant$ $\chi_{c_1} = 10^{-1}$ $\chi_{c_2} = 10^{-2}$ $\chi_{c_7}=10^{-7}$ • $\chi_a = adaptive$

Lid Driven Cavity

- Bingham flow in a unit square $\Omega = [0,1]^2 \label{eq:sigma}$
- Dirichlet boundary conditions:
 - Lid: $u_x = 1$, everywhere else

$$u = 0$$
 at yield stress $\tau_s = 2.0$

ε	Level	Newton	Adaptive Newton
10-1	2	7	3
10	3	3	3
	4	4	3
10-2	2	12	4
10 -	3	17	4
	4	11	4
10-3	2	13	4
10 3	3	21	4
	4	19	5

Non-Yielded Zone

Figure: Non-yielded zone: The superposition of non yielded zone on the streamline contours for the yield stress $\tau_s = 2.0$

Three-Field Formulation: Number of non-linear iterations for lid-driven cavity computed at the yield stress $\tau_s = 5.0$ for the Newton and adaptive discrete Newton

ϵ	Level	Newton	Adaptive Newton	ϵ	Level	Newton	Adaptive Newton
10-1	2	10	4	10-4	2	21	5
	3	11	3	10	3	31	6
	4	4	3		4	-	6
10-2	2	21	4	10-5	2	21	5
10-2	3	28	4	10	3	31	4
	4	27	3		4	-	6
10-3	2	21	5	0	2	5	5
10	3	31	5	0	3	-	5
	4	-	3		4	-	6

τ_s	Level	$\epsilon = 10^{-1}$	$\epsilon = 10^{-2}$	$\epsilon = 10^{-3}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 0$
7.5	3	14	29	37	40	4	2
	4	4	5	6	6	6	6
	5	4	4	6	4	4	2
10	3	13	22	31	100	101	101
	4	4	4	4	6	12	4
	5	3	4	5	7	9	3
15	3	20	29	54	65	78	79
	4	5	5	5	5	5	5
	5	4	4	7	2	2	5

Regularization-free Bingham

$\downarrow {\rm L}/\tau_{\rm s} \rightarrow$	2	5	7.5	10	15	20	40	50
3	5	5	2	101	79	3	8	18
4	5	6	6	4	5	5	6	7
5	6	6	2	3	5	5	6	9

Non-Yielded Zone

Rotational Bingham in a Square Reservoir

- Domain $\Omega = [0, 1]^2$
- $f(x_1, x_2) = 300 (x_2 0.5, 0.5 x_1)$
- Yield stress: $\tau_s = 14.5$
- Central solid rigid zone

(I) Plug zones

(m) Plug $zones^{11}$

Contents

1 Motivation

- 2 Governing Equations
- 3 Finite Element Approximation
- 4 Newton Solver
- Interioral Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

🔕 Summary

A new adaptive discrete Newton and regularization-free solver for yield stress fluids is developed

- \bullet Three-field formulation \longrightarrow New auxiliary stress
- \bullet Adaptive step size \longrightarrow Accurate and efficient

Advantages

- Accurate non-regularized viscoplastic solution $\longrightarrow \epsilon = 0$
- The method does not effect the shape of the yield surfaces
- Faster convergence ✓
- Significant reduction in nonlinear iterations \checkmark

Contents

1 Motivation

- 2 Governing Equations
- Inite Element Approximation
- 4 Newton Solver
- 5 Numerical Results: Newton
- 6 Adaptive Discrete Newton
- 7 Numerical Results: Adaptive Discrete Newton

8 Summary

References I

¹ M. Allouche, I. A. Frigaard, and G. Sona.

Static wall layers in the displacement of two visco-plastic fluids in a plane channel. Journal of Fluid Mechanics, 424:243–277, 2000.

- ² T. C. Papanastasiou. Flows of materials with yield. Journal of Rheology, 31(5):385–404, 1987.
- ³ E.J. O'Donovan and R.I. Tanner. Numerical study of the bingham squeeze film problem. Journal of Non-Newtonian Fluid Mechanics, 15(1):75–83, 1984.
- ⁴ M. Bercovier and M. Engelman. A finite-element method for incompressible non-newtonian flows. Journal of Computational Physics. 36(3):313–326, 1980.
- ⁵ M. El-Borhamy.

Numerical Simulation for viscoplastic fluids via finite element methods.

TU Dortmund, Germany, 2012.

PhD Thesis.

C. T. Kelley.

Iterative methods for linear and nonlinear equations.

SIAM, Philadelphia, 1995.

J. Hron, A. Ouazzi, and S. Turek.

A computational comparison of two FEM solvers for nonlinear incompressible flow.

In Lecture Notes in Computational Science and Engineering, volume 35, pages 87–109. Springer, 2003. New York.

⁸ S. Mandal.

Efficient FEM solver for quasi-Newtonian flow problems with application to granular material. TU Dortmund, Germany, 2016. PhD Thesis. A. Aposporidis, E. Haber, M. Olshanskii, and A. Veneziani. A mixed formulation of the bingham fluid flow problem: Analysis and numerical solution.

Computer Methods in Applied Mechanics and Engineering, 200:2434-2446, 2011.

 $^{10}\ensuremath{\,\text{Evan}}$ Mitsoulis and Thanasis Zisis.

Flow of bingham plastics in a lid-driven square cavity. Journal of Non-newtonian Fluid Mechanics - J NON-NEWTONIAN FLUID MECH, 101:173–180, 11 2001.

¹¹ Sergio González, Sofía López, and Pedro Merino.

Nonsmooth exact penalization second-order methods for incompressible bingham flows.

Thank you for your attention!

afatima@math.tu-dortmund.de