

Future Data Centers for Energy-Efficient Large Scale Numerical Simulations

On the need for a combination of Hardware-oriented Numerics with Unconventional HPC

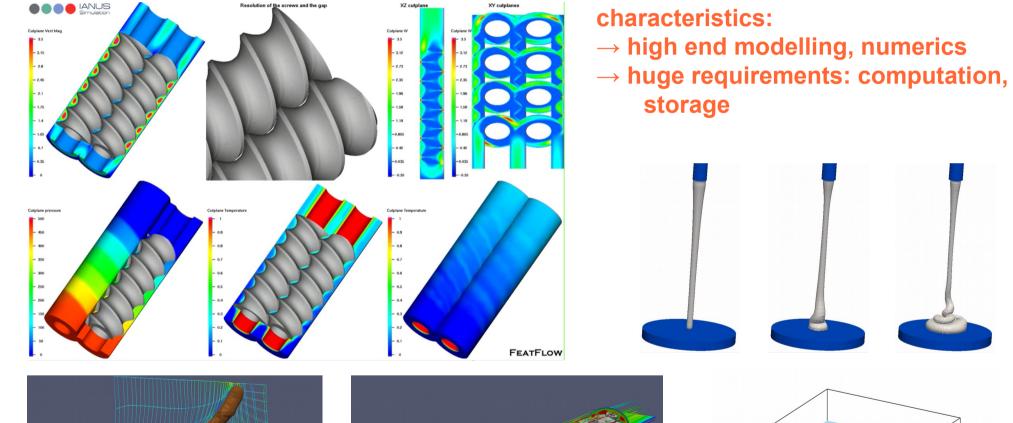
<u>Markus Geveler*</u>, Martin Köhler**, Dirk Ribbrock*, Jens Saak**, Gerry Truschkewitz**, Peter Benner**, Stefan Turek*

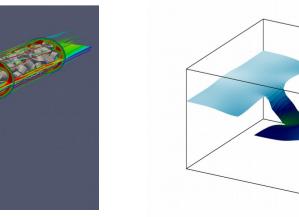
7th KoMSO Challenge Workshop, Heidelberg 2015 / 10 / 9

<u>markus.geveler@math.tu-dortmund.de</u> *Institute f. Applied Mathematics, TU Dortmund **Computational Methods in Systems and Control Theory, MPI for Dynamics of Complex Technical Systems Magdeburg

Outline

Roughly three parts:


→ Hardware-oriented Numerics in *Energiewende* (or: why do Mathematicians build a supercomputer?)


- \rightarrow Our perspective on Energiewende
- \rightarrow Green computing, Hardware-oriented Numerics and Unconventional HPC
- \rightarrow Simulation w.r.t. hardware-, numerical-, and energy-efficiency
- \rightarrow A prototype for future Data Centers
 - \rightarrow Preliminary work with ARM-based clusters
 - → the I.C.A.R.U.S experimental cluster based on NVIDIA Tegra K1 and a minimum energy data storage system

 \rightarrow Performance engineering for unconventional hardware with focus on energy efficiency in the **FEAT software family**

Motivation: where it all leads...

Simulation of technical flows

Our perspective on Energiewende

Applied Mathematics is also on the 'user'-side!

- Energy Production based on renewables and better grids are crucially needed
- But also energy consumers have to adapt → Energy Efficiency (EE) increase is needed ('output up, consumption down')
- MSO are rightfully considered offering powerful tools for conserving energy in industrial processes
- But: How energy-efficient can simulation be performed?

How can the mathematical community increase EE in what we do?

Green HPC and Hardware-oriented Numerics

Current supercomputers / data centers aren't green

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)	Mflop/s / W
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808	1902
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209	2143
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890	2177
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660	830
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945	
6	Swiss National Supercomputing Centre [CSCS] Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325	2 – 17 MW
7	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834	Simulation
8	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510	at huge c
9	Forschungszentrum Juelich [FZJ] Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301	
10	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972	

2-17 MW of power!

Simulation comes

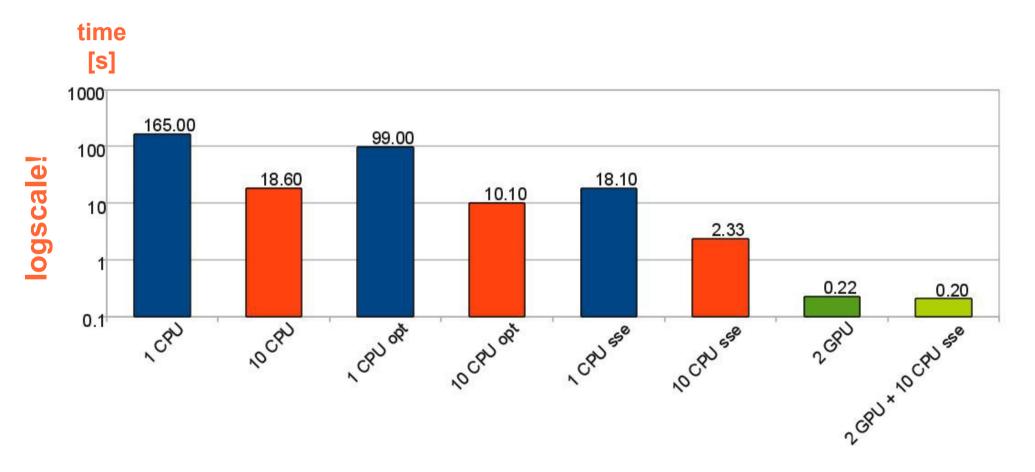
at huge cost!

Green HPC and Hardware-oriented Numerics

Greenmost supercomputers are 'unconventional'

	Green500 Rank	MFLOPS/W	Site*	Computer*	
Japan	1	7,031.58	RIKEN	Shouby ExeSealer-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC	50.32
Japan	2	6,842.31	High Energy Accelerator Research Organization /KEK	Suiren Blue - ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband PEZY-SC	28.25
Japan	3	6,217.04	High Energy Accelerator Research Organization /KEK	Suiren - ExaSculor 92U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR PEZY-SC	32.59
Germany	4	5,271.81	GSI Helmholtz Center	ASUS ESC4000 EDR/C2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	57.15
Japan	5	4,257.88	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC - LX 1U-4GF0/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDF, NVIDIA K20x	39.83
USA	6	4,112.11	Stanford Research Computing Center	XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190.00
USA	7	3,962.73	Cray Inc.	Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m	44.54
USA	8	3,631.70	Cambridge University	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62
Germany	9	3,614.71	TU Dresden, ZIH	Taurus GPUs - Bull bullx R400, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Nvidia K80	58.01
USA	10	3,543.32	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	54.60

Accelerators rule the field, unconventional design is leading, Germany could potentially do better

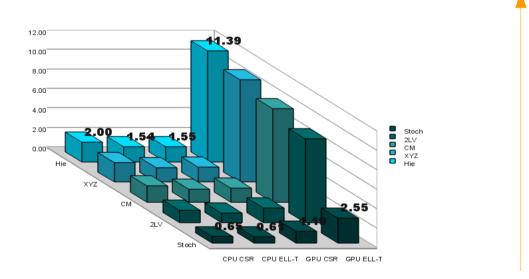

Green HPC and Hardware-oriented Numerics

Greenmost supercomputers are 'unconventional'

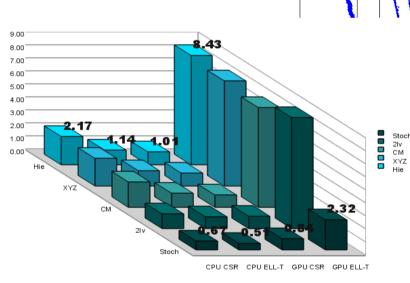
Top500 rank	Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
160	1	7,031.58	RIKEN	Shoubu - ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC	50.32
392	2	6,842.31	High Energy Accelerator Research Organization /KEK	Suiren Blue - ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband, PEZY-SC	28.25
366	3	6,217.04	High Energy Accelerator Research Organization /KEK	Suiren - ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, PEZY-SC	32.59
215	4	5,271.81	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	57.15
	5	4,257.88	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x	39.83
	64,112.11Stanford Research Computing CenterXStream - Cray CS-Storm, Intel Xeon E5-2 FDR, Nvidia K80		XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190.00	
	7	3,962.73	Cray Inc.	Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m	44.54
	8	3,631.70	Cambridge University	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62
	9	3,614.71	TU Dresden, ZIH	Taurus GPUs - Bull bullx R400, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Nvidia K80	58.01
	10	3,543.32	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	54.60
			Still not develo	oped under the premise	

of EE, power source not included in thinking yet

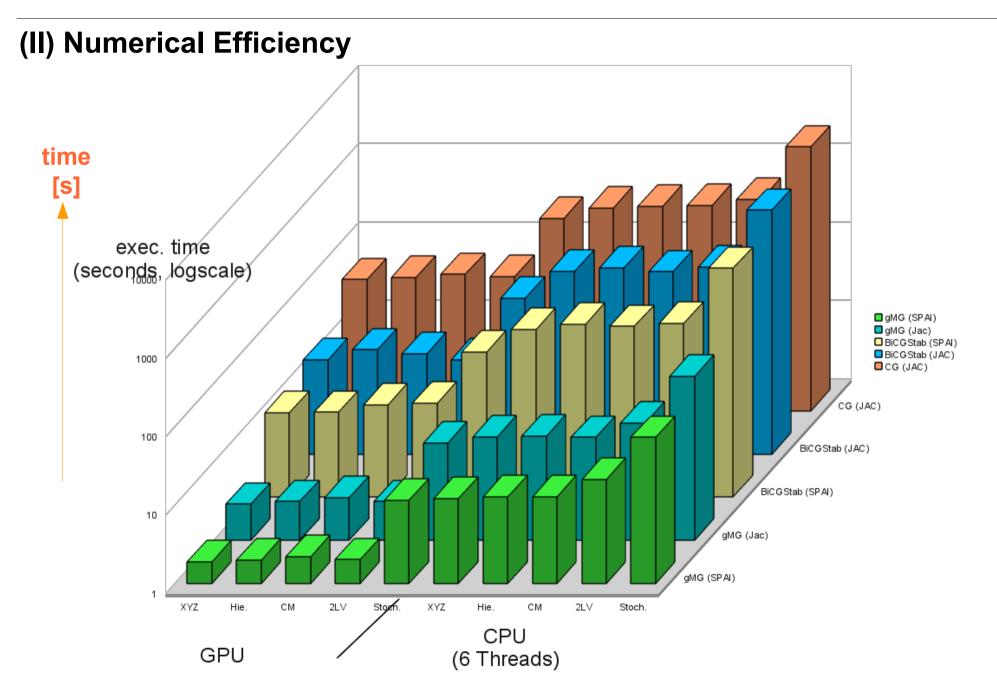
(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

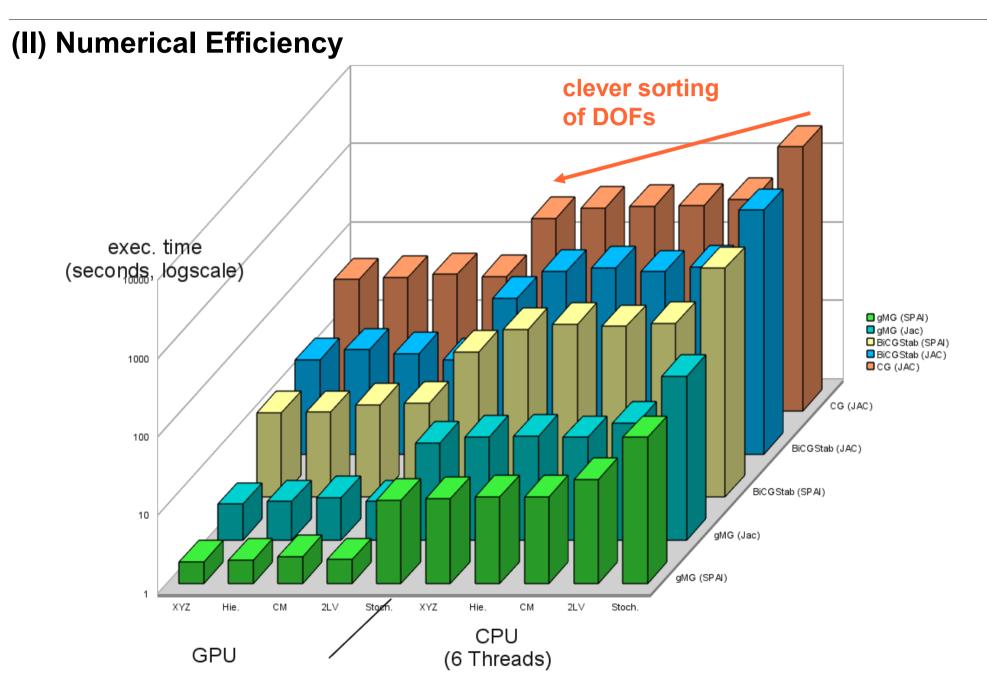


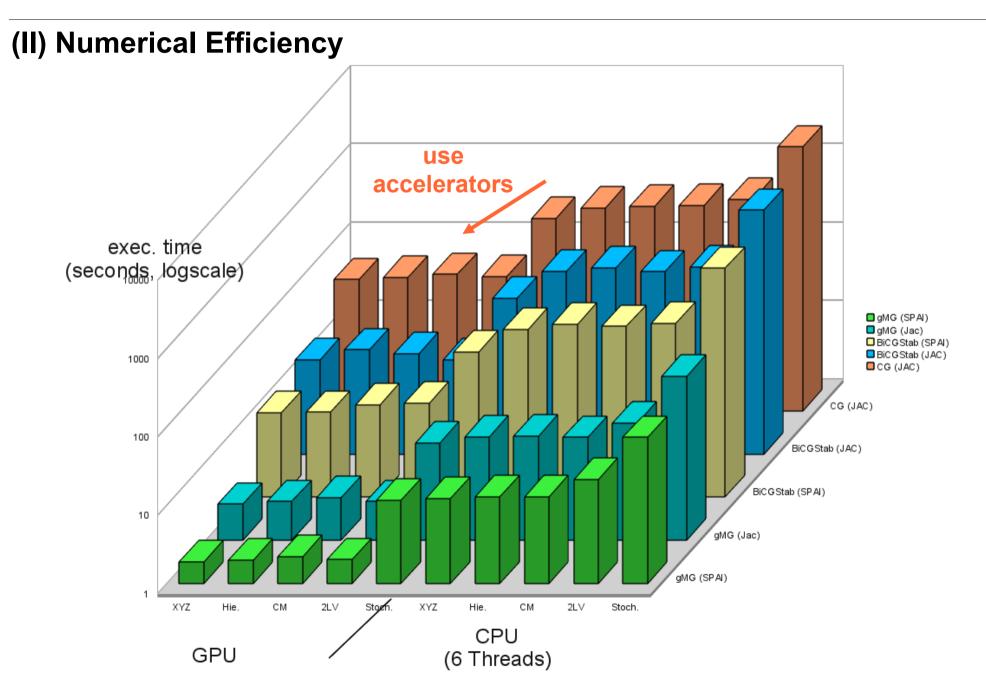
 \rightarrow good, but: sole concentration on HE will not do the job

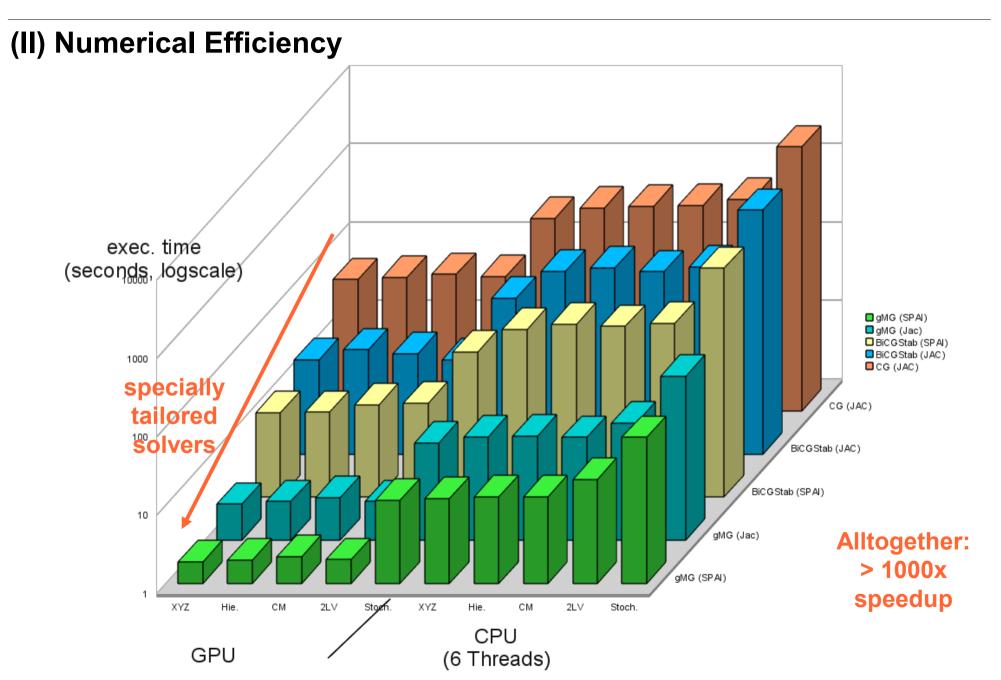

(I) Hardware Efficiency: kernel-based optimisation: SpMV

- one of the most prominent kernels in solving PDEs with high-end FEM
- memory access matters a lot
- hardware efficiency considerations start early: DOF numbering
- hardware-efficiency requires different matrix storage
- FE space matters

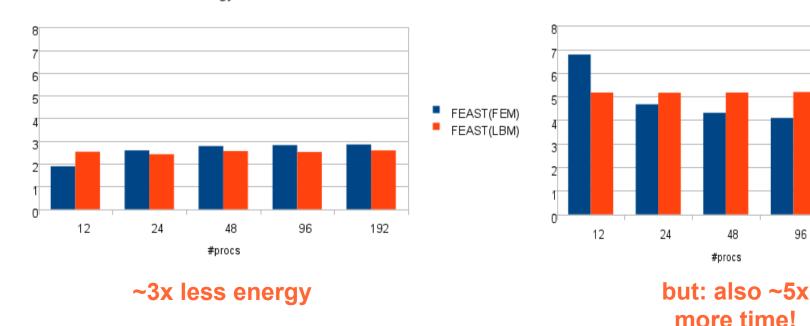



Q1




Q2

\rightarrow good, but: sole concentration on HE will not do the job



(III) *Energy* Efficiency (?)

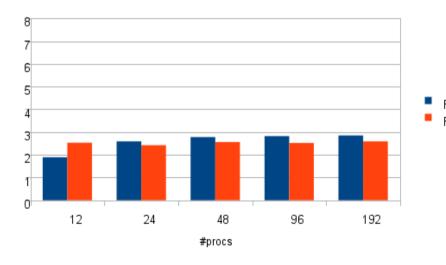
- energy consumption/efficiency is one of the major challenges for future supercomputers
- we can not afford to go all 'macho-flops' any more

energy down ARM vs x86

- in 2012 we proved: we can solve PDEs for less energy 'than normal'
- simply by switching computational hardware from commodity to embedded
- Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
- tradeoff between energy and wall clock time (like powering down your x86)

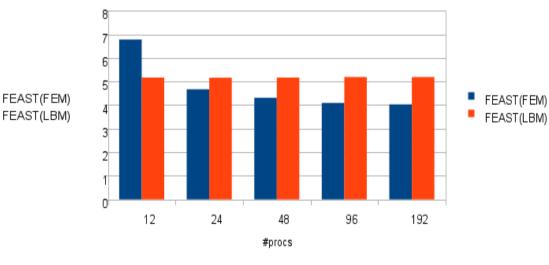
speedup x86 vs ARM

FEAST(FEM)


FEAST(LBM)

192

(III) *Energy* Efficiency (?)


To be more energy efficient with different computational hardware, this hardware would have to use *less energy* at the *same performance* as the other!

 \rightarrow More performance per Watt!

~3x less energy

energy down ARM vs x86

speedup x86 vs ARM

but: also ~5x more time!

(III) Energy Efficiency: technology of ARM-based SoCs since 2012

Something has been happening in the mobile-computing hardware evolution:

[one word in advance: there are many more SoC designs (like from TI, Qualcomm, ...)]

- \rightarrow Tegra 3 (late 2012) was also based on A9 but had 4 cores
- \rightarrow Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and LPDDR3 instead of LPDDR2
- → Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more memory

More importantly: TK1 went GPGPU and comprises a programmable Kepler GPU on the same SoC!

- \rightarrow the promise: 350+ Gflop/s for less than 11W
- \rightarrow for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W
- \rightarrow 2.5x higher EE promised
- \rightarrow interesting for Scientific Computing! Higher EE than commodity!

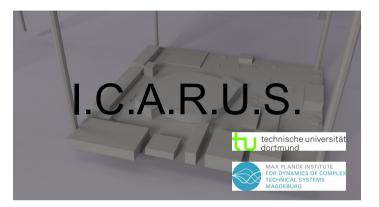
Unconventional HPC for EE

Bring together the two pillars of Energiewende for HPC

- Renewable power source
- Energy Efficiency

- \rightarrow Design the hardware for EE!
- \rightarrow Design the software for the hardware by using HWON!

x1


A compute center of the future (?)

Vision

- Insular
- Compute-center for
- Applied Mathematics with
- Renewables-provided power supply based on
- Unconventional compute hardware empaired with
- Simulation Software for Technical Processes

Motivation

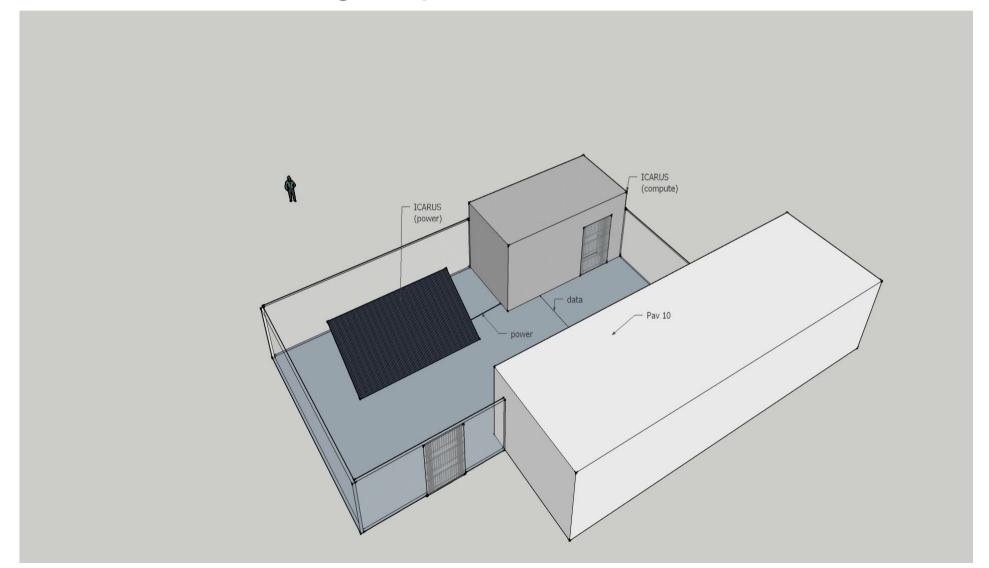
- system integration for Scientific HPC
 - \rightarrow high-end unconventional compute hardware
 - \rightarrow high-end renewable power source (photo-voltaic)
 - \rightarrow specially tailored numerics and simulation software: high end Mathematics
- no future spendings due to energy consumtion
- SME-class resource: <80K€</p>
- Scalability, modular design
- (simplicity)
- (maintainability)
- (safety)

I.C.A.R.U.S.

Whitesheet

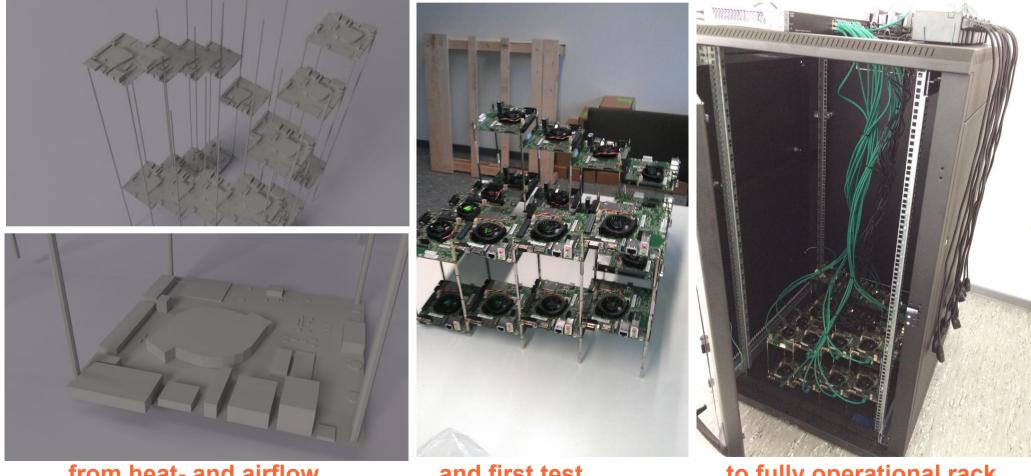
- \rightarrow **nodes:** 60 x NVIDIA Jetson TK 1
- \rightarrow #cores (ARM Cortex-A15): 240
- \rightarrow #GPUs (Kepler, 192 cores): 60
- \rightarrow RAM/core: 2GB LPDDR3
- \rightarrow switches (GiBit Ethernet): 3xL1, 1xL2
- \rightarrow cluster theoretical peak perf: ~20TFlop/s SP
- \rightarrow cluster peak power (including cooling/heating): < 2kW, provided by PV

→ **storage:** 10+1 BananaPI Boards comprising:


- \rightarrow 1 TB Western Digital Eco HDD
- \rightarrow 2 Dual Core ARM (1 GHz,1 GB RAM)
- \rightarrow GigabitEthernet networking
- \rightarrow SATA

 \rightarrow plus 16 GB eMMC internal (OS) and 128 GB SD swap / scratch per node

\rightarrow Software: FEAT (optimised for Tegra K1): www.featflow.de


I.C.A.R.U.S construction site

solar modules delivering 6kWp, cluster built into container

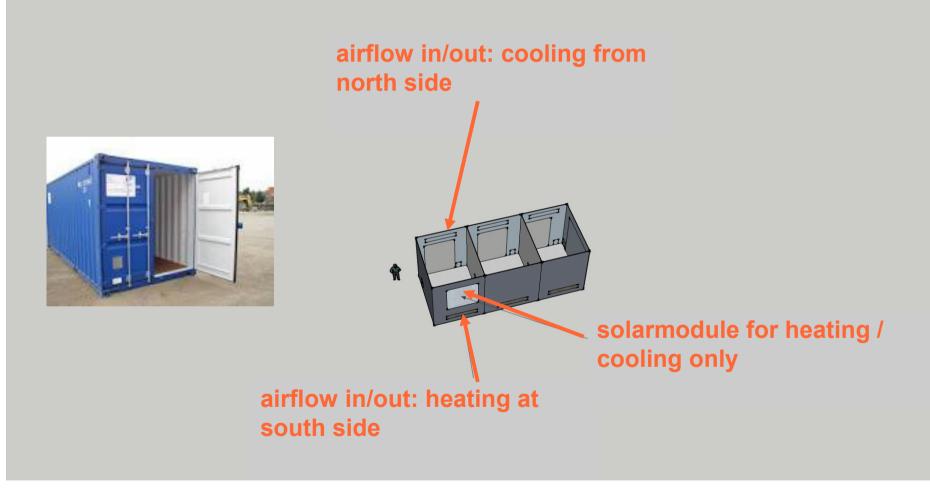
Progress

Two student projects Technomathematik @TU Do (Bachelor's and Master's levels) are on board (18 students)

...from heat- and airflow optimisation computer models... ...and first test configurations...

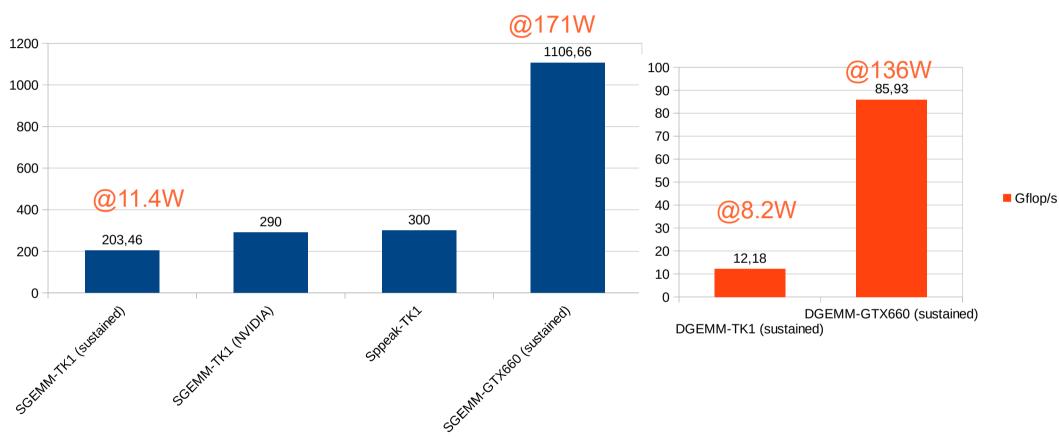
...to fully operational rack with all hand-made compounds.

Storage subsystem completely operational @ MPI Magdeburg

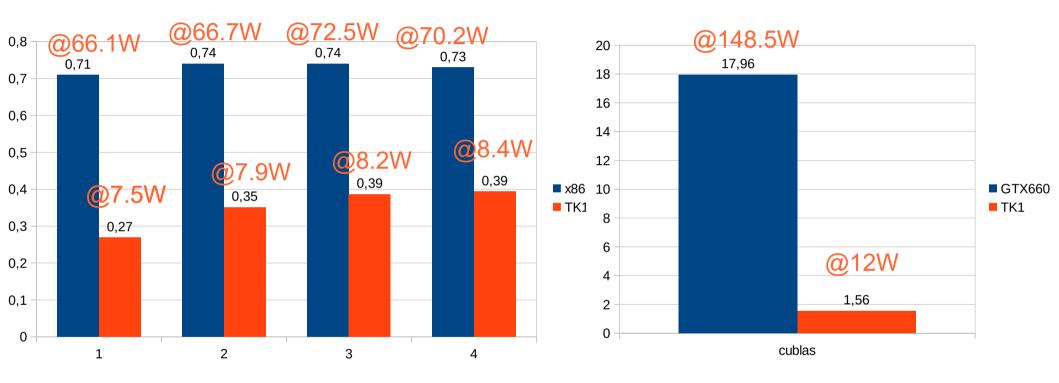


...fully portable, selfcontained max. 10 TB storage...

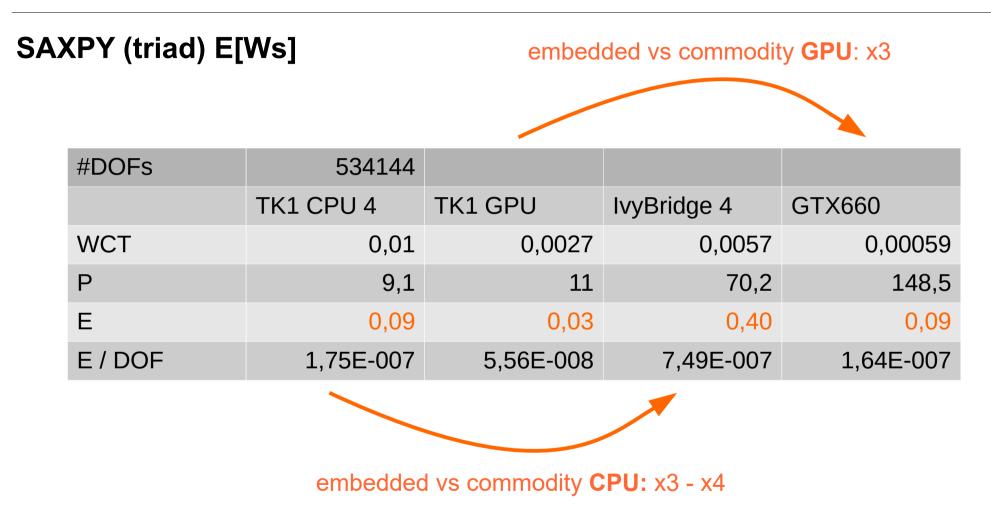
...all storage BananaPi elements on selfmade, 3D-printed mounts.


Progress

Power consumption and performance of basic kernels


S/DGEMM on the GPUs

- → TK1 Kepler: 17.85 Gflop/s/W SP, 1.49 Gflop/s/W DP
- → GTX660: 6.47 Gflop/s/W SP, 0.631 Gflop/s/W DP
- \rightarrow why SP matters: we can use **mixed precision methods** on a node
- \rightarrow (Jetson) TK1 is 2-3 times better in this metric


Power consumption and performance of basic kernels

SAXPY (triad) (float from now: mixed precision)

- \rightarrow core occupancy can be seen in power consumption
- → Cortex-A15: 0.05 Gflop/s/W
- → IvyBridge: 0.01 GFLop/s/W
- \rightarrow TK1-Kepler: **0.13 Gflop/s/W**
- \rightarrow GTX660: **0.12 Gflop/s/W**

Energy cost

 \rightarrow Note: Perf.-Engineering for EE is complicated: higher performance per Watt, less energy consumption, larger WCT, larger speeddown than E-down at the same time

Power consumption and performance of basic kernels

- \rightarrow Cortex-A15: **0.036 Gflop/s/W**
- \rightarrow IvyBridge: 0.013 GFLop/s/W
- → TK1-Kepler: 0.11 Gflop/s/W
- → GTX660: 0.077 Gflop/s/W

Multigrid

Poisson Problem, 8x10E6 unknowns, 4/4 smoother steps, CSR/ELL, DP

			CPU			
		#iters	WCT	speeddown	Р	P-down
lvy + GTX660	Jac	10	6.58		88.90	
	SPAI	6	4.10		87.80	
Jetson TK1	Jac	10	15.90	2.42	8.10	10.98
	SPAI	6	10.10	2.46	8.10	10.84

All based on SpMV: coarse grid solver: PCG, smoother: Richardson, grid transfer:

$$(P_{2h}^h)_{ij} = \varphi_{2h}^{(j)}(\xi_h^{(i)})$$

$$R_h^{2h} = (P_{2h}^h)^T$$

GPU			
WCT	speeddown	Р	P-down
0.55		151.50	
0.37		150.30	
4.70	8.55	9.40	16.12
2.80	7.57	9.50	15.82

The storage system by MPI Magdeburg

Results

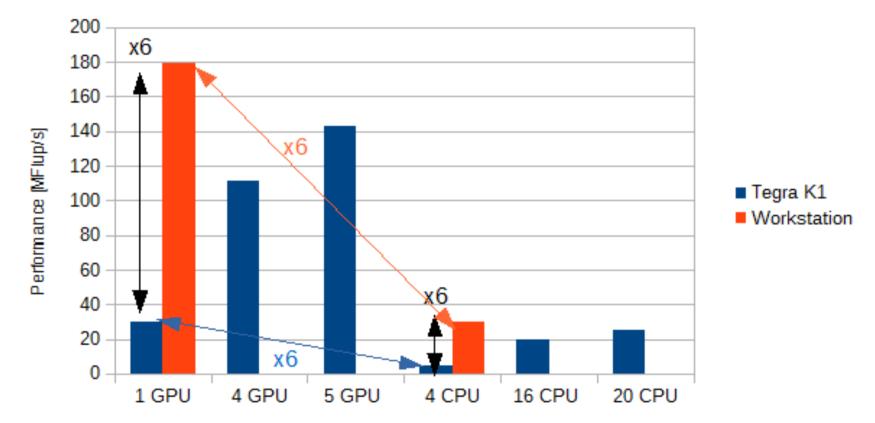
- \rightarrow **Power dissipation at idle** (HDDs 'idle', no data access): 23W
- \rightarrow Maximum power dissipation at full operation: 37W

 \rightarrow Average power dissipation: 30 Watt , 0.003W/GB (vs. 500W, 0.01W/GB commodity)

\rightarrow Configuration as RAID 0+1:

 \rightarrow 20 volumes with 250 GB each, 2x5 RAID 0 with 500 GB each + same as mirror (RAID 1) => 2.5 TB usable

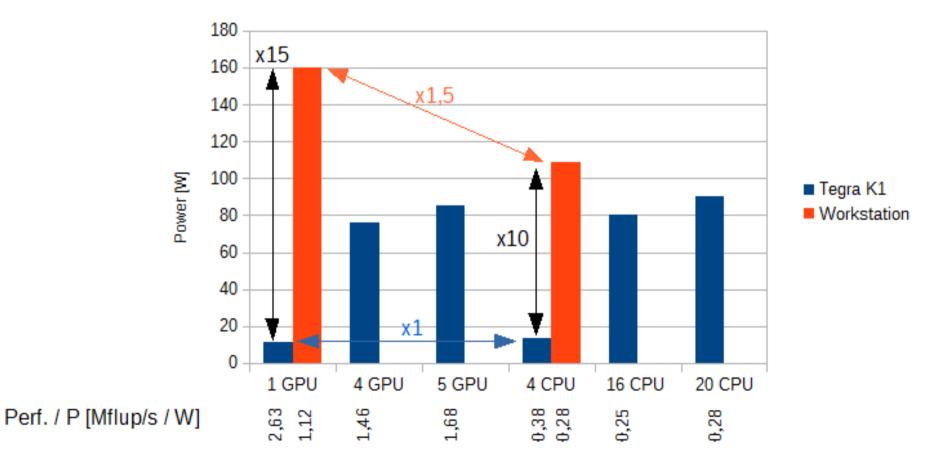
 \rightarrow max. write rate (single threaded): **55MB/s (vs. 130MB/s commodity)**


 \rightarrow max. read rate (single thread): **71MB/s (vs. 130MB/s commodity)**

\rightarrow Configuration as RAID 0:

- \rightarrow 20 volumes with 250 GB each, 2x10 RAID 0 with 500 GB each + same as mirror (RAID 0) => 5 TB usable
- \rightarrow max. write rate (single threaded): **90MB/s (vs. 140MB/s commodity)**
- \rightarrow max. read rate (single thread): 69MB/s (vs. 140MB/s commodity)

Going multi-node

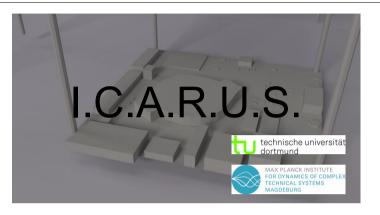

Flow solver on I.C.A.R.U.S. (Tier-0), FEAT software family

→ result: with 7 Jetson boards, we can beat this GPU, even taking the whole storage cluster (30W average)

Going multi-node

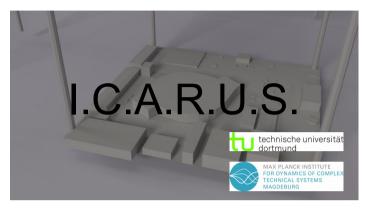
Flow solver on I.C.A.R.U.S. (Tier-0), FEAT Software Family

→ result: with 7 Jetson boards + switch, we can beat this GTX GPU even taking the whole storage cluster (30W average)


 \rightarrow this would take 123W (153W with storage) (switches, storage increase baseline)

 \rightarrow EE can be transported to the cluster level when combining UCHPC, HWON

Conclusion


- EE requires us to rethink simulation from the energy-consumers' point of view
- HWON is threefold now: EE comes into play
- \rightarrow smaller power dissipation alone is not the deal
 - \rightarrow performance modelling/-engineering of software for EE is needed
- Hardware-/Software Co-Design can be a starting point:
 - \rightarrow Embedded tech has a different history than commodity hardware
 - \rightarrow Energy Efficiency is just starting to arrive in HPC
 - \rightarrow System Integration with state-of-the-art PV tech (or other renewables) is promising
- The I.C.A.R.U.S. computer and its housing/energy-source plus the FEAT software together offers a valuable ressource aiming at SMEs/University departments

Bringing together high-end Mathematics / HWON with Unconventional HPC can ease the energy consumption of simulation.

Thank you

- Stefan Turek, Peter Benner (scientific supervision)
- Markus Geveler (system design)
- Dirk Ribbrock (system administration)

Martin Köhler, Jens Saak, Gerry Truschkewitz (storage system design)

This work was also supported (in part) by the German Research Foundation (DFG) through the Priority Programme 1648 `Software for Exascale Computing' as well as grant TU 102/50-1.

I.C.A.R.U.S. hardware is financed by MIWF NRW under the lead of MERCUR.

Thanks to all students of the student projects Technomath 2015/2016 @ Tu Dortmund.

Thanks to Mechanical Workshop @ MPI Magdeburg.