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Outline

Roughly three parts:

→ Hardware-oriented Numerics in Energiewende (or: why do Mathematicians build a 
supercomputer?)

→ Our perspective on Energiewende
→ Green computing, Hardware-oriented Numerics and Unconventional HPC
→ Simulation w.r.t. hardware-, numerical-, and energy-efficiency

→ A prototype for future Data Centers
→ Preliminary work with ARM-based clusters
→ the I.C.A.R.U.S experimental cluster based on NVIDIA Tegra K1 and a minimum 

energy data storage system

→ Performance engineering for unconventional hardware with focus on energy 
efficiency in the FEAT software family



Motivation: where it all leads...

Simulation of technical flows

characteristics:
→ high end modelling, numerics
→ huge requirements: computation, 

storage 



Our perspective on Energiewende

Applied Mathematics is also on the 'user'-side!

 Energy Production based on renewables and better grids are crucially needed

 But also energy consumers have to adapt → Energy Efficiency (EE) increase is needed 
('output up, consumption down')

 MSO are rightfully considered offering powerful tools  for conserving energy in industrial 
processes

 But: How energy-efficient can simulation be performed?

How can the mathematical community increase EE in what we do?
 



Green HPC and Hardware-oriented Numerics

Current supercomputers / data centers aren't green

Simulation comes
 at huge cost!
 

2 – 17 MW of power!
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Green HPC and Hardware-oriented Numerics

Greenmost supercomputers are 'unconventional'

Accelerators rule the field, unconventional design is leading,
Germany could potentially do better
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Green HPC and Hardware-oriented Numerics

Greenmost supercomputers are 'unconventional'
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Still not developed under the premise 
of EE, power source not included in 

thinking yet
 



Hardware-oriented Numerics
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(I) : Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s]

→ good, but: sole concentration on HE will not do the job
 



Hardware-oriented Numerics

(I) Hardware Efficiency: kernel-based optimisation: SpMV

 one of the most prominent kernels in solving PDEs with high-end FEM
 memory access matters a lot
 hardware efficiency considerations start early: DOF numbering
 hardware-efficiency requires different matrix storage
 FE space matters

Q1 Q2

Performance
[Gflop/s]

→ good, but: sole concentration on HE will not do the job
 



Hardware-oriented Numerics

(II) Numerical Efficiency

time
[s]



Hardware-oriented Numerics

(II) Numerical Efficiency

clever sorting 
of DOFs



Hardware-oriented Numerics

(II) Numerical Efficiency

use 
accelerators



Hardware-oriented Numerics

(II) Numerical Efficiency

specially 
tailored
solvers

Alltogether:
> 1000x 
speedup



Hardware-oriented Numerics

(III) Energy Efficiency (?)
 energy consumption/efficiency is one of the major challenges for future supercomputers
 we can not afford to go all 'macho-flops' any more
 in 2012 we proved: we can solve PDEs for less energy 'than normal'
 simply by switching computational hardware from commodity to embedded
 Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
 tradeoff between energy and wall clock time (like powering down your x86) 

~3x less energy but: also ~5x 
more time!



Hardware-oriented Numerics

(III) Energy Efficiency (?)

To be more energy efficient with different computational hardware, this hardware 
would have to use less energy at the same performance as the other!

→ More performance per Watt!

~3x less energy but: also ~5x 
more time!



Hardware-oriented Numerics

(III) Energy Efficiency: technology of ARM-based SoCs since 2012
Something has been happening in the mobile-computing hardware evolution:

[one word in advance: there are many more SoC designs (like from TI, Qualcomm, …)]

→ Tegra 3 (late 2012) was also based on A9 but had 4 cores
→ Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and 

LPDDR3 instead of LPDDR2
→ Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more 

memory

More importantly: TK1 went GPGPU and comprises a programmable Kepler 
GPU on the same SoC!

→ the promise: 350+ Gflop/s for less than 11W
→ for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W

→ 2.5x higher EE promised

→ interesting for Scientific Computing! Higher EE than commodity!



Unconventional HPC for EE

Bring together the two pillars of Energiewende for HPC
 Renewable power source
 Energy Efficiency

→ Design the hardware for EE!
→ Design the software for the hardware by using HWON!

x60
 

x1
 

x1
 



A compute center of the future (?)

 Insular
 Compute-center for
 Applied Mathematics with
 Renewables-provided power supply based on
 Unconventional compute hardware empaired with
 Simulation Software for Technical Processes

Vision

Motivation
 system integration for Scientific HPC

→ high-end unconventional compute hardware
→ high-end renewable power source (photo-voltaic)
→ specially tailored numerics and simulation software: high end Mathematics

 no future spendings due to energy consumtion
 SME-class resource: <80K€
 Scalability, modular design 
 (simplicity)
 (maintainability)
 (safety)
 ...

I.C.A.R.U.S.



I.C.A.R.U.S.

Whitesheet
→ nodes: 60 x NVIDIA Jetson TK 1
→ #cores (ARM Cortex-A15): 240
→ #GPUs (Kepler, 192 cores): 60
→ RAM/core: 2GB LPDDR3
→ switches (GiBit Ethernet): 3xL1, 1xL2
→ cluster theoretical peak perf: ~20TFlop/s SP 
→ cluster peak power (including cooling/heating): < 2kW, provided by PV

→ storage: 10+1 BananaPI Boards comprising:
→ 1 TB Western Digital Eco HDD
→ 2 Dual Core ARM (1 GHz,1 GB RAM)

 → GigabitEthernet networking
 → SATA

→ plus 16 GB eMMC internal (OS) and 128 GB SD swap / scratch per node

→ Software: FEAT (optimised for Tegra K1): www.featflow.de



I.C.A.R.U.S construction site

solar modules delivering 6kWp, cluster built into container



Progress

Two student projects Technomathematik @TU Do
(Bachelor's and Master's levels) are on board (18 students)

...from heat- and airflow 
optimisation computer 
models...
 

...and first test 
configurations...
 

...to fully operational rack 
with all hand-made 
compounds.
 



Progress

Storage subsystem completely operational @ MPI Magdeburg

...fully portable, self-
contained max. 10 TB 
storage...
 

...all storage BananaPi elements on self-
made, 3D-printed mounts.



Progress

airflow in/out: heating at 
south side
 

solarmodule for heating / 
cooling only
 

airflow in/out: cooling from 
north side
 

Housing and PV under construction in Dortmund



Power consumption and performance of basic kernels
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→ TK1 Kepler: 17.85 Gflop/s/W SP, 1.49 Gflop/s/W DP
→ GTX660: 6.47 Gflop/s/W SP, 0.631 Gflop/s/W DP
→ why SP matters: we can use mixed precision methods on a node
→ (Jetson) TK1 is 2-3 times better in this metric

S/DGEMM on the GPUs



Power consumption and performance of basic kernels

→ core occupancy can be seen in power consumption
→ Cortex-A15: 0.05 Gflop/s/W
→ IvyBridge: 0.01 GFLop/s/W
→ TK1-Kepler: 0.13 Gflop/s/W
→ GTX660:  0.12 Gflop/s/W

SAXPY (triad) (float from now: mixed precision)
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Energy cost

SAXPY (triad) E[Ws]

#DOFs 534144

TK1 CPU 4 TK1 GPU IvyBridge 4 GTX660

WCT 0,01 0,0027 0,0057 0,00059

P 9,1 11 70,2 148,5

E 0,09 0,03 0,40 0,09

E / DOF 1,75E-007 5,56E-008 7,49E-007 1,64E-007

embedded vs commodity GPU: x3

embedded vs commodity CPU: x3 - x4

→ Note: Perf.-Engineering for EE is complicated: higher performance per Watt, 
less energy consumption, larger WCT, larger speeddown than E-down at the 
same time



Power consumption and performance of basic kernels

→ Cortex-A15: 0.036 Gflop/s/W
→ IvyBridge:    0.013 GFLop/s/W
→ TK1-Kepler: 0.11 Gflop/s/W
→ GTX660:     0.077 Gflop/s/W
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0

0,2

0,4

0,6

0,8

1

1,2

1,03

0,47

CSR x86 4
CSR TK1 4

0

2

4

6

8

10

12

14

11,99

1,22

ELL GTX660
ELL TK1

@78.1W @153.9W

@13W

@11W



Multigrid

Poisson Problem, 8x10E6 unknowns, 4/4 smoother steps, CSR/ELL, DP
CPU

#iters WCT speeddown P P-down

Ivy + GTX660 Jac 10 6.58 88.90

SPAI 6 4.10 87.80

Jetson TK1 Jac 10 15.90 2.42 8.10 10.98

SPAI 6 10.10 2.46 8.10 10.84

GPU

WCT speeddown P P-down

0.55 151.50

0.37 150.30

4.70 8.55 9.40 16.12

2.80 7.57 9.50 15.82

All based on SpMV: coarse grid 
solver: PCG, smoother: Richardson, 
grid transfer: 



The storage system by MPI Magdeburg

Results

→ Power dissipation at idle (HDDs 'idle', no data access): 23W 
→ Maximum power dissipation at full operation: 37W
→ Average power dissipation: 30 Watt , 0.003W/GB (vs. 500W, 0.01W/GB
commodity)

→ Configuration as RAID 0+1: 
→ 20 volumes with 250 GB each, 2x5 RAID 0 with 500 GB each + same as mirror  

(RAID 1) => 2.5 TB usable
 → max. write rate (single threaded):  55MB/s (vs. 130MB/s commodity)
 → max.  read rate (single thread):     71MB/s (vs. 130MB/s commodity)

→ Configuration as RAID 0: 
→ 20 volumes with 250 GB each, 2x10 RAID 0 with 500 GB each + same as mirror  

(RAID 0) => 5 TB usable
 → max. write rate (single threaded):  90MB/s (vs. 140MB/s commodity)
 → max.  read rate (single thread):     69MB/s (vs. 140MB/s commodity)



Going multi-node

Flow solver on I.C.A.R.U.S. (Tier-0), FEAT software family

→ result: with 7 Jetson boards, we can beat this GPU,
even taking the whole storage cluster (30W average)



Going multi-node

Flow solver on I.C.A.R.U.S. (Tier-0), FEAT Software Family

→ result: with 7 Jetson boards + switch, we can beat this GTX GPU
even taking the whole storage cluster (30W average)

→ this would take 123W (153W with storage) (switches, storage increase baseline)
→ EE can be transported to the cluster level when combining UCHPC, HWON



Conclusion

 EE requires us to rethink simulation
from the energy-consumers' point of view

 HWON is threefold now: EE comes into play
 → smaller power dissipation alone is not the deal

→ performance modelling/-engineering of software for EE is needed

 Hardware-/Software Co-Design can be a starting point:
→ Embedded tech has a different history than commodity hardware
→ Energy Efficiency is just starting to arrive in HPC
→ System Integration with state-of-the-art PV tech (or other renewables) is promising

 The I.C.A.R.U.S. computer and its housing/energy-source plus the FEAT software
together offers a valuable ressource aiming at SMEs/University departments

I.C.A.R.U.S.
I.C.A.R.U.S.

Bringing together high-end Mathematics / HWON with Unconventional HPC can ease the
energy consumption of simulation.
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