Total efficiency of core components in Finite Element frameworks

Markus Geveler

Inst. for Applied Mathematics TU Dortmund University of Technology, Germany markus.geveler@math.tu-dortmund.de

MAFELAP13: Large scale computing with applications London, June 13th 2013

today's HPC facilities

- comprise heterogeneous compute nodes
 - multicore CPU(s) + some accelerator very common (GPU, Cell)
 - next generation accelerators upcoming (Intel XEON Phi)
 - even heterogeneity on-a-chip (SoCs)
- cost efficiency dominated by energy-efficiency

today's large-scale FEM codes

- have to adapt to target hardware
 - heterogeneity and frameworking
 - parallelisation of applications (DD mostly)
 - parallelisation of core components (e.g. 'linear solver on GPU')
 - optimisation with respect to many details (data-flow and SIMD mostly)
- \blacksquare can we have the same results with less energy? \rightarrow TTS vs TES

total efficiency

(some) aspects of efficiency

- numerical efficiency
 - dominates asymptotic behaviour and wall clock time
- hardware-efficiency
 - exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a chip/device/socket, multi-processing in a cluster, hybrids)
 - then try to reach good scalability (communication optimisations, block comm/comp)
- energy-efficiency
 - \blacksquare by hardware mostly but codes may have to be adjusted (\rightarrow portability)

Hardware-oriented Numerics: Enhance both hardware- and numerical efficiency simultaneously, use (most) energy-efficient hardware where available! Attention: codependencies! Today's major example: (local) unstructured grid geometric Multigrid with Approximate Inverse smoothers on GPUs

FE-gMG

Today's (first) example: ingredients

- (local) geometric multigrid
- for unstructured grids
- with Approximate Inverse smoothers
- with FE transfer operators
- with clever DOF sorting
- on GPUs (and multicore CPUs)
- all based on one kernel: SpMV

why local?

- \blacksquare because large scale HPC starts 'in the little' \rightarrow on one heterogeneous compute node
- \blacksquare consider a very slow compute node \rightarrow perfect scaling, but good?
- \blacksquare consider a very bad single-node implementation \rightarrow perfect scaling, but good?

Coarse grained parallelism by domain decomposition (Schwarz)

- use conformal coarse mesh as starting point
- cluster patches for local problem assembly (structured and unstructured! many HPC/GPGPU examples are structured)
- Ioad-balance patches

ScaRC pattern

- define data-parallel solver pattern globally (multigrid)
- use special smoother as local solver: recursion or blockwise local solver → FE-gMG
- patch type determines solver components
- apply the smoother: global defect \rightarrow local solvers (recursion or FE-gMG) \rightarrow global correction

ScaRC-preconditioner:

$$1 \quad d \leftarrow b - Ax$$

2
$$y \leftarrow \widetilde{\sum_{i}} R_i^T MG(d)$$
, where $MG(d)$:

$$d_i \leftarrow R_i d$$

$$\underbrace{ \mathbf{2} \quad y_i \leftarrow \mathsf{FE}\text{-}\mathsf{g}\mathsf{MG}(B_i, d_i) }_{\widetilde{\boldsymbol{\Sigma}} \quad \boldsymbol{\Sigma}^T}$$

3
$$y \leftarrow \sum_i R_i^T y_i$$

 $x \leftarrow x + y$

FE-gMG

concentrate all tuning in one kernel: sparse matrix vector multiply (SpMV)

- in coarse-grid solver: preconditioned Krylov subspace methods
- smoother:
 - preconditioned Richardson iteration or
 - Krylov subspace method
 - local preconditioners by approximate inverses
- defect

the remainings

- a little BLAS-1 (dot-product, norm, scale, ...)
- \blacksquare important: grid transfer operators \rightarrow can also be realised as SpMV

advantages

- flexibility (only matrices are switched) \rightarrow blackbox
- oblivious of FE-space, dimension, …
- performance-tuning concentrated

disadvantages

• we somewhat move the problem from solver to assembly of matrices

SpMV kernel - performance

- example: stiffness-matrices from a 3D-Poisson problem, left: Q_1 , right Q_2 (more nonzeros)
- \blacksquare DOF numbering scheme: bright to dark \rightarrow larger matrix-bandwidth

→ porting CSR-SpMV to GPUs catastrophic (access pattern)
→ numbering of DOFs / number of nonzeros performance-critical

SpMV on GPUs

ELLPACK-R

- store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column-Index for each entry in A)
- A has (#rows in S) × (maximum #non-zeros in rows of S)
- shorter rows are filled
- additional array rl to store effective non-zeros count per row (get stop on row right)

$$S = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix} \implies \mathbf{A} = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \mathbf{j} = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix} \mathbf{r} \mathbf{l} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

advantages

- complete regular access pattern to \mathbf{y} and A
- GPU implementation:
 - one thread for each element y_i
 - $\blacksquare \rightarrow$ access to all ELLPACK-R arrays and $\mathbf y$ completely coalesced (column-major)
 - \blacksquare \rightarrow access on x: use texture-cache (FERMI: L2-cache)
 - \blacksquare \rightarrow no synchronisation between threads needed
 - \blacksquare \rightarrow no branch-divergence
 - in addition: multiple threads can access one row (ELLPACK-T)

access to x depends on non-zero pattern of $A \to$ bandwidth given by DOF-numbering

smoother, coarse grid solver

preconditioned Richardson iteration:

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \omega M(\mathbf{b} - A\mathbf{x}^k)$$

G or BiCGStab: preconditioner, defect, ...

smoother construction

- Jacobi only does not suffice
- good preconditioners often are inherently sequential
- preconditioner of the smoother reduced to SpMV
- → Sparse Approximate Inverse

smoother construction

SPAI

$$||I - MA||_F^2 = \sum_{k=1}^n ||e_k^{\mathrm{T}} - m_k^{\mathrm{T}}A||_2^2 = \sum_{k=1}^n ||A^{\mathrm{T}}m_k - e_k||_2^2$$

where e_k is the k-th unit vector and m_k the k-th row of M. \rightarrow for n columns of $M \rightarrow n$ least squares opt-problems:

$$min_{m_k} \parallel A^{\mathrm{T}}m_k - e_k \parallel_2, \ k = 1, \dots n_k$$

 \blacksquare use non-zero pattern of the stiffness matrix for M

SAINV

- Stabilised Approximate Inverse
- calculate factorisation $A^{-1} = ZD^{-1}Z^T$ where Z and D are calculated explicitly: A-biconjugation applied to unit base
- $\blacksquare~Z$ is assembled incompletely: use drop-tolerance
- no structure constraints possible (as opposed to SPAI)
- \rightarrow sometimes: better approximation of A^{-1}
- SAINV approximately as good as ILU(0)
- problem: inherently sequential

SpMV in gMG (2)

SpMV in grid transfer:

- two conformal FE-spaces V_{2h} and V_h
- with Lagrange-Basis: interpolation (grid-transfer) can be expressed as SpMV

prolongation matrix

$$(P_{2h}^h)_{ij} = \varphi_{2h}^{(j)}(\xi_h^{(i)})$$

restriction matrix

$$R_h^{2h} = (P_{2h}^h)^T$$

DOF numbering technique \rightarrow performance

benchmark

- popular grid, unstructured, Poisson problem
- 2D and 3D, Q₁ and Q₂ FE, CPU (Core i7 980X, 6 threads) und GPU (Tesla C2070)
- Approximate Inverse strong smoothing (SPAI, SAINV)

$$-\Delta u = 1, \quad \mathbf{x} \in \Omega$$

$$u = 0, \qquad \mathbf{x} \in \Gamma_1$$
$$u = 1, \qquad \mathbf{x} \in \Gamma_2$$

- different FE-spaces
 - different DOF numbering techniques

results

FE-gMG: (2D)

Q1	CPU									GPU											
	Jacobi		SPAI			SAINV			Jacobi					SPAI		SAINV					
sort	time	fiter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	fiter	speedup jac	speedup cpu		
2iv	4.04	13	2.54	5	1.59	3.59	6	1.12	1.06	13	3.82	0.56	5	1.88	4.53	1.19	6	0.89	3.01		
СМ	3.65	13	2.19	5	1.66	3.29	6	1.11	1.03	13	3.55	0.72	5	1.43	3.05	0.82	6	1.26	4.03		
XYZ	3.48	13	2.06	5	1.69	4.44	9	0.78	0.98	13	3.53	0.51	5	1.93	4.04	1.03	9	0.96	4.32		
Stoch	4.04	13	2.57	5	1.57	3.19	5	1.27	1.74	13	2.33	1.04	5	1.66	2.46	1.29	5	1.35	2.47		
Hie	3.49	13	2.07	5	1.69	3.07	6	1.14	0.97	13	3.59	0.50	5	1.94	4.14	0.77	6	1.26	3.98		

Q2	CPU									GPU											
	Jacobi		SPAI			SAINV			Jacobi					SPAI		SAINV					
sort	time	fiter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	fiter	speedup jac	speedup cpu		
2lv	13.19	22	4.87	5	2.71	10.24	9	1.29	2.27	22	5.80	0.93	5	2.44	5.22	2.04	9	1.12	5.02		
СМ	11.40	22	4.40	5	2.59	10.58	12	1.08	2.50	22	4.56	1.02	5	2.44	4.30	2.20	12	1.13	4.80		
XYZ	11.29	22	4.21	5	2.68	9.58	12	1.18	2.41	22	4.69	0.99	5	2.44	4.26	2.70	12	0.89	3.55		
Stoch	12.92	22	5.14	5	2.51	4.64	9	2.79	4.78	22	2.70	2.04	5	2.35	2.52	1.57	9	3.05	2.96		
Hie	11.25	22	4.24	5	2.66	8.68	9	1.30	2.44	22	4.60	1.00	5	2.43	4.22	1.88	9	1.30	4.61		

FE-gMG: (3D)

Q1	CPU									GPU											
	Jacobi		SPAI			SAINV			Jacobi			SPAI					SAINV				
sort	time	#iter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	#iter	speedup jac	speedup cpu		
2lv	2.43	26	1.08	7	2.25	1.03	9	2.37	0.66	26	3.71	0.27	7	2.39	3.94	0.28	9	2.32	3.63		
СМ	2.34	26	1.02	7	2.30	0.98	9	2.37	0.66	26	3.53	0.28	7	2.39	3.67	0.29	9	2.26	3.36		
Stoch	2.63	26	1.18	7	2.23	1.28	10	2.06	0.75	26	3.48	0.33	7	2.32	3.61	0.38	10	1.98	3.35		

Q2	CPU									GPU											
	Jacobi		SPAI			SAINV			Jacobi			SPAI					SAINV				
sort	time	#iter	time	#iter	speedup jac	time	#iter	speedup jac	time	#iter	speedup cpu	time	#iter	speedup jac	speedup cpu	time	#iter	speedup jac	speedup cpu		
2lv	9.86	42	3.09	8	3.19	2.44	10	4.04	2.01	42	4.90	0.58	8	3.44	5.29	0.56	10	3.60	4.37		
СМ	7.46	42	2.50	8	2.99	2.41	12	3.10	2.31	42	3.23	0.70	8	3.32	3.59	0.73	12	3.18	3.32		
Stoch	8.89	42	3.14	8	2.83	2.90	12	3.07	2.92	42	3.04	0.92	8	3.18	3.41	0.92	12	3.19	3.16		

FE-gMG: combined effects: gMG+ AI smoother + DOF numbering + GPU

complete geometric multigrid on GPUs

- completely unstructured grids possible
- high extensibility potentials: smoother
- DOF-numbering still critical
- careful combination of hardware- and numerical efficiency offers up to 3 orders of magnitude speedup!
- matrix assembly not considered (stiffness/mass, transfer, preconditioner) → random access matrices needed!

heterogeneity on a node also means incorporating all resources!

example solver: SWE with multiple extensions

- hardware-oriented numerics: use well parallelisable algorithms, where possible (accuracy!)
- here: sophisticated free-surface flow solver based on SWE solved with LBM (bed friction, wind, pollutant transport, FSI): MPI + PThreads + SSE + CUDA

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial (hu_j)}{\partial x_j} &= 0 \quad \text{and} \quad \frac{\partial hu_i}{\partial t} + \frac{\partial (hu_i u_j)}{\partial x_j} + g \frac{\partial}{\partial x_i} (\frac{h^2}{2}) = S_i^{\text{bed}} + S_i^{\text{wind}} \\ \frac{\partial hc}{\partial t} + \frac{\partial (hu_j c)}{\partial x_j} &= \frac{\partial}{\partial x_j} \left(Dh \frac{\partial c}{\partial x_j} \right) + S^{\text{poll}} \\ S_i^{\text{bed}} &= -g \left(h \frac{\partial b}{\partial x_i} + n_b^2 h^{-\frac{1}{3}} u_i \sqrt{u_j u_j} \right) \\ S_i^{\text{wind}} &= (\rho_\alpha 10^{-3} \times (0.75 + 0.0067 \sqrt{w_1^2 + w_2^2})) (w_1 \sqrt{w_1^2 + w_2^2}) \\ S_i^{\text{poll}} &= -Khc + S_0 h \end{split}$$

heterogeneity on a node also means incorporating all resources!

LBM for SWE

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) + Q(f_{\alpha}, f_{\beta}), \quad \beta = 1, ..., k.$$

$$f_{\alpha}^{\mathsf{temp}}(\mathbf{x},t) = f_{\alpha}(\mathbf{x},t) - \frac{1}{\tau}(f_{\alpha} - f_{\alpha}^{eq})$$

$$f_{\alpha}^{\mathsf{eq}} = \begin{cases} h(1 - \frac{5gh}{6e^2} - \frac{2}{3e^2}u_iu_i) & \alpha = 0\\ h(\frac{gh}{6e^2} + \frac{e_{\alpha i}u_i}{e_{\alpha e}u_i} + \frac{e_{\alpha j}u_iu_j}{e_{\alpha e}u_j} - \frac{u_iu_i}{6e^2}) & \alpha = 1, 3, 5, 7\\ h(\frac{gh}{24e^2} + \frac{e_{\alpha i}u_i}{12e^2} + \frac{e_{\alpha i}^2u_iu_j}{8e^4} - \frac{u_i^2u_j}{24e^2}) & \alpha = 2, 4, 6, 8 \end{cases}$$

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \frac{1}{\tau}(f_{\alpha} - f_{\alpha}^{eq}) + \frac{\Delta t}{6e^2}e_{\alpha i}S_i, \ \alpha = 0, \dots, 8.$$

$$\begin{split} h(\mathbf{x},t) &= \sum_{\alpha} f_{\alpha}(\mathbf{x},t) \quad \text{and} \quad u_{i}(\mathbf{x},t) = \frac{1}{h(\mathbf{x},t)} \sum_{\alpha} e_{\alpha i} f_{\alpha} \\ g_{\alpha}^{\text{temp}}(\mathbf{x},t) &= g_{\alpha}(\mathbf{x},t) - \frac{1}{\tau_{\text{poll}}^{\text{var}}} (g_{\alpha} - g_{\alpha}^{eq}) \end{split}$$

 $\tau_{\text{poll}}^{\text{var}} = 1/2 + h(\mathbf{x},t) \times (\tau_{\text{poll}} - 1/2)$

$$g^{\rm eq}_{\,\alpha} = \begin{cases} c(h-5/9) & \alpha=0 \\ c(1/9+\frac{h}{3e^2}e_{\,\alpha i}u_i) & \alpha=1,3,5,7 \\ c(1/36+\frac{h}{12e^2}e_{\,\alpha i}u_i) & \alpha=2,4,6,8 \end{cases}$$

heterogeneity on a node also means incorporating all resources!

example, single node performance

- CINECA IBM-PLX GPU cluster:
 - 2 6-core Westmeres and 2 NVIDIA Tesla GPUs per node
 - Infiniband
 - full features (flow + pollutant)
 - $2^{l} * (2000 \times 2000)$ lattice sites and $3 * (2^{l})$ nodes on refinement level l

heterogeneous compute nodes

example, scaling and finals

- $\blacksquare \rightarrow$ optimisation concerning vectorisation is crucial for CPU performance
- $\blacksquare \rightarrow$ in some cases: compiler unable to vectorise kernel loops at all (bed force term)
- $\blacksquare \to {\rm good}$ serial performance only granted by organising loops / register usage by hand
- $\blacksquare \rightarrow$ hybrid pays off (10 percent is quite good!), if CPU kernels are reasonably optimised, load reasonably balanced

so far: combining hardware- and numerical efficiency

- now: what about energy?
- example: GPGPU: specialist accelerator
- in general: exploiting hardware that is considered to be more energy-efficient because it stems from the embedded fields (lower transistor count due to lower instr. set compatibility, mainly)
- often acceptable: decrease in total energy consumption bought with increase of total time to solution

example: TIBIDABO prototype cluster (BSC)

- 1 NVIDIA Tegra 2 SoC (dual core ARM Cortex-A9) per core
- LPDDR2 memory at low timings
- no SIMD

TIBIDABO vs LiDO

TIBIDABO ARM cluster, up to 96 nodes

speedup x86 vs ARM

 Dortmund x86 cluster LiDO, up to 32 nodes (2x Nehalem dual socket quad core, SSE, DDR3)

energy down ARM vs x86

total efficiency

- \blacksquare hardware efficiency and numerical efficiency have to be augmented carefully and simultaneously \to codependencies
- less total time to solution can (quite) easily be traded for less energy consumption
- energy efficiency of ARM architecture is (and is expected to be) increasing rapidly (SIMD, better caches, faster memory)

TODOs

- matrix assembly!!
- 'block-Jacobi' character of the parallel scheme
- overlapping comm/comp

Thanks to BSC for hardware access, especially to Alex Ramirez, Nicola Rajovic and Nicola Puzovic. Thanks to the Dortmund LiDO team at DOWIR. Thanks to all contributors to FEAST, especially Dirk Ribbrock, Peter Zajac and Dominik Göddeke.

This work was granted access to the HPC resources of CINECA made available within the Distributed European Computing Initiative by the PRACE-2IP, receiving funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RI-283493.

Supported by BMBF, *SKALB project 01IH08003D*. Supported by German Research Foundation (DFG), projects SFB 708/TB 1 and SPP 1423 (TU 102/32-2)

Thanks to Raphael Münster for image material.