
Total efficiency of core components in Finite
Element frameworks

Markus Geveler

Inst. for Applied Mathematics
TU Dortmund University of Technology, Germany

markus.geveler@math.tu-dortmund.de

MAFELAP13: Large scale computing with applications
London, June 13th 2013



motivation

today’s HPC facilities

comprise heterogeneous compute nodes

multicore CPU(s) + some accelerator very common (GPU, Cell)
next generation accelerators upcoming (Intel XEON Phi)
even heterogeneity on-a-chip (SoCs)

cost efficiency dominated by energy-efficiency

today’s large-scale FEM codes

have to adapt to target hardware

heterogeneity and frameworking
parallelisation of applications (DD mostly)
parallelisation of core components (e.g. ’linear solver on GPU’)
optimisation with respect to many details (data-flow and SIMD
mostly)

can we have the same results with less energy? → TTS vs TES



total efficiency

(some) aspects of efficiency

numerical efficiency

dominates asymptotic behaviour and wall clock time

hardware-efficiency

exploit all levels of parallelism provided by hardware (SIMD,
multi-threading on a chip/device/socket, multi-processing in a
cluster, hybrids)
then try to reach good scalability (communication optimisations,
block comm/comp)

energy-efficiency

by hardware mostly but codes may have to be adjusted (→
portability)

Hardware-oriented Numerics: Enhance both hardware- and
numerical efficiency simultaneously, use (most) energy-efficient
hardware where available! Attention: codependencies!
Today’s major example: (local) unstructured grid geometric
Multigrid with Approximate Inverse smoothers on GPUs



FE-gMG

Today’s (first) example: ingredients

(local) geometric multigrid

for unstructured grids

with Approximate Inverse smoothers

with FE transfer operators

with clever DOF sorting

on GPUs (and multicore CPUs)

all based on one kernel: SpMV

why local?

because large scale HPC starts ’in the little’ → on one
heterogeneous compute node

consider a very slow compute node → perfect scaling, but good?

consider a very bad single-node implementation → perfect scaling,
but good?



FE-gMG as a core-component

Coarse grained parallelism by domain decomposition (Schwarz)

1 use conformal coarse mesh as starting point

2 cluster patches for local problem assembly (structured and unstructured! -
many HPC/GPGPU examples are structured)

3 load-balance patches



linear solver

ScaRC pattern

define data-parallel solver
pattern globally (multigrid)

use special smoother as local
solver: recursion or blockwise
local solver → FE-gMG

patch type determines solver
components

apply the smoother: global
defect → local solvers
(recursion or FE-gMG) →
global correction

ScaRC-preconditioner:

1 d← b−Ax
2 y ←

∑̃
iR

T
i MG(d), where

MG(d):

1 di ← Rid
2 yi ← FE-gMG(Bi, di)

3 y ←
∑̃

iR
T
i yi

3 x← x+ y



FE-gMG

concentrate all tuning in one kernel: sparse matrix vector multiply
(SpMV)

in coarse-grid solver: preconditioned Krylov subspace methods
smoother:

preconditioned Richardson iteration or
Krylov subspace method
local preconditioners by approximate inverses

defect

the remainings

a little BLAS-1 (dot-product, norm, scale, ...)

important: grid transfer operators → can also be realised as SpMV

advantages

flexibility (only matrices are switched) → blackbox

oblivious of FE-space, dimension, ...

performance-tuning concentrated

disadvantages

we somewhat move the problem from solver to assembly of matrices



SpMV: CSR vs. ELLPACK-R

SpMV kernel - performance

example: stiffness-matrices from a 3D-Poisson problem, left: Q1,
right Q2 (more nonzeros)

DOF numbering scheme: bright to dark → larger matrix-bandwidth

→ porting CSR-SpMV to GPUs catastrophic (access pattern)

→ numbering of DOFs / number of nonzeros performance-critical



SpMV on GPUs

ELLPACK-R
store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column-Index for each entry in A)

A has (#rows in S) × (maximum #non-zeros in rows of S)

shorter rows are filled

additional array rl to store effective non-zeros count per row (get stop on row right)

S =


1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

 ⇒ A =


1 7 ∗
2 8 ∗
5 3 9
6 4 ∗

 j =


0 1 ∗
1 2 ∗
0 2 3
1 3 ∗

 rl =


2
2
3
2


advantages

complete regular access pattern to y and A

GPU implementation:

one thread for each element yi
→ access to all ELLPACK-R arrays and y completely coalesced
(column-major)
→ access on x: use texture-cache (FERMI: L2-cache)
→ no synchronisation between threads needed
→ no branch-divergence
in addition: multiple threads can access one row (ELLPACK-T)

access to x depends on non-zero pattern of A → bandwidth given by
DOF-numbering



SpMV in gMG (1)

smoother, coarse grid solver

preconditioned Richardson iteration:

xk+1 ← xk + ωM(b−Axk)

CG or BiCGStab: preconditioner, defect, ...

smoother construction

Jacobi only does not suffice

good preconditioners often are inherently sequential

preconditioner of the smoother reduced to SpMV

→ Sparse Approximate Inverse



smoother construction

SPAI

‖ I −MA ‖2F =
n∑

k=1

‖ eTk −mT
kA ‖22 =

n∑
k=1

‖ ATmk − ek ‖22

where ek is the k-th unit vektor and mk the k-th row of M . → for n columns
of M → n least squares opt-problems:

minmk ‖ A
Tmk − ek ‖2, k = 1, . . . n.

use non-zero pattern of the stiffness matrix for M

SAINV

Stabilised Approximate Inverse

calculate factorisation A−1 = ZD−1ZT where Z and D are calculated
explicitly: A-biconjugation applied to unit base

Z is assembled incompletely: use drop-tolerance

no structure constraints possible (as opposed to SPAI)

→ sometimes: better approximation of A−1

SAINV approximately as good as ILU(0)

problem: inherently sequential



SpMV in gMG (2)

SpMV in grid transfer:
two conformal FE-spaces V2h and Vh
with Lagrange-Basis: interpolation (grid-transfer) can be expressed
as SpMV

prolongation matrix

(Ph2h)ij = ϕ
(j)
2h (ξ

(i)
h )

restriction matrix
R2h
h = (Ph2h)T

DOF numbering technique → performance



results

benchmark

zx

y

popular grid, unstructured, Poisson problem

2D and 3D, Q1 and Q2 FE, CPU (Core i7 980X, 6 threads) und
GPU (Tesla C2070)

Approximate Inverse strong smoothing (SPAI, SAINV)
−∆u = 1, x ∈ Ω

u = 0, x ∈ Γ1

u = 1, x ∈ Γ2

different FE-spaces

different DOF numbering
techniques



results
FE-gMG: (2D) multigrid8_8

Page 1

Q1 CPU GPU

Jacobi SPAI SAINV Jacobi SPAI SAINV

sort time time time time time time

2lv 4.04 13 2.54 5 1.59 3.59 6 1.12 1.06 13 3.82 0.56 5 1.88 4.53 1.19 6 0.89 3.01

CM 3.65 13 2.19 5 1.66 3.29 6 1.11 1.03 13 3.55 0.72 5 1.43 3.05 0.82 6 1.26 4.03

XYZ 3.48 13 2.06 5 1.69 4.44 9 0.78 0.98 13 3.53 0.51 5 1.93 4.04 1.03 9 0.96 4.32

4.04 13 2.57 5 1.57 3.19 5 1.27 1.74 13 2.33 1.04 5 1.66 2.46 1.29 5 1.35 2.47

Hie 3.49 13 2.07 5 1.69 3.07 6 1.14 0.97 13 3.59 0.50 5 1.94 4.14 0.77 6 1.26 3.98

Q2 CPU GPU

Jacobi SPAI SAINV Jacobi SPAI SAINV

sort time time time time time time

2lv 13.19 22 4.87 5 2.71 10.24 9 1.29 2.27 22 5.80 0.93 5 2.44 5.22 2.04 9 1.12 5.02

CM 11.40 22 4.40 5 2.59 10.58 12 1.08 2.50 22 4.56 1.02 5 2.44 4.30 2.20 12 1.13 4.80

XYZ 11.29 22 4.21 5 2.68 9.58 12 1.18 2.41 22 4.69 0.99 5 2.44 4.26 2.70 12 0.89 3.55

12.92 22 5.14 5 2.51 4.64 9 2.79 4.78 22 2.70 2.04 5 2.35 2.52 1.57 9 3.05 2.96

Hie 11.25 22 4.24 5 2.66 8.68 9 1.30 2.44 22 4.60 1.00 5 2.43 4.22 1.88 9 1.30 4.61

#iter #iter speedup jac #iter speedup jac #iter speedup cpu #iter speedup jac speedup cpu #iter speedup jac speedup cpu

Stoch

#iter #iter speedup jac #iter speedup jac #iter speedup cpu #iter speedup jac speedup cpu #iter speedup jac speedup cpu

Stoch

FE-gMG: (3D) multigrid16_16

Page 1

Q1 CPU GPU

Jacobi SPAI SAINV Jacobi SPAI SAINV

sort time time time time time time

2lv 2.43 26 1.08 7 2.25 1.03 9 2.37 0.66 26 3.71 0.27 7 2.39 3.94 0.28 9 2.32 3.63

CM 2.34 26 1.02 7 2.30 0.98 9 2.37 0.66 26 3.53 0.28 7 2.39 3.67 0.29 9 2.26 3.36

2.63 26 1.18 7 2.23 1.28 10 2.06 0.75 26 3.48 0.33 7 2.32 3.61 0.38 10 1.98 3.35

Q2 CPU GPU

Jacobi SPAI SAINV Jacobi SPAI SAINV

sort time time time time time time

2lv 9.86 42 3.09 8 3.19 2.44 10 4.04 2.01 42 4.90 0.58 8 3.44 5.29 0.56 10 3.60 4.37

CM 7.46 42 2.50 8 2.99 2.41 12 3.10 2.31 42 3.23 0.70 8 3.32 3.59 0.73 12 3.18 3.32

8.89 42 3.14 8 2.83 2.90 12 3.07 2.92 42 3.04 0.92 8 3.18 3.41 0.92 12 3.19 3.16

#iter #iter speedup jac #iter speedup jac #iter speedup cpu #iter speedup jac speedup cpu #iter speedup jac speedup cpu

Stoch

#iter #iter speedup jac #iter speedup jac #iter speedup cpu #iter speedup jac speedup cpu #iter speedup jac speedup cpu

Stoch



results

FE-gMG: combined effects: gMG+ AI smoother + DOF
numbering + GPU



results

complete geometric multigrid on GPUs

completely unstructured grids possible

high extensibility potentials: smoother

DOF-numbering still critical

careful combination of hardware- and numerical efficiency offers up
to 3 orders of magnitude speedup!

matrix assembly not considered (stiffness/mass, transfer,
preconditioner) → random access matrices needed!



heterogeneity on a node also means incorporating all
resources!

example solver: SWE with multiple extensions
hardware-oriented numerics: use well parallelisable algorithms, where
possible (accuracy!)
here: sophisticated free-surface flow solver based on SWE solved
with LBM (bed friction, wind, pollutant transport, FSI): MPI +
PThreads + SSE + CUDA

∂h

∂t
+
∂(huj)

∂xj
= 0 and

∂hui
∂t

+
∂(huiuj)

∂xj
+g

∂

∂xi
(
h2

2
) = Sbed

i +Swind
i

∂hc

∂t
+
∂(hujc)

∂xj
=

∂

∂xj

(
Dh

∂c

∂xj

)
+ Spoll

Sbed
i = −g

(
h
∂b

∂xi
+ n2bh

− 1
3ui
√
ujuj

)
Swind
i = (ρα10−3×(0.75+0.0067

√
w2

1 + w2
2))(w1

√
w2

1 + w2
2)

Spoll = −Khc+ S0h



heterogeneity on a node also means incorporating all
resources!

LBM for SWE
fα(x + eα∆t, t + ∆t) = fα(x, t) + Q(fα, fβ), β = 1, ..., k.

f
temp
α (x, t) = fα(x, t) −

1

τ
(fα − f

eq
α )

f
eq
α =


h(1 − 5gh

6e2
− 2

3e2
uiui) α = 0

h(
gh

6e2
+
eαiui
3e2

+
eαjuiuj

2e4
− uiui

6e2
) α = 1, 3, 5, 7

h(
gh

24e2
+
eαiui
12e2

+
eαjuiuj

8e4
− uiui

24e2
) α = 2, 4, 6, 8

fα(x + eα∆t, t + ∆t) = fα(x, t) −
1

τ
(fα − f

eq
α ) +

∆t

6e2
eαiSi, α = 0, . . . , 8.

h(x, t) =
∑
α
fα(x, t) and ui(x, t) =

1

h(x, t)

∑
α
eαifα,

g
temp
α (x, t) = gα(x, t) −

1

τvar
poll

(gα − g
eq
α )

τ
var
poll = 1/2 + h(x, t) × (τpoll − 1/2)

g
eq
α =


c(h − 5/9) α = 0

c(1/9 + h
3e2

eαiui) α = 1, 3, 5, 7

c(1/36 + h
12e2

eαiui) α = 2, 4, 6, 8



heterogeneity on a node also means incorporating all
resources!

example, single node performance

CINECA IBM-PLX GPU cluster:

2 6-core Westmeres and 2 NVIDIA Tesla GPUs per node
Infiniband
full features (flow + pollutant)
2l ∗ (2000× 2000) lattice sites and 3 ∗ (2l) nodes on refinement level l



heterogeneous compute nodes

example, scaling and finals

→ optimisation concerning vectorisation is crucial for CPU
performance

→ in some cases: compiler unable to vectorise kernel loops at all
(bed force term)

→ good serial performance only granted by organising loops /
register usage by hand

→ hybrid pays off (10 percent is quite good!), if CPU kernels
are reasonably optimised, load reasonably balanced



total time to solution vs total energy to solution

so far: combining hardware- and numerical efficiency

now: what about energy?

example: GPGPU: specialist accelerator

in general: exploiting hardware that is considered to be more
energy-efficient because it stems from the embedded fields (lower
transistor count due to lower instr. set compatibility, mainly)

often acceptable: decrease in total energy consumption bought with
increase of total time to solution

example: TIBIDABO prototype cluster (BSC)

1 NVIDIA Tegra 2 SoC (dual core ARM Cortex-A9) per core

LPDDR2 memory at low timings

no SIMD



ARM vs x86

TIBIDABO vs LiDO

TIBIDABO ARM cluster, up to 96 nodes

Dortmund x86 cluster LiDO, up to 32 nodes (2x Nehalem dual
socket quad core, SSE, DDR3)



conclusions

total efficiency

hardware efficiency and numerical efficiency have to be augmented
carefully and simultaneously → codependencies

less total time to solution can (quite) easily be traded for less energy
consumption

energy efficiency of ARM architecture is (and is expected to be)
increasing rapidly (SIMD, better caches, faster memory)

TODOs

matrix assembly!!

’block-Jacobi’ character of the parallel scheme

overlapping comm/comp



Acknowledgements

Thanks to BSC for hardware access, especially to Alex Ramirez, Nicola Rajovic
and Nicola Puzovic.

Thanks to the Dortmund LiDO team at DOWIR.
Thanks to all contributors to FEAST, especially Dirk Ribbrock, Peter Zajac

and Dominik Göddeke.

This work was granted access to the HPC resources of CINECA made available
within the Distributed European Computing Initiative by the PRACE-2IP,

receiving funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number RI-283493.

Supported by BMBF, SKALB project 01IH08003D.
Supported by German Research Foundation (DFG), projects SFB 708/TB 1

and SPP 1423 (TU 102/32-2)

Thanks to Raphael Münster for image material.


	Introdution



