
Performance engineering for hardware-, numerical-
and energy-efficiency in FEM frameworks:

 modeling and control

Hardware-oriented Numerics in the FEAT software family

Markus Geveler

Higher-order DG methods and finite element software for modern architectures
Bath, 2016 / 6 / 1

markus.geveler@math.tu-dortmund.de
Institute f. Applied Mathematics, TU Dortmund

mailto:markus.geveler@math.tu-dortmund.de

Outline

How can we take control of performance (different metrics) in FEM?

→ Hardware-oriented Numerics
→ Our perspective on performance engineering in FEAT
→ Green computing, Hardware-oriented Numerics and Unconventional HPC
→ Simulation w.r.t. hardware-, numerical-, and energy-efficiency

→ A case study for performance engineering in the FEAT software family and
SPPEXA

→ A prototype for future Data Centers
→ Preliminary work with ARM-based clusters
→ the I.C.A.R.U.S experimental cluster based on NVIDIA Tegra K1 combined with
photovoltaic solar farming
→ modeling energy in FEM frameworks

Motivation: where it all leads...

Simulation of technical flows with FEATFLOW
characteristics:
→ high end modeling, numerics
→ huge requirements: computation
→ at some point: huge system to
solve

Hardware

today's HPC facilities
→ comprise heterogeneous compute nodes
→ multicore CPU(s) + some accelerator very common (GPU, XEON Phi)
→ heterogeneity on-a-chip (SoCs, APUs)
→ cost efficiency dominated by energy-efficiency

today's large-scale FEM codes
→ have to adapt to target hardware
→ heterogeneity and frameworking
→ parallelisation of applications (DD mostly)
→ parallelisation of core components (e.g. 'linear solver on GPU')
→ optimisation with respect to many details (data flow and SIMD mostly)
→ can we have the same results with less energy-consumption?

Hardware evolution is usually out of
our control – software is not

What we can expect from hardware

BLAS 1,2

SpMV Lattice
Methods

GEMM Particle
Methods

(close to peak
performance)

Arithmetic Intensity

copy2DRAM

What we can expect from hardware

 on this architecture

Actual AI AI = #flops / #bytes

P
er

fo
rm

an
ce

stream bandwidth * AI

theoretical peak performance

Three possibilities to tweak

AI = #flops / #bytes

P
er

fo
rm

an
ce

stream bandwidth * AI

theoretical peak performance

(1) bad AI due to 'wrong' numerics or
implementation

Three possibilities to tweak

AI = #flops / #bytes

P
er

fo
rm

an
ce

stream bandwidth * AI

theoretical peak performance

(2) and / or something went wrong
regarding memory access patterns:
→ no / bad software prefetching
→ missing NUMA adjustments
→ bad coalescence

Three possibilities to tweak

AI = #flops / #bytes

P
er

fo
rm

an
ce

stream bandwidth * AI

theoretical peak performance

(3) and / or something went wrong
regarding atomic operations, most likely:
→ no / bad SIMD
→ no FMA

Three possibilities to tweak

AI = #flops / #bytes

P
er

fo
rm

an
ce

stream bandwidth * AI

theoretical peak performance

optimization: → pick right algo, enhance
data structures and -flow, handcraft SIMD

Hardware-oriented Numerics
lo

g
s

ca
le

!

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s]

Hardware-oriented Numerics
lo

g
s

ca
le

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s] the good scaling trap

Hardware-oriented Numerics
lo

g
s

ca
le

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s] loop transforms, data-flow re-arrangements

Hardware-oriented Numerics
lo

g
s

ca
le

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s] handcrafted SIMD !

Hardware-oriented Numerics
lo

g
s

ca
le

(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s]

new perfmodel,
different data storage,
clever loadbalancing

Hardware-oriented Numerics

(I) Hardware Efficiency: kernel-based optimisation: SpMV

 one of the most prominent kernels in solving PDEs with high-end FEM
 memory access matters a lot
 hardware efficiency considerations start early: DOF numbering
 hardware-efficiency requires different matrix storage
 FE space matters

Q1 Q2

Performance
[Gflop/s]

→ good, but: sole concentration on HE will not do the job

Hardware-oriented Numerics

(II) Numerical Efficiency

time
[s]

Hardware-oriented Numerics

(II) Numerical Efficiency

clever sorting
of DOFs

Hardware-oriented Numerics

(II) Numerical Efficiency

use
accelerators

Hardware-oriented Numerics

(II) Numerical Efficiency

specially
tailored
solvers

Alltogether:
> 1000x
speedup

Hardware-oriented Numerics

(III) Energy Efficiency (?)
 energy consumption/efficiency is one of the major challenges for future supercomputers

→ exascale challenge
 we can not afford to go all 'macho-flops' any more
 in 2012 we proved: we can solve PDEs for less energy 'than normal'
 simply by switching computational hardware from commodity to embedded
 Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
 tradeoff between energy and wall clock time

~3x less energy ~5x more time!

Hardware-oriented Numerics

(III) Energy Efficiency (?)

To be more energy efficient with different computational hardware, this hardware
would have to dissipate less power at the same performance as the other!

→ More performance per Watt!

~3x less energy ~5x more time!

Hardware-oriented Numerics

(III) Energy Efficiency: technology of ARM-based SoCs since 2012
Something has been happening in the mobile-computing hardware evolution:

[one word in advance: there are many more SoC designs (like from TI, Qualcomm, …)]

→ Tegra 3 (late 2012) was also based on A9 but had 4 cores
→ Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and

LPDDR3 instead of LPDDR2
→ Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more

memory

More importantly: TK1 went GPGPU and comprises a programmable Kepler
GPU on the same SoC!

→ the promise: 350+ Gflop/s for less than 11W
→ for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W

→ 2.5x higher EE promised

→ interesting for Scientific Computing! Higher EE than commodity!

Power consumption and performance of basic kernels
Testhardware

Power consumption and performance of basic kernels
S/DGEMM

Power consumption and performance of basic kernels
S/DSpMV (ELL)

0 20 40 60
0

0.1

0.2

0.3

speeddown x10 , powerdown x12

Perf [GFlop/s]

E
 [J

]

SSPMV GPU

0 10 20 30 40
0

0.1

0.2

0.3 speeddown x9 , powerdown x12

Perf [GFlop/s]
E

 [J
]

DSPMV GPU

commodity(2015) commodity(2012) Jetson TK1(2014)

Applications
DG-FEM SWE solver (UTBEST3D, Erlangen)

→ race-to-idle: cores are either 'on' or
'off' at preset frequency
→ performance gain still positive with
more threads
→ at some #threads: disproportional
performance-gain / power increase→
#threads = #cores not efficient

Total efficiency?

(some) aspects of efficiency

→ numerical efficiency dominates asymptotic behaviour and wall clock time

→ hardware-efficiency

→ exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a
chip/device/socket, multi-processing in a cluster, hybrids)
→ then try to reach good scalability (communication optimisations, block comm/comp)

→ energy-efficiency
→ by hardware:

→ what is the most energy-efficient computer hardware? What is the best core
frequency? What is the optimal number of cores used?

→ by software as a direct result of performance

Hardware-oriented Numerics: Enhance hardware- and
numerical efficiency simultaneously, use (most) energy-efficient

Hardware(-settings) where available! Attention: codependencies!

Today's major example: (local) unstructured grid geometric
Multigrid with Approximate Inverse smoothers on GPUs

Example: smoother / preconditioner

weak smoother / preconditioner:
→ e.g. Jacobi
→ rapid execution on hardware
→ large number of iterations in solver

strong(er) smoothing / preconditioning
→ e.g. ILU
→ hard to parallelize → slow execution on today's hardware
→ small amount of iterstions in solver

Which is better? What does better mean? Is there something in between?

One simple idea: base everything on SpMV...

...and pull the most out of it

FEgMG: context
→ (local to a process) geometric multigrid for unstructured grids
→ within a Schwarz-type domain decomposition: in global solver, use:

FEgMG: ingredients
→ (local) geometric multigrid for unstructured grids
→ with Approximate Inverse smoothers
→ with FE transfer operators
→ with clever DOF sorting
→ on GPUs (and multicore CPUs)
→ all based on one kernel: SpMV

One simple idea: base everything on SpMV...

...and pull the most out of it

concentrate all tuning in one kernel: sparse matrix vector multiply (SpMV)
→ in coarse-grid solver: preconditioned Krylov subspace methods
→ smoother: preconditioned Richardson iteration or Krylov subspace method
→ local preconditioners by approximate inverses
→ grid transfers
→ defect

the remainder
→ a little BLAS1 (dot-product, norm, scale, ...)
→ important: grid transfer operators can also be realised as SpMV

advantages
→ flexibility (only matrices are switched): blackbox
→ oblivious of FE-space, dimension, ...
→ performance-tuning concentrated

disadvantages
→ we somewhat move the problem from solver to assembly of matrices

Hardware-oriented Numerics

(I) Hardware Efficiency: kernel-based optimisation: SpMV

 one of the most prominent kernels in solving PDEs with high-end FEM
 memory access matters a lot
 hardware efficiency considerations start early: DOF numbering
 hardware-efficiency requires different matrix storage
 FE space matters

Q1 Q2

Performance
[Gflop/s]

→ good, but: sole concentration on HE will not do the job

SpMV in MG for GPU

ELLPACK-type matrix storage
→ store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column-
Index for each entry in A)
→ A has (#rows in S) (maximum #non-zeros in rows of S)
→ shorter rows are filled
→ additional array rl to store eective non-zeros count per row (get stop on row right)

advantages
→ complete regular access pattern to y and A
→ GPU implementation:

→ one thread for each element yi
 → access to all ELLPACK-R arrays and y completely coalesced (column-major)
→ access on x: use texture-cache (FERMI and up : L2-cache)
→ no synchronisation between threads needed
→ no branch-divergence
→ in addition: multiple threads can access one row (ELLPACK-T)
→ access to x depends on non-zero pattern of A ! bandwidth given by → DOF-numbering

smoother: SPAI

SPAI

→ where is the unit vektor and the row of

→ for n columns of M → n least squares opt-problems:

→ use non-zero pattern of the stiffness matrix for M
→ put it into a Richardson Iteration

FegMG: SPAI(1) as a smoother

FEAT → DUNE: first steps

use SPAI in DUNE: in a BiCGStab iteration, use as preconditioner:

→ Jacobi iteration

→ DG-block Jacobi iteration

→ SPAI direct application

FEAT → DUNE

First results: DG1 and DG2

HPC centers

Current supercomputers

Simulation comes
 at huge cost!

2 – 17 MW of power!

http://w
w

w
.top5 00.org /lists/20 15/06/

Mflop/s / W

1902

2143

2177

830

Green HPC

Greenmost supercomputers are 'unconventional'

Accelerators rule the field, unconventional design is leading.

Japan

Japan

Japan

Japan

Germany

Germany

USA

USA

USA

USA

http://w
w

w
.gree n500.o rg/lists /green2 01506

Green HPC

Greenmost supercomputers are 'unconventional'

http://w
w

w
.gree n500.o rg/lists /green2 01506

160

392

366

215

Top500
rank

Still not developed under the premise
of EE, power source not included in

thinking yet

Unconventional HPC for EE

Bring together the two pillars of Energiewende for HPC
 Renewable power source
 Energy Efficiency

→ Design the hardware for EE
→ Design the software for the hardware by using HWON

A compute center of the future (?)

 Insular
 Compute-center for
 Applied Mathematics with
 Renewables-provided power supply based on
 Unconventional compute hardware empaired with
 Simulation Software for Technical Processes

Vision

Motivation
 system integration for Scientific HPC

→ high-end unconventional compute hardware
→ high-end renewable power source (photo-voltaic)
→ specially tailored numerics and simulation software: high end Mathematics

 no future spendings due to energy consumtion
 SME-class resource: <80K€
 Scalability, modular design
 (simplicity)
 (maintainability)
 (safety)
 ...

I.C.A.R.U.S.

I.C.A.R.U.S.

Whitesheet
→ nodes: 60 x NVIDIA Jetson TK 1
→ #cores (ARM Cortex-A15): 240
→ #GPUs (Kepler, 192 cores): 60
→ RAM/core: 2GB LPDDR3
→ switches (GiBit Ethernet): 3xL1, 1xL2
→ cluster theoretical peak perf: ~20TFlop/s SP
→ cluster peak power (including cooling/heating): < 2kW, provided by PV

→ storage: 10+1 BananaPI Boards comprising:
→ 1 TB Western Digital Eco HDD
→ 2 Dual Core ARM (1 GHz,1 GB RAM)

 → GigabitEthernet networking
 → SATA

→ plus 16 GB eMMC internal (OS) and 128 GB SD swap / scratch per node

→ Software: FEAT (optimised for Tegra K1): www.featflow.de

Applications
LBM SWE solver

10−1 100 101
102

103
1

1

1

2
481632

56

1

1

1

2
4816

32
56

T [s]

E
[J

]
LBM

commodity(2015) commodity(2012) Jetson TK1(2014)

CPU

GPU

→ complex things happen in apps
→ frequent kernel-switches
→ many frequency-adjustments?

Conclusion

 HWON is threefold now: EE comes into play
 → smaller power dissipation alone is not the deal

→ performance modelling/-engineering of software for EE is needed

 Hardware-/Software Co-Design can be a starting point:
→ Embedded tech has a different history than commodity hardware
→ Energy Efficiency is just starting to arrive in HPC
→ System Integration with state-of-the-art PV tech (or other renewables) is promising

 The I.C.A.R.U.S. computer and its housing/energy-source plus the FEAT software
together offers a valuable ressource aiming at SMEs/University departments

Thank you

This work was also supported (in part) by the German Research Foundation (DFG)
 through the Priority Programme

1648 `Software for Exascale Computing' (grant TU 102/48).

I.C.A.R.U.S. hardware is financed by MIWF NRW under the lead of MERCUR.

www.icarus-green-hpc.org

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46

