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Outline

How can we take control of performance (different metrics) in FEM?

→ Hardware-oriented Numerics
→ Our perspective on performance engineering in FEAT
→ Green computing, Hardware-oriented Numerics and Unconventional HPC
→ Simulation w.r.t. hardware-, numerical-, and energy-efficiency

→ A case study for performance engineering in the FEAT software family and 
SPPEXA

→ A prototype for future Data Centers
→ Preliminary work with ARM-based clusters
→ the I.C.A.R.U.S experimental cluster based on NVIDIA Tegra K1 combined with 
photovoltaic solar farming
→ modeling energy in FEM frameworks



Motivation: where it all leads...

Simulation of technical flows with FEATFLOW
characteristics:
→ high end modeling, numerics
→ huge requirements: computation
→ at some point: huge system to 
solve 



Hardware

today's HPC facilities
→ comprise heterogeneous compute nodes
→ multicore CPU(s) + some accelerator very common (GPU, XEON Phi)
→ heterogeneity on-a-chip (SoCs, APUs)
→ cost efficiency dominated by energy-efficiency

today's large-scale FEM codes
→ have to adapt to target hardware
→ heterogeneity and frameworking
→ parallelisation of applications (DD mostly)
→ parallelisation of core components (e.g. 'linear solver on GPU')
→ optimisation with respect to many details (data flow and SIMD mostly)
→ can we have the same results with less energy-consumption?

Hardware evolution is usually out of 
our control – software is not

 



What we can expect from hardware
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What we can expect from hardware

 on this architecture
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Three possibilities to tweak
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(1) bad AI due to 'wrong' numerics or
implementation 
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(2) and / or something went wrong 
regarding memory access patterns:
→ no / bad software prefetching
→ missing NUMA adjustments
→ bad coalescence 



Three possibilities to tweak
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(3) and / or something went wrong 
regarding atomic operations, most likely:
→ no / bad SIMD
→ no FMA



Three possibilities to tweak
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optimization: → pick right algo, enhance 
data structures and -flow, handcraft SIMD



Hardware-oriented Numerics
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Hardware-oriented Numerics
lo

g
s

ca
le

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s] loop transforms, data-flow re-arrangements



Hardware-oriented Numerics
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(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s] handcrafted SIMD !
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(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s]

new perfmodel,
different data storage,
clever loadbalancing



Hardware-oriented Numerics

(I) Hardware Efficiency: kernel-based optimisation: SpMV

 one of the most prominent kernels in solving PDEs with high-end FEM
 memory access matters a lot
 hardware efficiency considerations start early: DOF numbering
 hardware-efficiency requires different matrix storage
 FE space matters

Q1 Q2

Performance
[Gflop/s]

→ good, but: sole concentration on HE will not do the job
 



Hardware-oriented Numerics

(II) Numerical Efficiency

time
[s]



Hardware-oriented Numerics

(II) Numerical Efficiency

clever sorting 
of DOFs



Hardware-oriented Numerics

(II) Numerical Efficiency

use 
accelerators



Hardware-oriented Numerics

(II) Numerical Efficiency

specially 
tailored
solvers

Alltogether:
> 1000x 
speedup



Hardware-oriented Numerics

(III) Energy Efficiency (?)
 energy consumption/efficiency is one of the major challenges for future supercomputers

→ exascale challenge
 we can not afford to go all 'macho-flops' any more
 in 2012 we proved: we can solve PDEs for less energy 'than normal'
 simply by switching computational hardware from commodity to embedded
 Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
 tradeoff between energy and wall clock time

~3x less energy ~5x more time!



Hardware-oriented Numerics

(III) Energy Efficiency (?)

To be more energy efficient with different computational hardware, this hardware 
would have to dissipate less power at the same performance as the other!

→ More performance per Watt!

~3x less energy ~5x more time!



Hardware-oriented Numerics

(III) Energy Efficiency: technology of ARM-based SoCs since 2012
Something has been happening in the mobile-computing hardware evolution:

[one word in advance: there are many more SoC designs (like from TI, Qualcomm, …)]

→ Tegra 3 (late 2012) was also based on A9 but had 4 cores
→ Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and 

LPDDR3 instead of LPDDR2
→ Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more 

memory

More importantly: TK1 went GPGPU and comprises a programmable Kepler 
GPU on the same SoC!

→ the promise: 350+ Gflop/s for less than 11W
→ for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W

→ 2.5x higher EE promised

→ interesting for Scientific Computing! Higher EE than commodity!



Power consumption and performance of basic kernels
Testhardware



Power consumption and performance of basic kernels
S/DGEMM



Power consumption and performance of basic kernels
S/DSpMV (ELL)
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Applications
DG-FEM SWE solver (UTBEST3D, Erlangen)

→ race-to-idle: cores are either 'on' or 
'off' at preset frequency
→ performance gain still positive with 
more threads
→ at some #threads: disproportional 
performance-gain / power increase→
#threads = #cores not efficient 



Total efficiency?

(some) aspects of efficiency

→ numerical efficiency dominates asymptotic behaviour and wall clock time
 
→ hardware-efficiency

→ exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a 
chip/device/socket, multi-processing in a cluster, hybrids)
→ then try to reach good scalability (communication optimisations, block comm/comp)

→ energy-efficiency
→ by hardware:

→ what is the most energy-efficient computer hardware? What is the best core 
frequency? What is the optimal number of cores used?

→ by software as a direct result of performance

Hardware-oriented Numerics: Enhance hardware- and
numerical efficiency simultaneously, use (most) energy-efficient

Hardware(-settings) where available! Attention: codependencies!

Today's major example: (local) unstructured grid geometric
Multigrid with Approximate Inverse smoothers on GPUs



Example: smoother / preconditioner

weak smoother / preconditioner:
→ e.g. Jacobi
→ rapid execution on hardware
→ large number of iterations in solver

strong(er) smoothing / preconditioning
→ e.g. ILU
→ hard to parallelize → slow execution on today's hardware
→ small amount of iterstions in solver

Which is better? What does better mean? Is there something in between?



One simple idea: base everything on SpMV...

...and pull the most out of it

FEgMG: context
→ (local to a process) geometric multigrid for unstructured grids
→ within a Schwarz-type domain decomposition: in global solver, use:

FEgMG: ingredients
→ (local) geometric multigrid for unstructured grids
→ with Approximate Inverse smoothers
→ with FE transfer operators
→ with clever DOF sorting
→ on GPUs (and multicore CPUs)
→ all based on one kernel: SpMV



One simple idea: base everything on SpMV...

...and pull the most out of it

concentrate all tuning in one kernel: sparse matrix vector multiply (SpMV)
→ in coarse-grid solver: preconditioned Krylov subspace methods
→ smoother: preconditioned Richardson iteration or Krylov subspace method
→ local preconditioners by approximate inverses
→ grid transfers
→ defect

the remainder
→ a little BLAS1 (dot-product, norm, scale, ...)
→ important: grid transfer operators can also be realised as SpMV

advantages
→ flexibility (only matrices are switched): blackbox
→ oblivious of FE-space, dimension, ...
→ performance-tuning concentrated

disadvantages
→ we somewhat move the problem from solver to assembly of matrices



Hardware-oriented Numerics

(I) Hardware Efficiency: kernel-based optimisation: SpMV

 one of the most prominent kernels in solving PDEs with high-end FEM
 memory access matters a lot
 hardware efficiency considerations start early: DOF numbering
 hardware-efficiency requires different matrix storage
 FE space matters

Q1 Q2

Performance
[Gflop/s]

→ good, but: sole concentration on HE will not do the job
 



SpMV in MG for GPU

ELLPACK-type matrix storage
→ store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column-
Index for each entry in A)
→ A has (#rows in S) (maximum #non-zeros in rows of S)
→ shorter rows are filled
→ additional array rl to store eective non-zeros count per row (get stop on row right)

advantages
→ complete regular access pattern to y and A
→ GPU implementation:

→ one thread for each element yi
       → access to all ELLPACK-R arrays and y completely coalesced (column-major)
→ access on x: use texture-cache (FERMI and up : L2-cache)
→ no synchronisation between threads needed
→ no branch-divergence
→ in addition: multiple threads can access one row (ELLPACK-T)
→ access to x depends on non-zero pattern of A ! bandwidth given by → DOF-numbering



smoother: SPAI

SPAI

→ where     is the       unit vektor and  the        row of 

→  for n columns of M →  n least squares opt-problems:

→ use non-zero pattern of the stiffness matrix for M
→ put it into a Richardson Iteration



FegMG: SPAI(1) as a smoother 



FEAT → DUNE: first steps

use SPAI in DUNE: in a BiCGStab iteration, use as preconditioner:

→ Jacobi iteration

→ DG-block Jacobi iteration

→ SPAI direct application 



FEAT → DUNE

First results: DG1 and DG2

 



HPC centers

Current supercomputers

Simulation comes
 at huge cost!
 

2 – 17 MW of power!
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Green HPC

Greenmost supercomputers are 'unconventional'

 

Accelerators rule the field, unconventional design is leading.
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Green HPC

Greenmost supercomputers are 'unconventional'
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Still not developed under the premise 
of EE, power source not included in 

thinking yet
 



Unconventional HPC for EE

Bring together the two pillars of Energiewende for HPC
 Renewable power source
 Energy Efficiency

→ Design the hardware for EE
→ Design the software for the hardware by using HWON



A compute center of the future (?)

 Insular
 Compute-center for
 Applied Mathematics with
 Renewables-provided power supply based on
 Unconventional compute hardware empaired with
 Simulation Software for Technical Processes

Vision

Motivation
 system integration for Scientific HPC

→ high-end unconventional compute hardware
→ high-end renewable power source (photo-voltaic)
→ specially tailored numerics and simulation software: high end Mathematics

 no future spendings due to energy consumtion
 SME-class resource: <80K€
 Scalability, modular design 
 (simplicity)
 (maintainability)
 (safety)
 ...

I.C.A.R.U.S.



I.C.A.R.U.S.

Whitesheet
→ nodes: 60 x NVIDIA Jetson TK 1
→ #cores (ARM Cortex-A15): 240
→ #GPUs (Kepler, 192 cores): 60
→ RAM/core: 2GB LPDDR3
→ switches (GiBit Ethernet): 3xL1, 1xL2
→ cluster theoretical peak perf: ~20TFlop/s SP 
→ cluster peak power (including cooling/heating): < 2kW, provided by PV

→ storage: 10+1 BananaPI Boards comprising:
→ 1 TB Western Digital Eco HDD
→ 2 Dual Core ARM (1 GHz,1 GB RAM)

 → GigabitEthernet networking
 → SATA

→ plus 16 GB eMMC internal (OS) and 128 GB SD swap / scratch per node

→ Software: FEAT (optimised for Tegra K1): www.featflow.de



Applications
LBM SWE solver
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→ complex things happen in apps
→ frequent kernel-switches
→ many frequency-adjustments?



Conclusion

 HWON is threefold now: EE comes into play
 → smaller power dissipation alone is not the deal

→ performance modelling/-engineering of software for EE is needed

 Hardware-/Software Co-Design can be a starting point:
→ Embedded tech has a different history than commodity hardware
→ Energy Efficiency is just starting to arrive in HPC
→ System Integration with state-of-the-art PV tech (or other renewables) is promising

 The I.C.A.R.U.S. computer and its housing/energy-source plus the FEAT software
together offers a valuable ressource aiming at SMEs/University departments



Thank you
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