Hardwareorientierte Numerik für FEM-Frameworks

Markus Geveler

Institut für Angewandte Mathematik TU Dortmund, Germany markus.geveler@math.tu-dortmund.de

G2CG Kaiserslautern, 18. April 2012

Zwei ausgewählte Schlüsselaspekte des Wissenschaftlichen Rechnens

- Alle Ebenen von Parallelität der (oft heterogenen) Hardware müssen berücksichtigt werden
 - Vektorisierung auf einem core (SIMD)
 - multi-core / many-core (CPUs + GPUs)
 - verteilter Speicher
 - ILP, ...
 - heterogene Ressourcen (auf Knoten- und Chip-Ebene)
 - $\blacksquare \rightarrow \mathsf{Hardwareeffizienz}$
- Alle Ebenen des numerischen Lösungsverfahrens müssen berücksichtigt werden
 - Diskretisierung in Ort und Zeit
 - Stabilisierung, Linearisierung nicht-linearer Probleme
 - Lösung der linearen Systeme
 - Komponenten dieser Löser
 - → Numerische Effizienz

Hardware- und Numerische Effizienz beeinflussen sich gegenseitig

Beispiel: Vorkonditionierung in linearen Lösern

- $\blacksquare \ gute \ Vorkonditionierung \ \rightarrow \ bessere \ Konvergenzrate$
- oft: gute Vorkonditionierung \rightarrow höhere algorithmische Komplexität, schlechtere Parallelisierbarkeit

 \rightarrow simultane Berücksichtigung von Hardware- und Numerischer Effizienz unbedingt erforderlich!

Heute am Beispiel:

- geometrische Mehrgitterlöser zugeschnitten für FEM
- hardwareorientiert: GPUs vs. multi-core CPUs
- numerisch stark: Sparse Approximate Inverse -basierte Glätter
- flexibel: unstrukturierte Gitter

Motivation

FEM

- hochgradig genaue und flexible Methoden f
 ür PDEs:
 - Elemente hoher Ordnung (auch nicht-konform)
 - beliebig unstrukturierte Gitter
 - Gitteradaptivität
 - Pressure-Schur-Complement Vorkonditionierung
 - ...
- in Verbindung mit geometrischen Mehrgittermethoden:
 - Konvergenzraten unabhängig von der Gitterschrittweite
 - superlineare Konvergenzeffekte möglich (→ Elemente hoher Ordnung)

\rightarrow Finite Element (geometric) Multigrid (FE-gMG) Framework

Motivation

GPUs

- Parallelisierungstechniken für FEM beschränken sich oft auf das Auswechseln von Basiskomponenten
- komplette Frameworks / komplexe Löser wenig thematisiert

in FE-gMG:

- strukturierte Gitter + zugehörige Operatoren für GPUs gut verstanden (→ Dominik Göddeke, 1. FEAST Generation)
- unstrukturierte Gitter + starke Glätter + GPUs / multi-core wenig thematisiert

FE-gMG - Performance-Aspekte

- \blacksquare FE-Raum höherer Ordnung \rightarrow höhere numerische Qualität \rightarrow höhere algor. Komplexität
- \blacksquare starke Glätter \rightarrow höhere numerische Effizienz \rightarrow höhere algor. Komplexität
- Abhängigkeit von Gitter, DOF-Nummerierung
- Abhängigkeit von Speicherformat, hardwarespezifischer Implementierung
- andere, z.B.: Zykluskontrolle

Parallele lineare Löser für FEM

- starte mit konformem Grobgitter
- Zusammenfassen von Grobgitterzellen zu Matrixpatches f
 ür die Assemblierung lokaler Matrizen (strukturiert und unstrukturiert)
- Matrixpatches werden durch den Lastverteiler auf MPI-Prozesse verteilt (zunächst statisch, dann auf der Grundlage gesammelter Statistik-Daten)

Einordnung von FE-gMG: ScaRC Löser

- auf globalem Problem wird ein datenparalleles Lösungsverfahren definiert
- als Glätter für den globalen Löser: Rekursion oder blockweise lokale Löser → FE-gMG
- Typ des Matrixpatches entscheidet über lokale Löserkomponenten innerhalb der Rekursion
- Anwendung des ScaRC-Glätters: globaler Defekt → lokale Löser (Rekursion oder FE-gMG) → globale Korrektur

Ziel: numerisch skalierbarer Löser

Scalable Recursive Clustering

Einordnung von FE-gMG: ScaRC Löser

FE-gMG

Idee: Ein performance-kritischer Kernel für gMG: SpMV

- Grobgitter Löser: Vorkonditionierte Krylov-Unterraum-Methoden
- Glätter: je nach Notwendigkeit basierend auf
 - vorkonditioniertem Richardson-Verfahren oder
 - Krylov-Unterraum-Methoden
- Defektberechnung

Was übrig bleibt...

- ein wenig BLAS-1 (dot-product, norm, scale, ...)
- wichtige Idee: $\textit{Gittertransfer} \rightarrow kann auch auf SpMV zurückgeführt werden$

Vorteile

- Flexibilität der Implementierung (ausgewechselt werden nur Matrizen) → blackbox
- unabhängig von FE-Raum, Dimension
- performance-tuning an einer zentralen Stelle

SpMV: CSR vs. ELLPACK-R

Ausgangspunkt: SpMV kernel - Performance

- hier: Steifigkeitsmatrizen aus einem 3D-Poisson Problem, links Q₁, rechts Q₂ (mehr Nichtnulleinträge)
- \blacksquare Freiheitsgrad-Nummerierungstechnik: hell nach dunkel \rightarrow mehr Matrixbandbreite

- $\blacksquare \rightarrow$ Portierung von CSR-SpMV auf GPUs katastrophal
- → im Folgenden: ELLPACK-R mit Erweiterung
- $\blacksquare \to {\rm im}$ Hinterkopf behalten: Nummerierung der DOFs / Anzahl der nonzeros kritisch

ELLPACK-R

- Grundidee: speichere sparse matrix S in zwei arrays A (non-zeros in column-major order) und j (Spalten-Index für jeden Eintrag in A)
- A hat (#Zeilen in S) × (maximale Anzahl non-zeros in Zeilen von S)
- kürzere Zeilen werden aufgefüllt
- zusätzliches array rl um die effective Anzahl von non-zeros in Zeile zu speichern (stoppe Berechnung auf einer Zeile richtig)

$$S = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix} \quad \Rightarrow \quad \mathbf{A} = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \mathbf{j} = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix} \mathbf{r1} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

Was gewinnt man mit ELLPACK-R?

$$y_i = \sum_{nz=0}^{rl_i} A_{i,nz} * x_{j_{nz}}$$

- \blacksquare vollständig reguläres Zugriffsmuster auf ${\bf y}$ und A
- GPU-Implementierung:
 - ein thread für jedes Element y_i
 - $\blacksquare \to \mathsf{Zugriffe}$ auf die drei ELLPACK-R arrays und $\mathbf y$ vollständig coalesced (column-major)
 - \bullet > Zugriff auf x: verwende texture-cache (FERMI: L2-cache)
 - \blacksquare \rightarrow keine Synchronisation zwischen threads nötig
 - $\blacksquare \rightarrow$ keine branch-divergence
 - zusätzlich: Erweiterung des Produktes so, dass mehrere threads eine Zeile bearbeiten können (ELLPACK-T)

■ Zugriffsmuster auf x hängt stark von Besetzungsmuster von A ab → Bandbreite durch DOF-Nummerierung

Nutzung von SpMV für Glätter, Grobgitterlöser

vorkonditioniertes Richardson Verfahren:

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \omega M(\mathbf{b} - A\mathbf{x}^k)$$

CG oder BiCGStab Verfahren: Anwendung des Vorkonditionierers, Defekte, ...

Glätterkonstruktion

Wir brauchen: starke Glätter

- Beschränkung auf Jacobi katastrophal
- gute Vorkonditionierer oft schwer zu parallelisieren
- Idee: Vorkonditionierungsschritt im Glätter reduziert auf SpMV-Anwendung
- $\blacksquare
 ightarrow Sparse Approximate Inverse-Techniken$

SPAI

$$|| I - MA ||_F^2 = \sum_{k=1}^n || e_k^T - m_k^TA ||_2^2 = \sum_{k=1}^n || A^T m_k - e_k ||_2^2$$

wobei e_k der k-te Einheitsvektor und m_k die k-te Zeile von M ist. \rightarrow für n Spalten von $M \rightarrow n$ least squares Optimierungsprobleme:

$$min_{m_k} \parallel A^{\mathrm{T}}m_k - e_k \parallel_2, \ k = 1, \dots n.$$

verwende Besetzungsstruktur der Steifigkeitsmatrix als Muster f
ür M

starke Glätter: SAINV

- Stabilised Approximate Inverse
- berechne Faktorisierung A⁻¹ = ZD⁻¹Z^T wobei Z und D explizit berechnet werden: A-Biconjugation angewendet auf die Einheitsbasisvektoren
- Z wird unvollständig assembliert: Elemente unterhalb drop-tolerance werden ignoriert
- keine Strukturvorgabe möglich (im Gegensatz zu SPAI)
- \bullet \rightarrow im Einzelfall: bessere Näherung an A^{-1}
- SAINV etwa so gut wie ILU(0)
- Problem: inhärent sequentiell

Nutzung von SpMV für Glätter, Grobgitterlöser: haben wir gesehen

Jetzt: Nutzung von SpMV für den Gittertransfer:

- **z**wei konforme FE-Räume V_{2h} und V_h
- mit Lagrange-Basis: Interpolation (Gittertransfer) kann durch SpMV ausgedrückt werden

Prolongationsmatrix

$$(P_{2h}^h)_{ij} = \varphi_{2h}^{(j)}(\xi_h^{(i)})$$

Restriktionsmatrix

$$R_h^{2h} = (P_{2h}^h)^T$$

Beispiel: 2D Q_1

- Knotenpunkte $\xi_h^{(i)}$ von V_h sind identisch mit Vertices $v_h^{(i)}$ des Gitters Ω_h
- Jeder Vertex $v_h^{(i)}$ von Ω_h korrrespondiert entweder mit einem Vertex in Ω_{2h} oder mit dem Mittelpunkt einer Kante eines Quads in Ω_{2h}
- n_{2h}^v #Vertices gesamt, n_{2h}^e #Kanten und n_{2h}^q #Quads von Ω_{2h} \Rightarrow $n_h^v = n_{2h}^v + n_{2h}^e + n_{2h}^q$ #Vertices in Ω_h

Beispiel: 2D Q_1

 Ausgangspunkt: 2lv Sortierung der Vertices v_h⁽ⁱ⁾ von Ω_h und damit der Basisfunktionen φ_h⁽ⁱ⁾ des V_h

■ \Rightarrow die $n_h^v \times n_{2h}^v$ Prolongationsmatrix hat Blockstruktur:

$$P_{2h}^h = \begin{bmatrix} P_v \\ P_e \\ P_q \end{bmatrix},$$

Prolongationsmatrix - Beispiele

 \blacksquare DOF Nummerierungstechnik \rightarrow Performance

Ergebnisse

Beispiel

- populäres Gitter, unstrukturiert, Poisson Problem
- 2D und 3D, Q₁ und Q₂ FE, CPU (Core i7 980X, 6 threads) und GPU (Tesla C2070)
- starke Glättung mit Approximate Inverse Techniken (SPAI, SAINV)

$$-\Delta u = 1, \quad \mathbf{x} \in \Omega$$

$$\begin{array}{ll} u = 0, & \mathbf{x} \in \Gamma_1 \\ u = 1, & \mathbf{x} \in \Gamma_2 \end{array}$$

- verschiedene FE-Räume
- verschiedene DOF numbering Techniken

FE-gMG: Ergebnisse (2D)

Q1	CPU									GPU											
	Jacobi		bi SPAI			SAINV			Jacobi					SPAI		SAINV					
sort	time	fiter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	fiter	speedup jac	speedup cpu		
2lv	4.04	13	2.54	5	1.59	3.59	6	1.12	1.06	13	3.82	0.56	5	1.88	4.53	1.19	6	0.89	3.01		
СМ	3.65	13	2.19	5	1.66	3.29	6	1.11	1.03	13	3.55	0.72	5	1.43	3.05	0.82	6	1.26	4.03		
XYZ	3.48	13	2.06	5	1.69	4.44	9	0.78	0.98	13	3.53	0.51	5	1.93	4.04	1.03	9	0.96	4.32		
Stoch	4.04	13	2.57	5	1.57	3.19	5	1.27	1.74	13	2.33	1.04	5	1.66	2.46	1.29	5	1.35	2.47		
Hie	3.49	13	2.07	5	1.69	3.07	6	1.14	0.97	13	3.59	0.50	5	1.94	4.14	0.77	6	1.26	3.98		

Q2	CPU									GPU											
	Jacobi		scobi SPA		PAI		SAINV		Jacobi					SPAI		SAINV					
sort	time	fiter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	#iter	speedup jac	speedup cpu		
2lv	13.19	22	4.87	5	2.71	10.24	9	1.29	2.27	22	5.80	0.93	5	2.44	5.22	2.04	9	1.12	5.02		
СМ	11.40	22	4.40	5	2.59	10.58	12	1.08	2.50	22	4.56	1.02	5	2.44	4.30	2.20	12	1.13	4.80		
XYZ	11.29	22	4.21	5	2.68	9.58	12	1.18	2.41	22	4.69	0.99	5	2.44	4.26	2.70	12	0.89	3.55		
Stoch	12.92	22	5.14	5	2.51	4.64	9	2.79	4.78	22	2.70	2.04	5	2.35	2.52	1.57	9	3.05	2.96		
Hie	11.25	22	4.24	5	2.66	8.68	9	1.30	2.44	22	4.60	1.00	5	2.43	4.22	1.88	9	1.30	4.61		

FE-gMG: Ergebnisse (3D)

Q1	CPU									GPU											
	Jac	obi:	SPAI			SAINV			Jacobi			SPAI					SAINV				
sort	time	#iter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	#iter	speedup jac	speedup cpu		
2lv	2.43	26	1.08	7	2.25	1.03	9	2.37	0.66	26	3.71	0.27	7	2.39	3.94	0.28	9	2.32	3.63		
СМ	2.34	26	1.02	7	2.30	0.98	9	2.37	0.66	26	3.53	0.28	7	2.39	3.67	0.29	9	2.26	3.36		
Stoch	2.63	26	1.18	7	2.23	1.28	10	2.06	0.75	26	3.48	0.33	7	2.32	3.61	0.38	10	1.98	3.35		

Q2	CPU									GPU											
	Jacobi		SPAI			SAINV			Jacobi			SPAI					SAINV				
sort	time	#iter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	#iter	speedup jac	speedup cpu		
2lv	9.86	42	3.09	8	3.19	2.44	10	4.04	2.01	42	4.90	0.58	8	3.44	5.29	0.56	10	3.60	4.37		
СМ	7.46	42	2.50	8	2.99	2.41	12	3.10	2.31	42	3.23	0.70	8	3.32	3.59	0.73	12	3.18	3.32		
Stoch	8.89	42	3.14	8	2.83	2.90	12	3.07	2.92	42	3.04	0.92	8	3.18	3.41	0.92	12	3.19	3.16		

FE-gMG: Ergebnisse

FE-gMG

- völlig unstrukturierte (Teil-) Gitter möglich
- erstmals vollständiger geometrischer MG auf GPU (unstrukturiert)
- hohes Erweiterbarkeitspotential Glätter/Vorkonditionierer: SPAI, SAINV, ILU, poly.
- Nummerierung der Freiheitsgrade ist kritisch

Die Kombination von zugeschnittenen numerischen Methoden und Hardwareorientierung liefert bis zu 3 Gr.-Ordnungen speedup. Daran hat die numerische Effizienz den Hauptanteil.

Assemblierung und GPUs

- Verschiedene Matrizen und Erzeugungsalgorithmen in FE-gMG
 - FEM-spezifisch (abhängig von Gitter/Nummerierungsart, PDE): Steifigkeit, Masse
 - gMG-spezifisch (abhängig von Gitter/Nummerierungsart): Transfermatrizen
 - Glätterspezifisch (Abhängig von Systemmatrizen, Algorithmus): Approximate Inverses
- potentiell sehr unterschiedliche Eigenschaften (Bandbreite, #non-zeros / Zeile, #non-zeros, ...)
- Speichertechniken sind unterschiedlich stark für unterschiedliche Architekturen
- Speichertechniken sind unterschiedlich stark für verschiedene Aufgaben
 - SpMV: ELLPACK-T sehr gut für GPUs
 - Assemblierung: andere Formate gebraucht \rightarrow wahlfreier Zugriff

Assemblierung und GPUs

- FEM-Matrizen: Potentiell viele Möglichkeiten auf GPUs: Beispiel CSR-basiert
- Ziel: minimiere globale Speichertransaktionen, nutze Speicherhierarchien aus, balanciere Redundanz und Effizienz
 - 1 Thread pro Zeile? (extra-lookups in die Spalten, stark abhängig von konkretem Speicherformat)
 - 1 Thread pro non-zero? (Schlechte Balance z.B.: zwischen Hauptund Nebendiagonalen)
 - 1 Thread pro Element? (race-conditions bei den updates)

 \rightarrow in Arbeit

Assemblierung und GPUs

Sparse Approximate Inverse: Potentiell viele Erzeugungsalgorithmen

- SPAI: gut parallelisierbar
- SAINV: manchmal numerisch besser aber inhärent sequentiell
- ndere Approximierte Inverse: Polynomielle Vorkonditionierer?
- temporale Überlappung mit Erzeugung der Systemmatrizen?
- Transferoperatoren
 - Blockweiser Ansatz?

\rightarrow in Arbeit

Zusammenfassung

- FE-gMG ist ein Beispiel f
 ür simultane Ber
 ücksichtigung von Numerischer und Hardwareeffizienz
- hohe Flexibilität unstrukturierter Gitter
- Ausnutzung von GPUs auch für sehr komplexe Anwendungen

Zukünftige / derzeitige Arbeiten

- Assemblierung
- Optimierung: Verluste in Transferoperatoren
- Performancemodellierung in ScaRC / Verbesserung numerischer Skalierbarkeit

Unterstützt durch das BMBF, *HPC Software für skalierbare Parallelrechner: SKALB Projekt 01IH08003D.*

Unterstützt durch die DFG, SFB 708 TP B1 & SPP 1423, TU 102/32-2.

Dank an das FEAST-Team.

Dank an alle Entwickler von HONEI (www.honei.org).

Dank an das LiDO-Team @ DOWIHR.