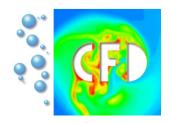


fakultät für **m**athematik



# Performance engineering for hardware-, numericaland energy-efficiency in FEM frameworks: modeling and control


## Hardware-oriented Numerics in the FEAT software family

Markus Geveler

Higher-order DG methods and finite element software for modern architectures Bath, 2016 / 6 / 1

> <u>markus.geveler@math.tu-dortmund.de</u> Institute f. Applied Mathematics, TU Dortmund





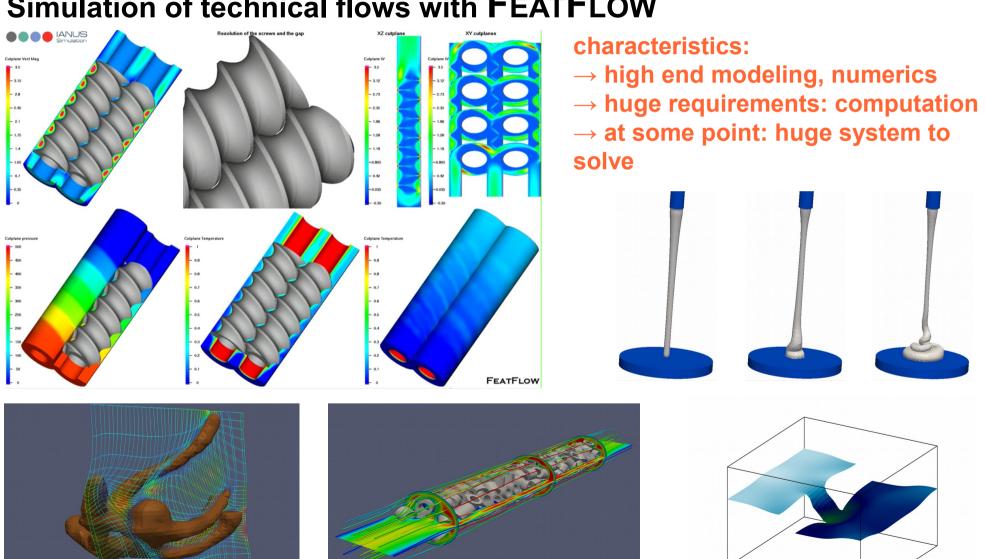
# Outline

## How can we take control of performance (different metrics) in FEM?

#### → Hardware-oriented Numerics

- $\rightarrow$  Our perspective on performance engineering in FEAT
- $\rightarrow$  Green computing, Hardware-oriented Numerics and Unconventional HPC
- $\rightarrow$  Simulation w.r.t. hardware-, numerical-, and energy-efficiency

 $\rightarrow$  A case study for performance engineering in the FEAT software family and SPPEXA


#### $\rightarrow$ A prototype for future Data Centers

 $\rightarrow$  Preliminary work with ARM-based clusters

→ the I.C.A.R.U.S experimental cluster based on NVIDIA Tegra K1 combined with photovoltaic solar farming

 $\rightarrow$  modeling energy in FEM frameworks

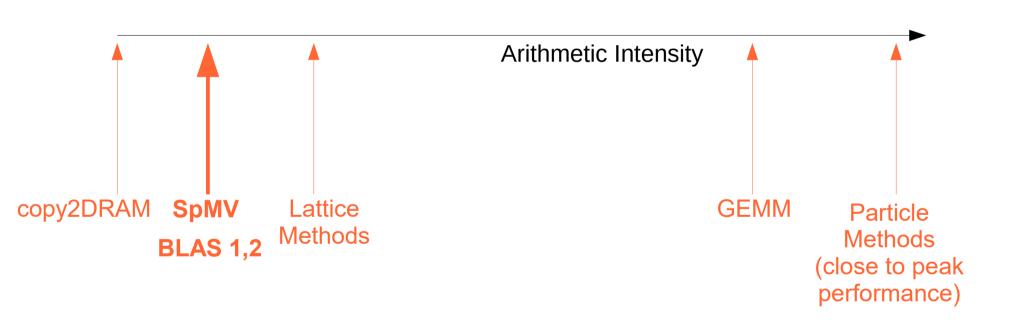
# Motivation: where it all leads...



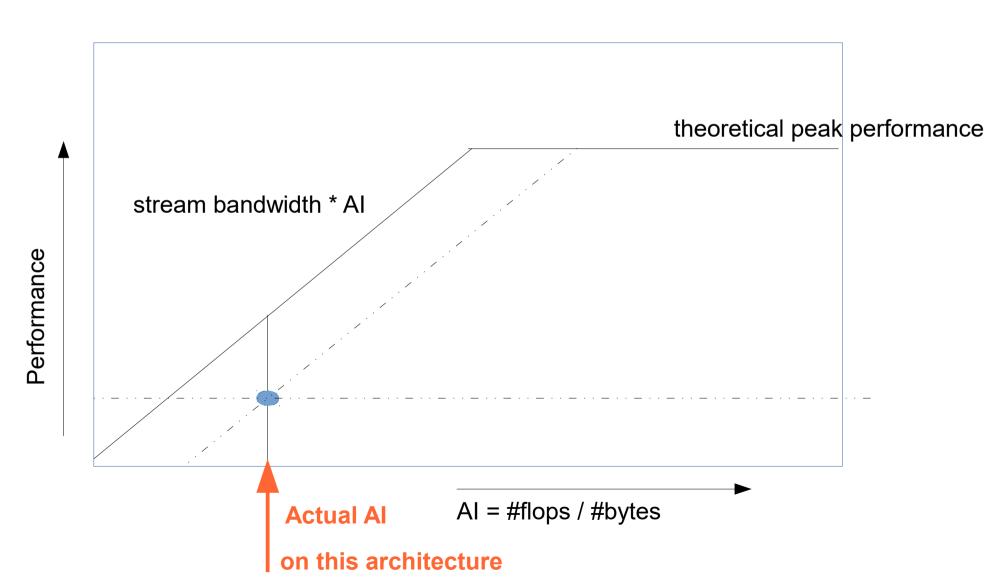
## Simulation of technical flows with **FEATFLOW**

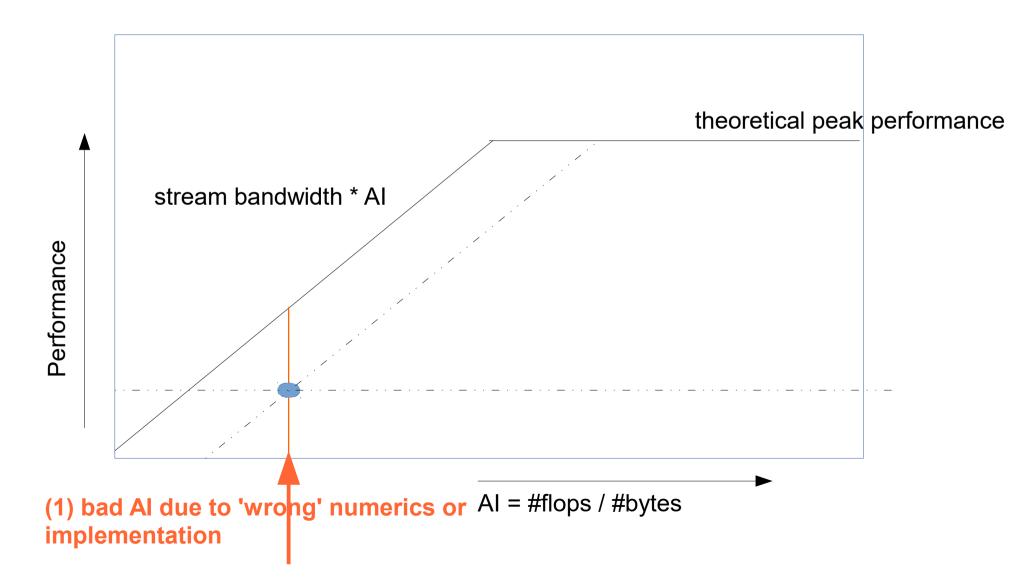
## Hardware

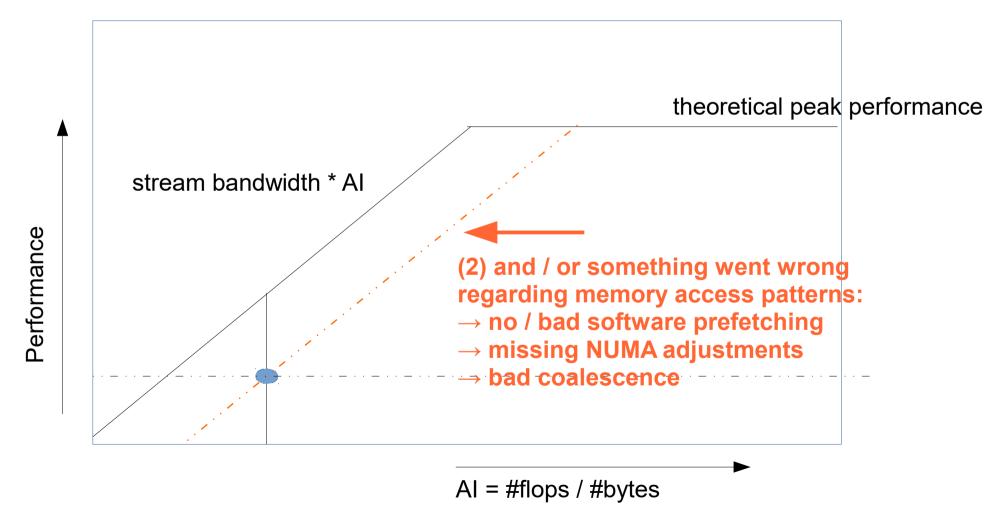
#### today's HPC facilities

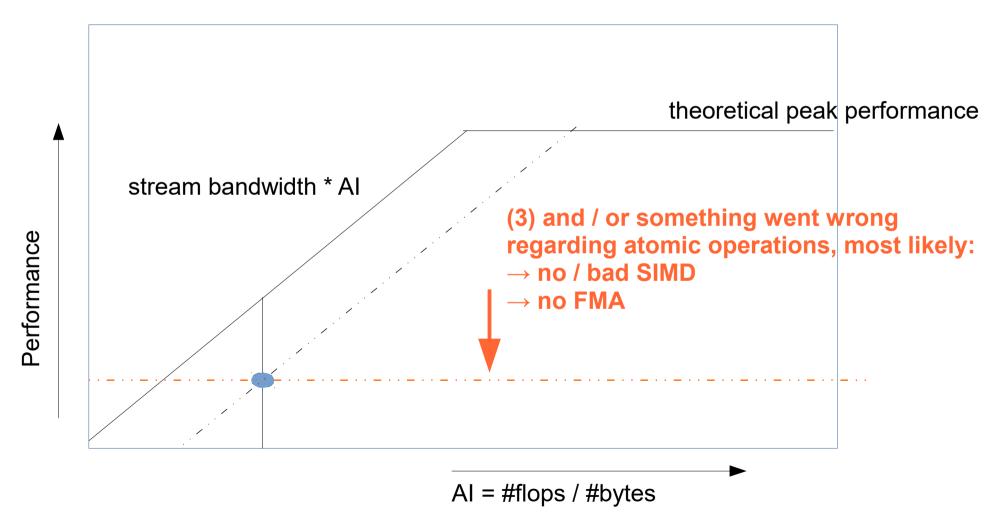

- $\rightarrow$  comprise heterogeneous compute nodes
- $\rightarrow$  multicore CPU(s) + some accelerator very common (GPU, XEON Phi)
- $\rightarrow$  heterogeneity on-a-chip (SoCs, APUs)
- $\rightarrow$  cost efficiency dominated by energy-efficiency

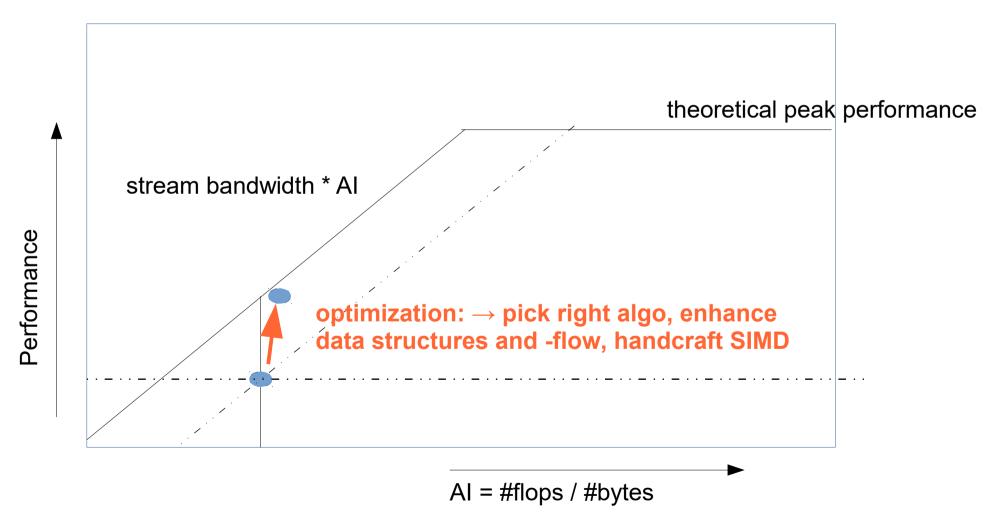
#### today's large-scale FEM codes

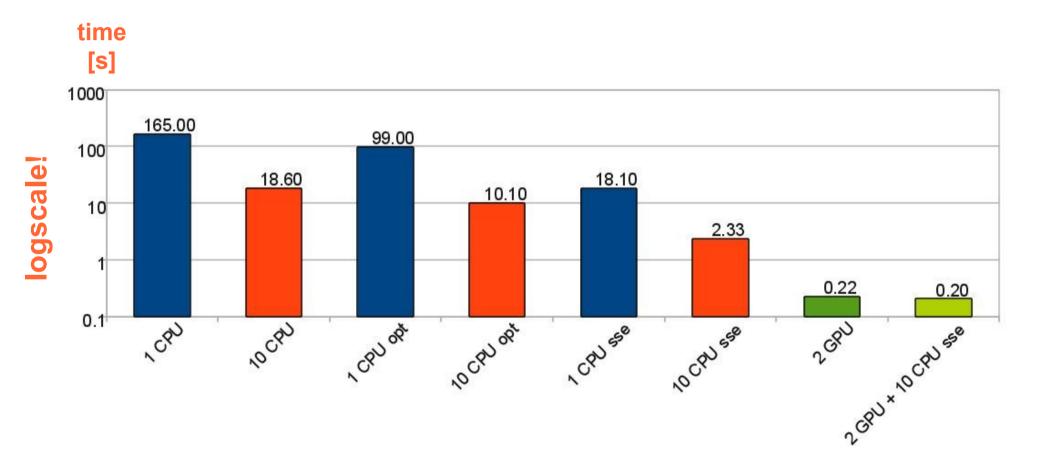

- $\rightarrow$  have to adapt to target hardware
- $\rightarrow$  heterogeneity and frameworking
- $\rightarrow$  parallelisation of applications (DD mostly)
- $\rightarrow$  parallelisation of core components (e.g. 'linear solver on GPU')
- $\rightarrow$  optimisation with respect to many details (data flow and SIMD mostly)
- $\rightarrow$  can we have the same results with less energy-consumption?

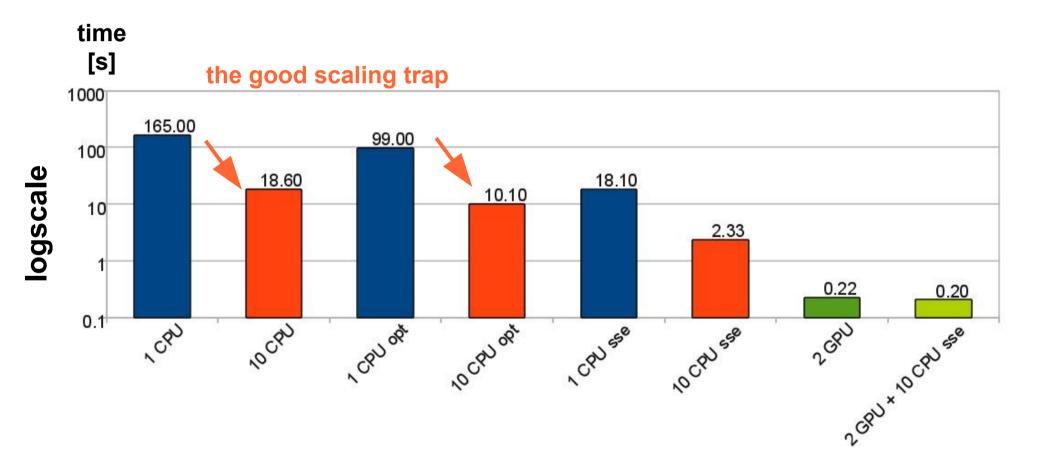

Hardware evolution is usually out of our control – software is not

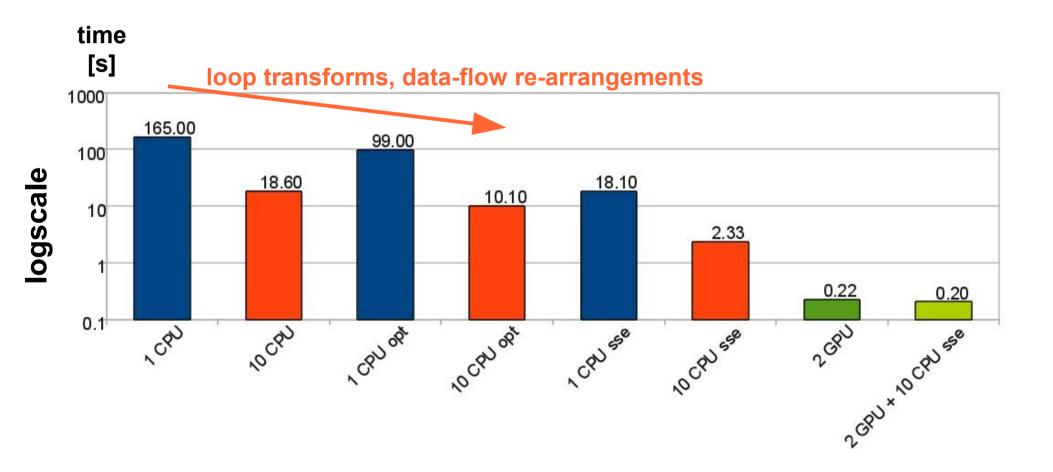

## What we can expect from hardware

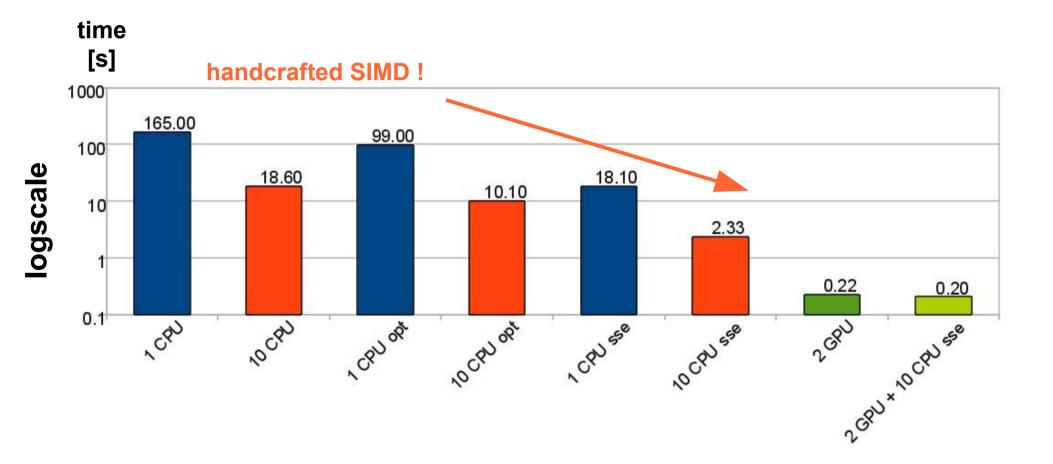


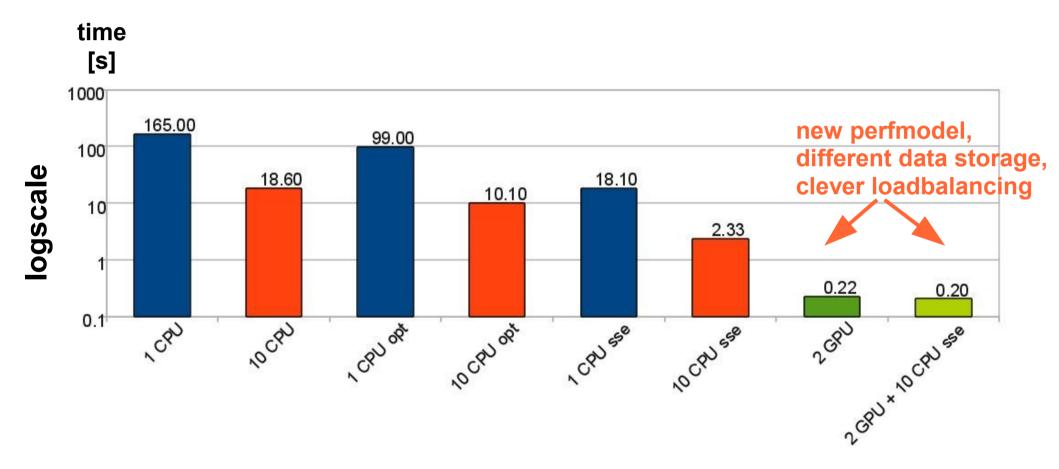


## What we can expect from hardware



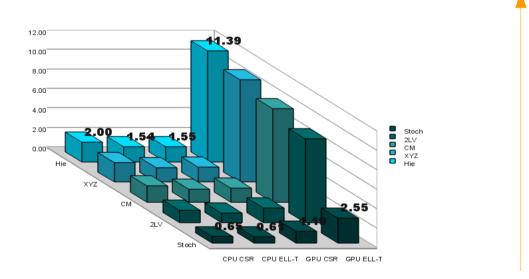



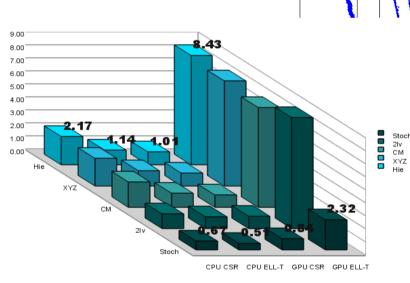






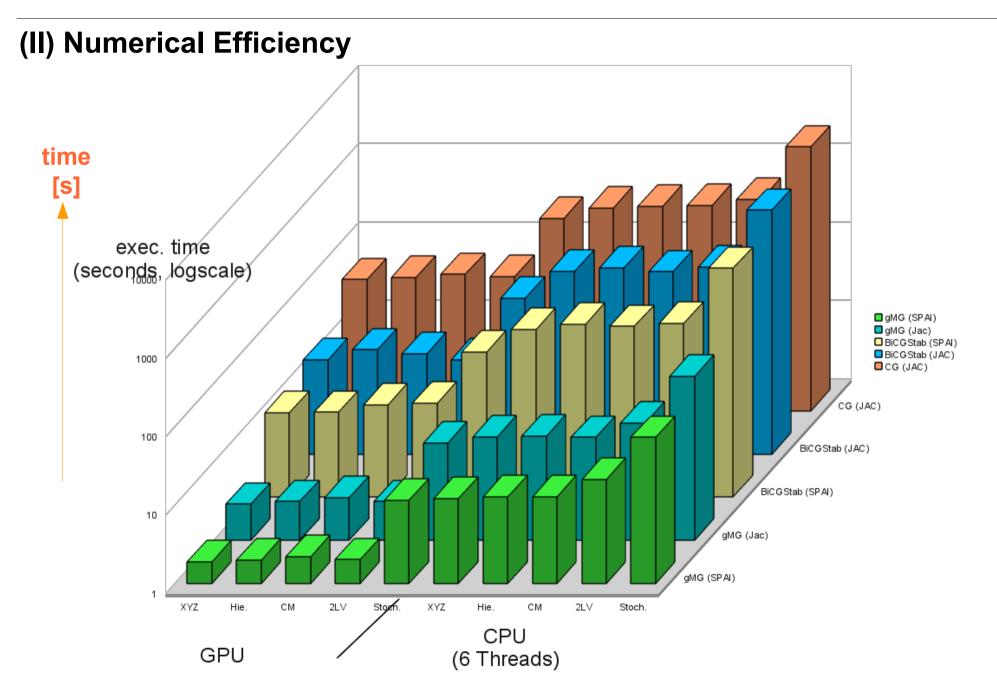



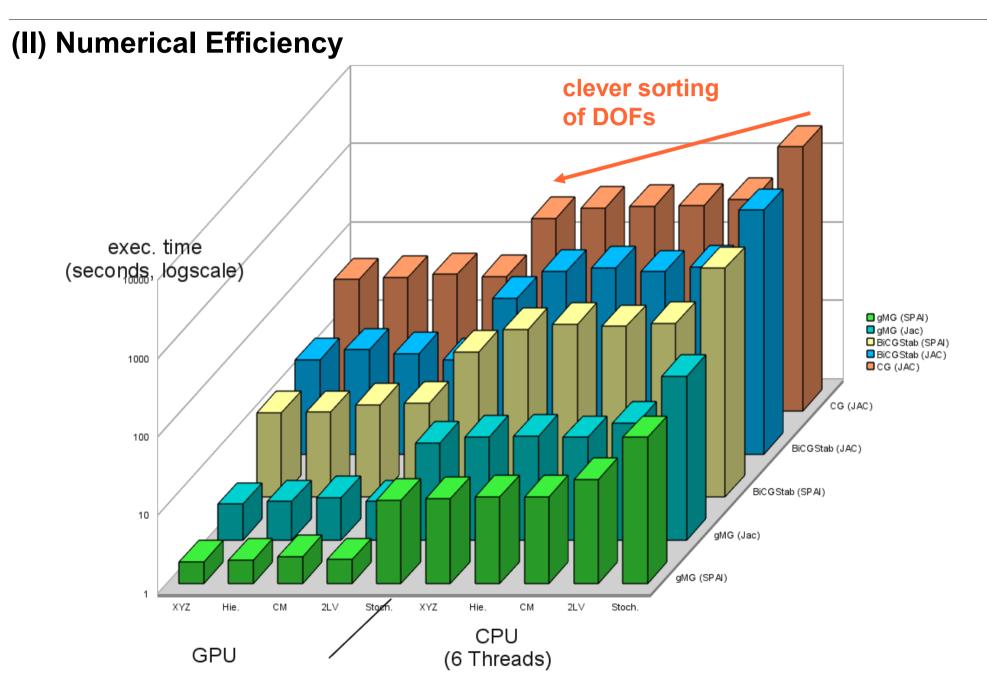


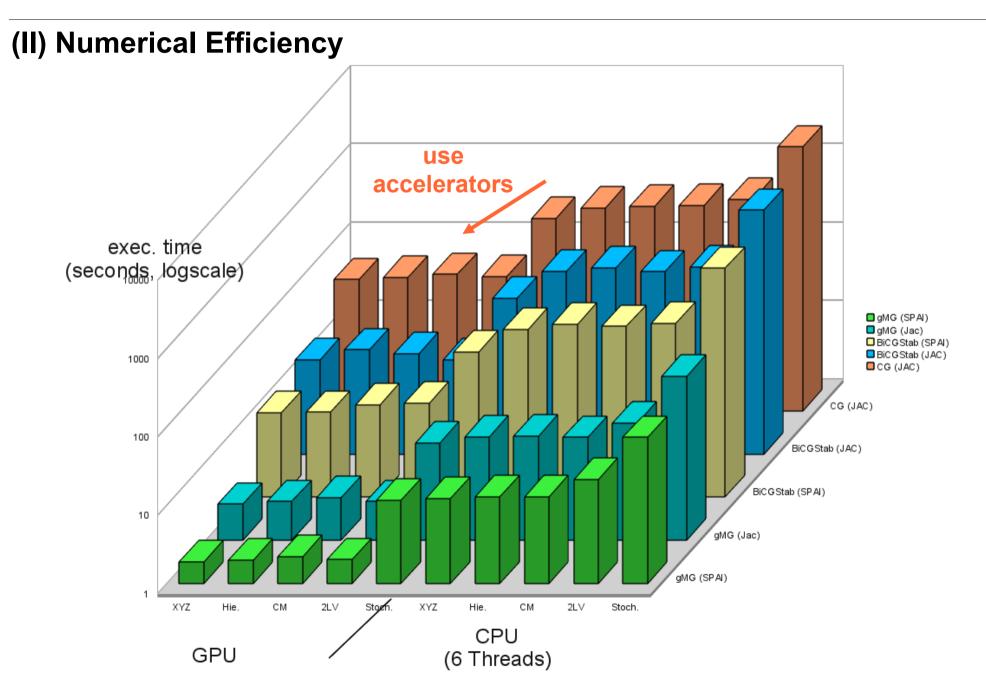


## (I) Hardware Efficiency: kernel-based optimisation: SpMV

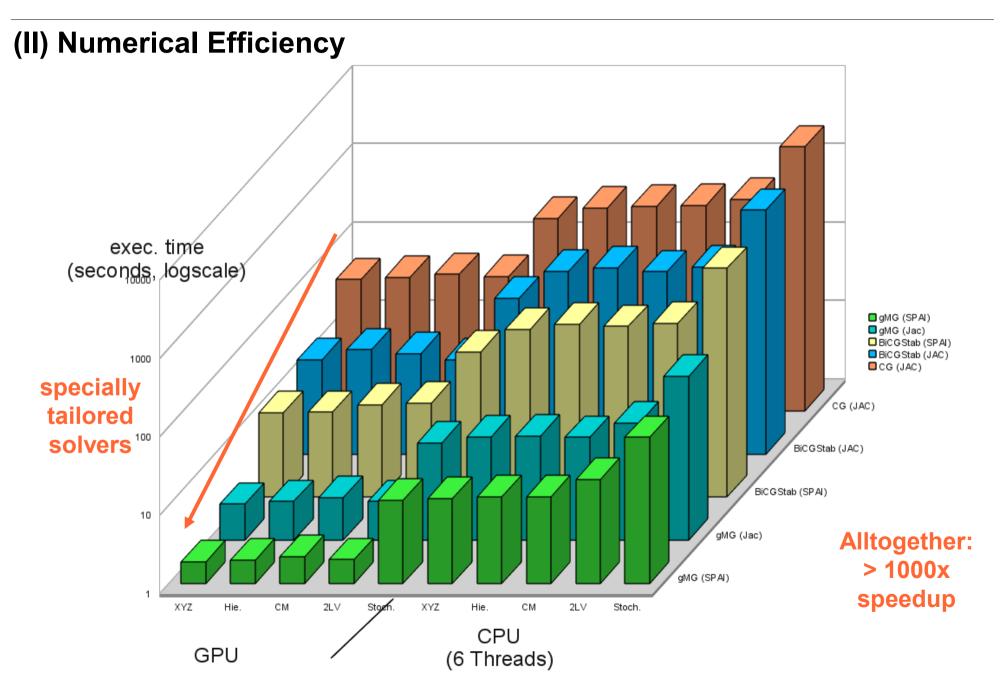
- one of the most prominent kernels in solving PDEs with high-end FEM
- memory access matters a lot
- hardware efficiency considerations start early: DOF numbering
- hardware-efficiency requires different matrix storage
- FE space matters





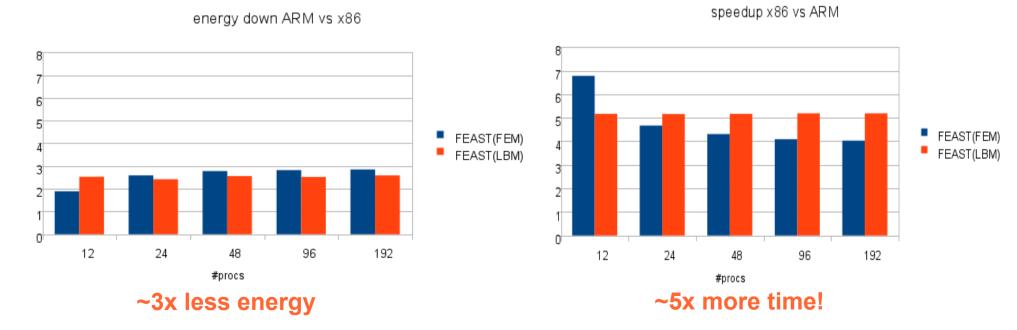


Q1





Q2

## $\rightarrow$ good, but: sole concentration on HE will not do the job

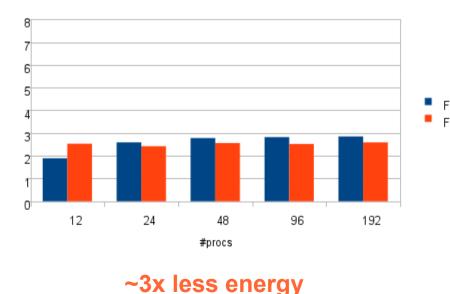




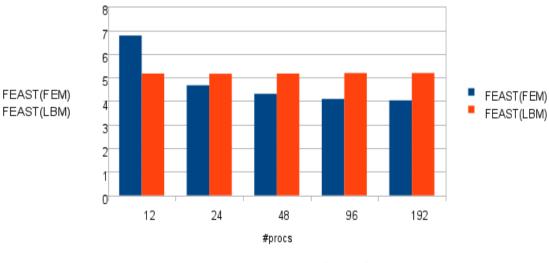





## (III) *Energy* Efficiency (?)


- energy consumption/efficiency is one of the major challenges for future supercomputers
   → exascale challenge
- we can not afford to go all 'macho-flops' any more
- in 2012 we proved: we can solve PDEs for less energy 'than normal'
- simply by switching computational hardware from commodity to embedded
- Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
- tradeoff between energy and wall clock time




## (III) *Energy* Efficiency (?)

To be more energy efficient with different computational hardware, this hardware would have to dissipate *less power* at the *same performance* as the other!

 $\rightarrow$  More performance per Watt!



energy down ARM vs x86



speedup x86 vs ARM

~5x more time!

## (III) Energy Efficiency: technology of ARM-based SoCs since 2012

Something has been happening in the mobile-computing hardware evolution:

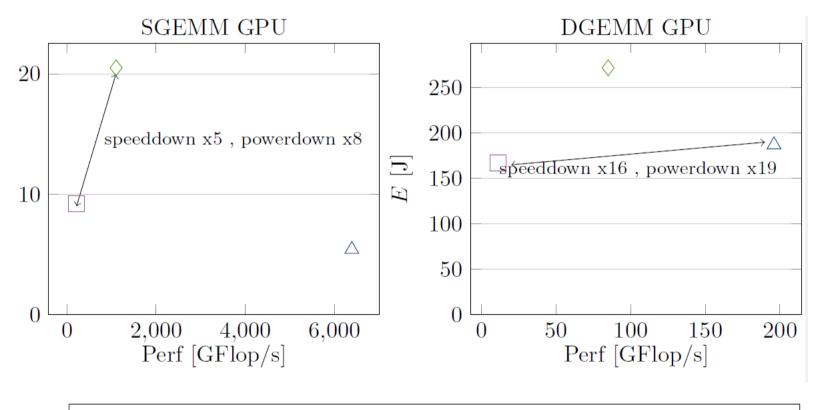
[one word in advance: there are many more SoC designs (like from TI, Qualcomm, ...)]

- $\rightarrow$  Tegra 3 (late 2012) was also based on A9 but had 4 cores
- $\rightarrow$  Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and LPDDR3 instead of LPDDR2
- → Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more memory

More importantly: TK1 went GPGPU and comprises a programmable Kepler GPU on the same SoC!

- $\rightarrow$  the promise: 350+ Gflop/s for less than 11W
- $\rightarrow$  for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W
- $\rightarrow$  2.5x higher EE promised
- $\rightarrow$  interesting for Scientific Computing! Higher EE than commodity!

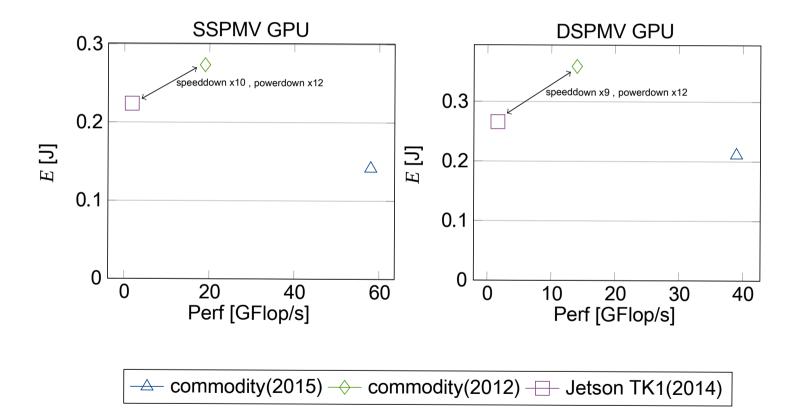
## Power consumption and performance of basic kernels


#### **Testhardware**

|                       | i5-3470                                                | i5-4690K                                              | Jetson TK1                    |
|-----------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| micro-architecture    | Ivy Bridge                                             | Haswell                                               | Cortex-A15 (Tegra K1)         |
| $N_{ m cores}$        | 4                                                      | 4                                                     | 4                             |
| clock speed           | $3.20 \mathrm{GHz} \mathrm{(turbo} 3.60 \mathrm{GHz})$ | $3.50 \mathrm{GHz} \mathrm{(turbo} 3.9 \mathrm{GHz})$ | $2.3\mathrm{GHz}$             |
| L1-cache              | $4x \ 32 \text{ KB} + 4x \ 32 \text{ KB}$              | $4x \ 32 \text{ KB} + 4x \ 32 \text{ KB}$             | 32  KB + 32  KB               |
| L2- / L3-cache        | 4x 256 KB / 6 MB                                       | 4x 256 KB / 6 MB                                      | $2 \mathrm{MB}$ / $-$         |
| memory type           | DDR3                                                   | DDR3                                                  | LPDDR3                        |
| peak memory bandwidth | $25.6  \mathrm{GByte/s}$                               | $25.6\mathrm{GByte/s}$                                | $14.9\mathrm{GByte/s}$        |
| $P_{\text{base}}$     | 51 W (Intel chipset)                                   | 41 W (Intel chipset)                                  | $3.9 \mathrm{W}$ (Jetson TK1) |
| release date          | Q2'12                                                  | Q2'14                                                 | Q2'14                         |
|                       | 1                                                      |                                                       |                               |

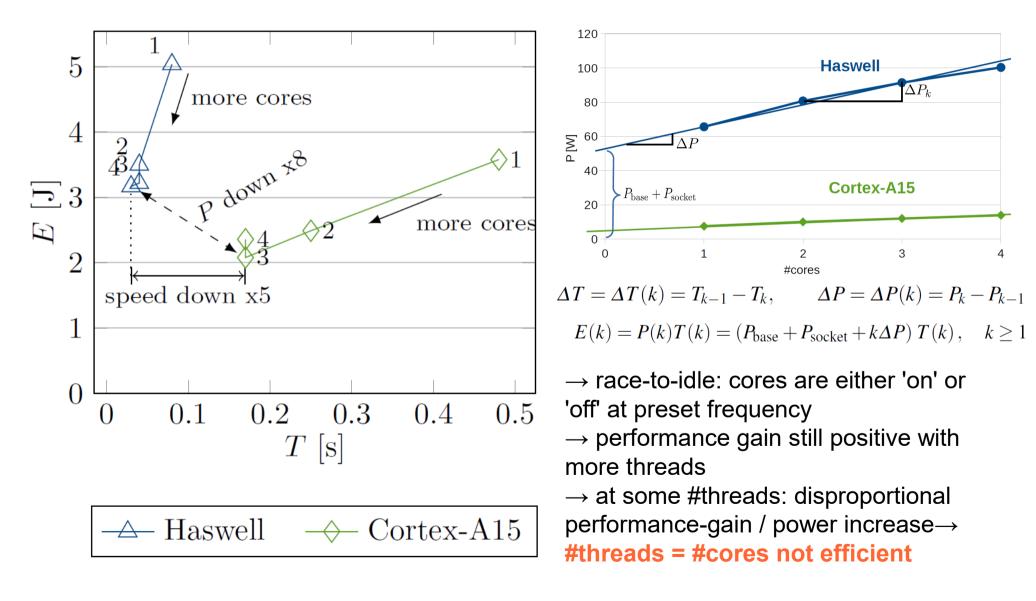
|                       | GeForce GTX 660 system   | GeForce GTX 980 system   | Jetson TK1              |
|-----------------------|--------------------------|--------------------------|-------------------------|
| micro-architecture    | GeForce GTX 660          | GeForce GTX 980 Ti       | GK20a (Kepler)          |
| memory type           | GDDR5                    | GDDR5                    | LPDDR3                  |
| peak memory bandwidth | $144.2\mathrm{GByte/s}$  | $336.5\mathrm{GByte/s}$  | $14.9\mathrm{GByte/s}$  |
| peak performance (SP) | $1881  \mathrm{GFlop/s}$ | $6054  \mathrm{GFlop/s}$ | $326  \mathrm{GFlop/s}$ |
| peak performance (DP) | $78  \mathrm{GFlop/s}$   | $189  \mathrm{GFlop/s}$  | $13  \mathrm{GFlop/s}$  |
| $P_{\text{base}}$     | 41 W (Intel chipset)     | 51 W (Intel chipset)     | 3.9 W (Jetson TK1)      |
| release date          | Q3'12                    | Q2'15                    | Q2'14                   |

## Power consumption and performance of basic kernels


S/DGEMM



 $\rightarrow$  commodity(2015)  $\rightarrow$  commodity(2012)  $\rightarrow$  Jetson TK1(2014)


## Power consumption and performance of basic kernels

S/DSpMV (ELL)



# Applications

## DG-FEM SWE solver (UTBEST3D, Erlangen)



# **Total efficiency?**

#### (some) aspects of efficiency

→ numerical efficiency dominates asymptotic behaviour and wall clock time

#### $\rightarrow$ hardware-efficiency

 $\rightarrow$  exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a chip/device/socket, multi-processing in a cluster, hybrids)

 $\rightarrow$  then try to reach good scalability (communication optimisations, block comm/comp)

#### $\rightarrow \text{energy-efficiency}$

 $\rightarrow$  by hardware:

 $\rightarrow$  what is the most energy-efficient computer hardware? What is the best core frequency? What is the optimal number of cores used?

 $\rightarrow$  by software as a direct result of performance

Hardware-oriented Numerics: Enhance hardware- and numerical efficiency simultaneously, use (most) energy-efficient Hardware(-settings) where available! Attention: codependencies!

Today's major example: (local) unstructured grid geometric Multigrid with Approximate Inverse smoothers on GPUs

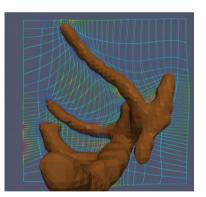
# Example: smoother / preconditioner

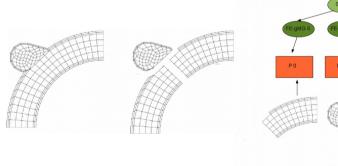
#### weak smoother / preconditioner:

- $\rightarrow$  e.g. Jacobi
- $\rightarrow$  rapid execution on hardware
- $\rightarrow$  large number of iterations in solver

#### strong(er) smoothing / preconditioning

- $\rightarrow$  e.g. ILU
- $\rightarrow$  hard to parallelize  $\rightarrow$  slow execution on today's hardware
- $\rightarrow$  small amount of iterstions in solver


#### Which is better? What does better mean? Is there something in between?


# One simple idea: base everything on SpMV...

## ...and pull the most out of it

#### FEgMG: context

- $\rightarrow$  (local to a process) geometric multigrid for unstructured grids
- $\rightarrow$  within a Schwarz-type domain decomposition: in global solver, use:





## ScaRC-preconditioner:

$$1 \quad d \leftarrow b - Ax$$

2 
$$y \leftarrow \widetilde{\sum_{i}} R_i^T MG(d)$$
, where  $MG(d)$ :

$$1 \quad d_i \leftarrow R_i d$$

2 
$$y_i \leftarrow \mathsf{FE-gMG}(B_i, d_i)$$
  
3  $y \leftarrow \widetilde{\sum}_i R_i^T y_i$ 

$$3 \quad x \leftarrow x + y$$

#### **FEgMG: ingredients**

- $\rightarrow$  (local) geometric multigrid for unstructured grids
- $\rightarrow$  with Approximate Inverse smoothers
- $\rightarrow$  with FE transfer operators
- $\rightarrow$  with clever DOF sorting
- $\rightarrow$  on GPUs (and multicore CPUs)
- $\rightarrow$  all based on one kernel: SpMV

# One simple idea: base everything on SpMV...

## ...and pull the most out of it

#### concentrate all tuning in one kernel: sparse matrix vector multiply (SpMV)

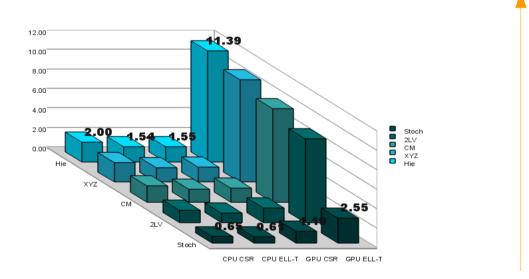
- $\rightarrow$  in coarse-grid solver: preconditioned Krylov subspace methods
- $\rightarrow$  smoother: preconditioned Richardson iteration or Krylov subspace method
- $\rightarrow$  local preconditioners by approximate inverses
- $\rightarrow$  grid transfers
- $\rightarrow$  defect

#### the remainder

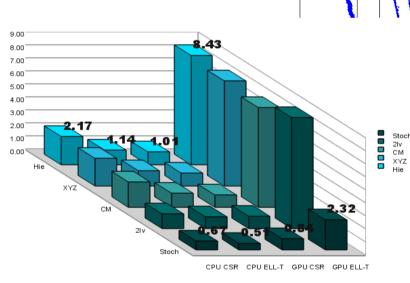
- $\rightarrow$  a little BLAS1 (dot-product, norm, scale, ...)
- $\rightarrow$  important: grid transfer operators can also be realised as SpMV

#### advantages

- $\rightarrow$  flexibility (only matrices are switched): blackbox
- $\rightarrow$  oblivious of FE-space, dimension, ...
- $\rightarrow$  performance-tuning concentrated


#### disadvantages

 $\rightarrow$  we somewhat move the problem from solver to assembly of matrices


## (I) Hardware Efficiency: kernel-based optimisation: SpMV

- one of the most prominent kernels in solving PDEs with high-end FEM
- memory access matters a lot
- hardware efficiency considerations start early: DOF numbering
- hardware-efficiency requires different matrix storage
- FE space matters





Q1



Q2

## $\rightarrow$ good, but: sole concentration on HE will not do the job

# SpMV in MG for GPU

#### **ELLPACK-type matrix storage**

 $\rightarrow$  store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column-lndex for each entry in A)

- $\rightarrow$  A has (#rows in S) (maximum #non-zeros in rows of S)
- $\rightarrow$  shorter rows are filled
- $\rightarrow$  additional array rl to store eective non-zeros count per row (get stop on row right)

#### advantages

- $\rightarrow$  complete regular access pattern to y and A
- $\rightarrow$  GPU implementation:
  - $\rightarrow$  one thread for each element yi
  - $\rightarrow$  access to all ELLPACK-R arrays and y completely coalesced (column-major)
- $\rightarrow$  access on x: use texture-cache (FERMI and up : L2-cache)
- $\rightarrow$  no synchronisation between threads needed
- $\rightarrow$  no branch-divergence
- $\rightarrow$  in addition: multiple threads can access one row (ELLPACK-T)
- $\rightarrow$  access to x depends on non-zero pattern of A ! bandwidth given by  $\rightarrow$  DOF-numbering

$$S = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix} \implies A = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \mathbf{j} = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix} \mathbf{r1} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

## smoother: SPAI

#### SPAI

$$|| I - M_{\text{SPAI}}A ||_F^2 = \sum_{k=1}^n || \mathbf{e}_k^{\text{T}} - \mathbf{m}_k^{\text{T}}A ||_2^2 = \sum_{k=1}^n || A^{\text{T}}\mathbf{m}_k - \mathbf{e}_k ||_2^2$$

 $\rightarrow$  where  $\mathbf{e}_k$  is the *k*-th unit vektor and the *k*-th row of  $M = [\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n]$ :

 $\rightarrow$  for n columns of M  $\rightarrow$  n least squares opt-problems:

$$\min_{m_k} \| A^{\mathrm{T}} \mathbf{m}_k - \mathbf{e}_k \|_2, \ k = 1, \dots n.$$

 $\rightarrow$  use non-zero pattern of the stiffness matrix for M  $\rightarrow$  put it into a Richardson Iteration

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \omega M_{\text{SPAI}}(\mathbf{b} - A\mathbf{x}^k)$$

# FegMG: SPAI(1) as a smoother

| Q1    |      |       |      |       | CPU         |        |       |             |      |       | (           | GPU         |
|-------|------|-------|------|-------|-------------|--------|-------|-------------|------|-------|-------------|-------------|
|       | Jac  | obi   |      | SPAI  |             | Jacobi |       |             | SPAI |       |             |             |
| sort  | time | #iter | time | #iter | speedup jac | time   | #iter | speedup cpu | time | #iter | speedup jac | speedup cpu |
| 2lv   | 4.04 | 13    | 2.54 | 5     | 1.59        | 1.06   | 13    | 3.82        | 0.56 | 5     | 1.88        | 4.53        |
| СМ    | 3.65 | 13    | 2.19 | 5     | 1.66        | 1.03   | 13    | 3.55        | 0.72 | 5     | 1.43        | 3.05        |
| XYZ   | 3.48 | 13    | 2.06 | 5     | 1.69        | 0.98   | 13    | 3.53        | 0.51 | 5     | 1.93        | 4.04        |
| Stoch | 4.04 | 13    | 2.57 | 5     | 1.57        | 1.74   | 13    | 2.33        | 1.04 | 5     | 1.66        | 2.46        |
| Hie   | 3.49 | 13    | 2.07 | 5     | 1.69        | 0.97   | 13    | 3.59        | 0.50 | 5     | 1.94        | 4.14        |

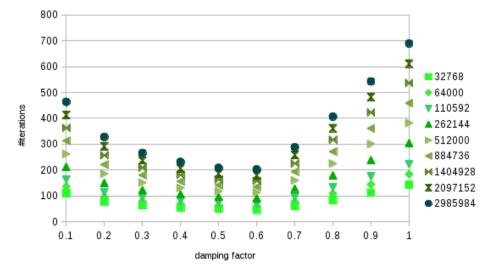
| Q2    |       |             |      |        | CPU         |      |       |             |      |       | (           | GPU         |
|-------|-------|-------------|------|--------|-------------|------|-------|-------------|------|-------|-------------|-------------|
|       | Jaco  | Jacobi SPAI |      | Jacobi |             |      | SPAI  |             |      |       |             |             |
| sort  | time  | #iter       | time | #iter  | speedup jac | time | #iter | speedup cpu | time | #iter | speedup jac | speedup cpu |
| 2lv   | 13.19 | 22          | 4.87 | 5      | 2.71        | 2.27 | 22    | 5.80        | 0.93 | 5     | 2.44        | 5.22        |
| СМ    | 11.40 | 22          | 4.40 | 5      | 2.59        | 2.50 | 22    | 4.56        | 1.02 | 5     | 2.44        | 4.30        |
| XYZ   | 11.29 | 22          | 4.21 | 5      | 2.68        | 2.41 | 22    | 4.69        | 0.99 | 5     | 2.44        | 4.26        |
| Stoch | 12.92 | 22          | 5.14 | 5      | 2.51        | 4.78 | 22    | 2.70        | 2.04 | 5     | 2.35        | 2.52        |
| Hie   | 11.25 | 22          | 4.24 | 5      | 2.66        | 2.44 | 22    | 4.60        | 1.00 | 5     | 2.43        | 4.22        |

## FEAT $\rightarrow$ DUNE: first steps

use SPAI in DUNE: in a BiCGStab iteration, use as preconditioner:

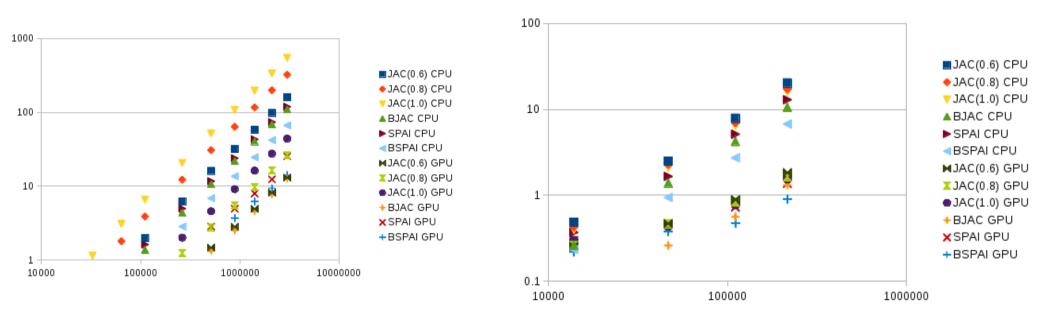
 $\rightarrow$  Jacobi iteration

$$S_{\text{JAC}}^{\boldsymbol{\omega}}: \mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \boldsymbol{\omega} M_{\text{JAC}}(\mathbf{b} - A\mathbf{x}^k), k = 1, \dots, K$$


 $\rightarrow$  DG-block Jacobi iteration

$$S_{\text{BJAC}}: \mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + M_{\text{BJAC}}(\mathbf{b} - A\mathbf{x}^k), k = 1, \dots, K$$

$$M_{\rm BJAC} = \sum_i R_i^T A_i^{-1} R_i$$


 $\rightarrow$  SPAI direct application

 $S_{\text{SPAI}}$ :  $\mathbf{x} \leftarrow M_{\text{SPAI}}\mathbf{x}$ 



# $\mathsf{FEAT} \to \mathsf{DUNE}$

#### First results: DG1 and DG2



## **Current supercomputers**

| RANK | SITE                                                                  | SYSTEM                                                                                                                        | CORES     | RMAX<br>(TFLOP/S) | RPEAK<br>(TFLOP/S) | POWER<br>(KW) | Mflop |
|------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------------------|---------------|-------|
| 1    | National Super Computer<br>Center in Guangzhou<br>China               | Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel<br>Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon<br>Phi 31S1P<br>NUDT | 3,120,000 | 33,862.7          | 54,902.4           | 17,808        | 1902  |
| 2    | DOE/SC/Oak Ridge National<br>Laboratory<br>United States              | Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray<br>Gemini interconnect, NVIDIA K20x<br>Cray Inc.                           | 560,640   | 17,590.0          | 27,112.5           | 8,209         | 2143  |
| 3    | DOE/NNSA/LLNL<br>United States                                        | <b>Sequoia</b> - BlueGene/Q, Power BQC 16C 1.60 GHz,<br>Custom<br>IBM                                                         | 1,572,864 | 17,173.2          | 20,132.7           | 7,890         | 2177  |
| 4    | RIKEN Advanced Institute for<br>Computational Science (AICS)<br>Japan | K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect<br>Fujitsu                                                               | 705,024   | 10,510.0          | 11,280.4           | 12,660        | 830   |
| 5    | DOE/SC/Argonne National<br>Laboratory<br>United States                | Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom<br>IBM                                                                       | 786,432   | 8,586.6           | 10,066.3           | 3,945         |       |
| 6    | Swiss National<br>Supercomputing Centre<br>(CSCS)<br>Switzerland      | Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz,<br>Aries interconnect , NVIDIA K20x<br>Cray Inc.                             | 115,984   | 6,271.0           | 7,788.9            | 2,325         | 2 –   |
| 7    | King Abdullah University of<br>Science and Technology<br>Saudi Arabia | Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz,<br>Aries interconnect<br>Cray Inc.                                         | 196,608   | 5,537.0           | 7,235.2            | 2,834         | Sim   |
| 8    | Texas Advanced Computing<br>Center/Univ. of Texas<br>United States    | Stampede - PowerEdge C8220, Xeon E5-2680 8C<br>2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P<br>Dell                         | 462,462   | 5,168.1           | 8,520.1            | 4,510         | at I  |
| 9    | Forschungszentrum Juelich<br>(FZJ)<br>Germany                         | JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz,<br>Custom Interconnect<br>IBM                                                   | 458,752   | 5,008.9           | 5,872.0            | 2,301         |       |
| 10   | DOE/NNSA/LLNL<br>United States                                        | Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz,<br>Custom Interconnect<br>IBM                                                    | 393,216   | 4,293.3           | 5,033.2            | 1,972         |       |

Mflop/s / W 1902

2 – 17 MW of power!

Simulation comes at huge cost!

## Accelerators rule the field, unconventional design is leading.

|         | Green500<br>Rank | MFLOPS/W | Site*                                                 | Computer*                                                                                                   | Total<br>Power<br>(kW) |
|---------|------------------|----------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|
| Japan   | 1                | 7,031.58 | RIKEN                                                 | Shouby ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC                            | 50.32                  |
| Japan   | 2                | 6,842.31 | High Energy Accelerator<br>Research Organization /KEK | Suiren Blue - ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz,<br>Infinibanc <mark>,</mark> PEZY-SC        | 28.25                  |
| Japan   | 3                | 6,217.04 | High Energy Accelerator<br>Research Organization /KEK | Suiren - ExaScrier 92U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz,<br>Infiniband FDR PEZY-SC             | 32.59                  |
| Germany | 4                | 5,271.81 | GSI Helmholtz Center                                  | ASUS ESC4000 EDR/C2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150                      | 57.15                  |
| Japan   | 5                | 4,257.88 | GSIC Center, Tokyo Institute of<br>Technology         | TSUBAME-KFC - LX 1U-4GF0/104Re-TG Cluster, Intel Xeon E5-2620v2<br>6C 2.100GHz, Infiniband FDF, NVIDIA K20x | 39.83                  |
| USA     | 6                | 4,112.11 | Stanford Research Computing<br>Center                 | XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80                        | 190.00                 |
| USA     | 7                | 3,962.73 | Cray Inc.                                             | Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m                        | 44.54                  |
| USA     | 8                | 3,631.70 | Cambridge University                                  | Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20                    | 52.62                  |
| Germany | 9                | 3,614.71 | TU Dresden, ZIH                                       | Taurus GPUs - Bull bullx R400, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Nvidia K80                        | 58.01                  |
| USA     | 10               | 3,543.32 | Financial Institution                                 | iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x                               | 54.60                  |

## **Greenmost supercomputers are 'unconventional'**

# Green HPC

# http://www.green500.org/lists/green201506

## **Green HPC**

#### **Greenmost supercomputers are 'unconventional'**

| Top500<br>rank | Green500<br>Rank | MFLOPS/W | Site*                                                 | Computer*                                                                                                   | Total<br>Power<br>(kW) |
|----------------|------------------|----------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|
| 160            | 1                | 7,031.58 | RIKEN                                                 | Shoubu - ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC                          | 50.32                  |
| 392            | 2                | 6,842.31 | High Energy Accelerator<br>Research Organization /KEK | Suiren Blue - ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz,<br>Infiniband, PEZY-SC                      | 28.25                  |
| 366            | 3                | 6,217.04 | High Energy Accelerator<br>Research Organization /KEK | Suiren - ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, PEZY-SC               | 32.59                  |
| 215            | 4                | 5,271.81 | GSI Helmholtz Center                                  | ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150                      | 57.15                  |
|                | 5                | 4,257.88 | GSIC Center, Tokyo Institute of Technology            | TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2<br>6C 2.100GHz, Infiniband FDR, NVIDIA K20x | 39.83                  |
|                | 6                | 4,112.11 | Stanford Research Computing<br>Center                 | XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80                        | 190.00                 |
|                | 7                | 3,962.73 | Cray Inc.                                             | Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m                        | 44.54                  |
|                | 8                | 3,631.70 | Cambridge University                                  | Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20                    | 52.62                  |
|                | 9                | 3,614.71 | TU Dresden, ZIH                                       | Taurus GPUs - Bull bullx R400, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Nvidia K80                        | 58.01                  |
|                | 10               | 3,543.32 | Financial Institution                                 | iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x                               | 54.60                  |
|                |                  |          | Still not develo                                      | oped under the premise                                                                                      |                        |

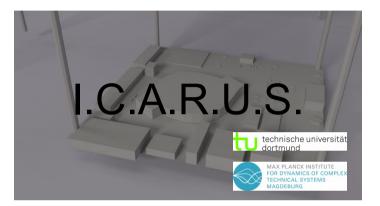
# of EE, power source not included in thinking yet

# Unconventional HPC for EE

## Bring together the two pillars of Energiewende for HPC

- Renewable power source
- Energy Efficiency
  - $\rightarrow$  Design the hardware for EE
  - $\rightarrow$  Design the software for the hardware by using HWON




# A compute center of the future (?)

## Vision

- Insular
- Compute-center for
- Applied Mathematics with
- Renewables-provided power supply based on
- Unconventional compute hardware empaired with
- Simulation Software for Technical Processes

## **Motivation**

- system integration for Scientific HPC
  - $\rightarrow$  high-end unconventional compute hardware
  - $\rightarrow$  high-end renewable power source (photo-voltaic)
  - $\rightarrow$  specially tailored numerics and simulation software: high end Mathematics
- no future spendings due to energy consumtion
- SME-class resource: <80K€</p>
- Scalability, modular design
- (simplicity)
- (maintainability)
- (safety)



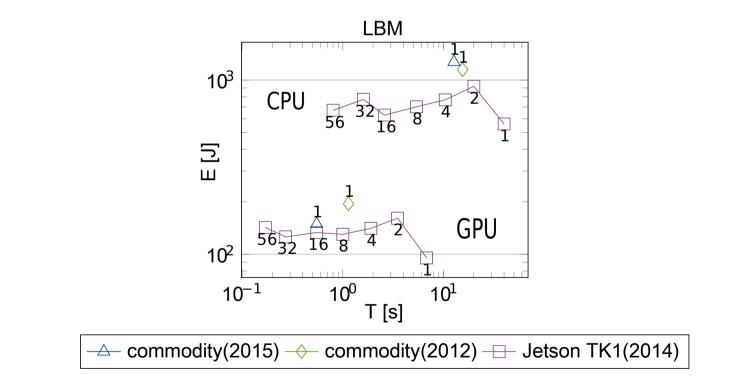
# I.C.A.R.U.S.

## Whitesheet

- $\rightarrow$  **nodes:** 60 x NVIDIA Jetson TK 1
- $\rightarrow$  #cores (ARM Cortex-A15): 240
- $\rightarrow$  #GPUs (Kepler, 192 cores): 60
- $\rightarrow$  RAM/core: 2GB LPDDR3
- $\rightarrow$  switches (GiBit Ethernet): 3xL1, 1xL2
- $\rightarrow$  cluster theoretical peak perf: ~20TFlop/s SP
- $\rightarrow$  cluster peak power (including cooling/heating): < 2kW, provided by PV

## → **storage:** 10+1 BananaPI Boards comprising:

- $\rightarrow$  1 TB Western Digital Eco HDD
- $\rightarrow$  2 Dual Core ARM (1 GHz,1 GB RAM)
- $\rightarrow$  GigabitEthernet networking
- $\rightarrow$  SATA


 $\rightarrow$  plus 16 GB eMMC internal (OS) and 128 GB SD swap / scratch per node

## $\rightarrow$ Software: FEAT (optimised for Tegra K1): www.featflow.de

# **Applications**

## **LBM SWE solver**

- $\rightarrow$  complex things happen in apps
  - $\rightarrow$  frequent kernel-switches
  - → many frequency-adjustments?



# Conclusion

- HWON is threefold now: EE comes into play
- $\rightarrow$  smaller power dissipation alone is not the deal
  - $\rightarrow$  performance modelling/-engineering of software for EE is needed
- Hardware-/Software Co-Design can be a starting point:
  - $\rightarrow$  Embedded tech has a different history than commodity hardware
  - $\rightarrow$  Energy Efficiency is just starting to arrive in HPC
  - $\rightarrow$  System Integration with state-of-the-art PV tech (or other renewables) is promising
- The I.C.A.R.U.S. computer and its housing/energy-source plus the FEAT software together offers a valuable ressource aiming at SMEs/University departments

# Thank you



www.icarus-green-hpc.org

This work was also supported (in part) by the German Research Foundation (DFG) through the Priority Programme 1648 `Software for Exascale Computing' (grant TU 102/48).

I.C.A.R.U.S. hardware is financed by MIWF NRW under the lead of MERCUR.