
Energy efficiency of the simulation of three-dimensional
 coastal ocean circulation

on modern commodity and mobile processors

A case study based on the Haswell and Cortex-A15 microarchitectures

EnA-HPC, ISC, Frankfurt, 2016 / 6 / 23

markus.geveler@math.tu-dortmund.de

Markus Geveler,
Stefan Turek

Dominik Göddeke Balthasar Reuter,
Vadym Aizinger

mailto:markus.geveler@math.tu-dortmund.de

Outline

How can we take control of energy to solution in simulation software?

→ expectations and misconceptions
→ modeling of energy
→ control
→ unconventional hardware for more energy-efficiency

Concrete example: Coastal ocean circulation simulation

→ high-end 3D geophysical flow dynamics
→ on Intel Haswell and ARM Cortex-A15 processors

HPC Hardware

Today's HPC facilities (?)

Green
500
rank

Top
500
rank

Total
power
[kW]

MFlops
per watt

Year Hardware architecture

1 133 50 7031 2015 ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz,
Infiniband FDR, PEZY-SC

2 392 51 5331 2013 LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C
2.1GHz, Infiniband FDR, NVIDIA Tesla K80

3 314 57 5271 2014 ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz,
Infiniband FDR, AMD FirePro S9150

4 318 65 4778 2015 Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GHz,
Infiniband QDR, NVIDIA Tesla K80

5 102 190 4112 2015 Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz,
Infiniband FDR, Nvidia K80

6 457 58 3857 2015 Inspur TS10000 HPC Server, Xeon E5-2620v3 6C 2.4GHz,
10G Ethernet, NVIDIA Tesla K40

7 225 110 3775 2015 Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C
2.1GHz, 10G Ethernet, NVIDIA Tesla K40

www.green500.org Green500 list Nov 2015

No Top500
top-scorer

Top500 #1: 17,000 kW, 1,900 MFlop/s/W unconventional hardware

http://www.green500.org/

HPC Hardware

Today's HPC facilities

→ comprise heterogeneous compute nodes
→ multicore CPU(s) + some accelerator very common (GPU, XEON Phi)
→ heterogeneity on-a-chip (SoCs, APUs)
→ cost efficiency dominated by energy-efficiency

Today's large-scale HPC codes

→ have to adapt to target hardware
→ heterogeneity and frameworking
→ parallelisation of applications (DD mostly)
→ parallelisation of core components (e.g. 'linear solver on GPU')
→ optimisation with respect to many details (data flow and SIMD mostly)
→ can we have the same results with less energy-consumption?

Hardware evolution is (usually) out of
our control – hardware-choice and

software-design are not

Total efficiency of simulation software

Aspects

→ Numerical efficiency dominates asymptotic behaviour and wall clock time

→ Hardware-efficiency

→ exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a
chip/device/socket, multi-processing in a cluster, hybrids)
→ then try to reach good scalability (communication optimisations, block comm/comp)

→ Energy-efficiency
→ by hardware:

→ what is the most energy-efficient computer hardware? What is the best core
frequency? What is the optimal number of cores used?

→ by software as a direct result of performance
→ but: its not all about performance

Hardware-oriented Numerics: Enhance hardware- and
numerical efficiency simultaneously, use (most) energy-efficient

Hardware(-settings) where available! Attention: codependencies!

What we can expect from hardware

BLAS 1,2,
FEM

SpMV, Lattice
Methods

GEMM Particle
Methods

(close to peak
performance)

Arithmetic Intensity
(AI)

copy2DRAM

AI = #flops / #bytes

P
er

fo
rm

an
ce

stream
bandwidth * AI

theoretical
peak

performance

Hardware-oriented Numerics

lo
g

s
ca

le
!

Hardware Efficiency: apply 'classical' roofline models until optimal

time
[s]

Actual AI on this machine AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

Hardware-oriented Numerics

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

the 'good scaling trap'

time
[s]

More cores →
speedup at

proportional power-up
(?)

Performance-penalties

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

(1) bad AI due to 'wrong' numerics or
implementation

All cores powered!

time
[s]

Performance-penalties

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

(2) and / or something went wrong
regarding memory access patterns:
→ no / bad software prefetching
→ missing NUMA adjustments
→ bad coalescence

All cores powered!

time
[s]

Performance-penalties

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

(3) and / or something went wrong
regarding atomic operations, most likely:
→ no / bad SIMD
→ no FMA

All cores powered!

time
[s]

Optimization

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

Performance-up
at constant power (?)

loop transforms, data-flow re-arrangements

time
[s]

Optimization

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical peak
performance

Performance-up
at constant power: vectorize data
at #cycles = const

Control SIMD

time
[s]

Optimization

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce

stream
bandwidth * AI theoretical peak

performance

Use accelerator:
new perfmodel,
different data storage

Completely different
power signature
→ performance-up at
power-up

time
[s]

Optimization

Hardware Efficiency: apply 'classical' roofline models until optimal

AI = #flops /
#bytes

P
er

fo
rm

an
ce

stream
bandwidth * AI theoretical peak

performance

Clever load-balancing

Performance-up at
power-up, but
with amortized node-
power

time
[s]

Hardware-oriented Numerics

 Energy Efficiency
 energy consumption/efficiency is one of the major challenges for future supercomputers

→ 'exascale'-challenge

 in 2012 we proved: we can solve PDEs for less energy 'than normal'
 simply by switching computational hardware from commodity to embedded
 Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
 tradeoff between energy and wall clock time

~3x less energy ~5x more time!

Hardware-oriented Numerics

Energy Efficiency

To be more energy efficient with different computational hardware, this hardware
would have to dissipate less power at the same performance as the other!

→ More performance per Watt! → power-down > speed-down

~3x less energy ~5x more time!

Hardware-oriented Numerics

Energy Efficiency: technology of ARM-based SoCs since 2012

Something has been happening in the mobile-computing hardware evolution:

→ Tegra 3 (late 2012) was also based on A9 but had 4 cores
→ Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and

LPDDR3 instead of LPDDR2
→ Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more

memory

→ TK1 went GPGPU and comprises a programmable Kepler GPU on the same SoC!
→ the promise: 350+ Gflop/s for less than 11W
→ for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W

→ 2.5x higher EE promised

→ interesting for Scientific Computing! Higher EE than commodity accelerator!

3D baroclinic Shallow Water Equations

Elevation
→ blup

Momentum

Continuity

Temperature-/ salinity-transport Turbulent quantities transport

Density forcing

UTBEST3D

Simulation pipeline

→ in general: piecewise constant, linear
 and quadratic DG

→ 2nd order Runge Kutta

Semi-implicit with fixed
#iterations in implicit part:

No convergence-theory
needed in PM

Test configuration

Tidal flow

→ part of the Atlantic Ocean adjoining the eastern seaboard of North America, Gulf of Mexico,
and the Caribbean

→ a priori adapted horizontal FE mesh:
~19k triangles: ~1km (coastal) up to 120km (open waters)

Testhardware

Complete 'box'

→ measure power at
AC-converter (inlet)
→ all power needed for the node

wikimedia

wikimedia

TU Dortmund

(2015) (2014)

Sample results

Measurements

→ preset core-frequency
→ fixed problem size
→ increase #cores

Sample results

Measurements

→ preset core-frequency
→ fixed problem size
→ increase #cores

Sample results

Measurements

→ performance-up
and energy increase
at the same time?

this is why we
need to model

energy

Sample results

memory-bandwidth
-bound,

speed-down x5

AI = #flops / #bytes

P
er

fo
rm

an
ce stream

bandwidth * AI

theoretical
peak

performance

effectively
no SIMD on A15

LP
memory interface

Performance

Sample results

→ race to idle:
core is either 'on' or 'off'

→ power-down x8

→ energy-down x1.7

C
or

e
fr

eq
ue

nc
y

time

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,5

1

0

0,5

1

0

0,5

1

...

depends on
DFS,
but:

freq = const
during
load

reasonable

incoming
load

Power

A simple model

Power dissipation as a function of used cores

→ predict
nodal E as

power increase
per core is
smaller on

ARM

Model validation

Test case 1

→ no vertical diffusion, single layer of prisms,
→ no free surface updates
→ explicit time-stepping

Test case 2: test case 1 plus

→ add algebraic eddy viscosity model
→ add free surface updates

Test case 3: test case 2 plus

→ add temperature and salinity transport (barotropic → baroclinic)

Test case 4: test case 3 but

→ replace algebraic eddy viscosity with the closure

Test cases

Elevation

Momentum

Continuity

Temperature-/ salinity-transport Turbulent quantities transport

Density forcing

test cases 2 - 4 test cases 3 - 4

test case 4

test cases 3 - 4

test cases 3 - 4

Results

There is an optimal k, independent of the simulation

Results (outlook)

We can build better computers

CPU

GPU

This is what we are
shooting at:

Less energy at
Perf = const

Haswell,
GTX 980 Ti

Ivybridge,
GTX 660

Cortex-A15,
GK20 Kepler

switches

An off-grid compute center of the future

 Insular
 Compute-center for
 Applied Mathematics with
 Renewables-provided power supply based on
 Unconventional compute hardware empaired with
 Simulation Software for Technical Processes

Vision

Motivation
 system integration for Scientific HPC

→ high-end unconventional compute hardware
→ high-end renewable power source (photo-voltaic)
→ specially tailored numerics, simulation software

 no future spendings due to energy consumtion
 SME-class resource: <80K€
 Scalability, modular design
 (simplicity)
 (maintainability)
 (safety)
 ...

Cluster

Whitesheet
→ nodes: 60 x NVIDIA Jetson TK 1
→ #cores (ARM Cortex-A15): 240
→ #GPUs (Kepler, 192 cores): 60
→ RAM/core: 2GB LPDDR3
→ switches (GiBit Ethernet): 3xL1, 1xL2
→ cluster theoretical peak perf: ~20TFlop/s SP
→ cluster peak power: < 1kW, provided by PV

→ PV capacity: 8kWp
→ battery: 8kWh

→ Software: FEAT (optimised for Tegra K1): www.featflow.de

Conclusion and outlook

Power and energy modelling

→ smaller power dissipation alone is not the deal
→ performance modelling/-engineering of software for EE is needed
→ during simulation, complex power signatures

 start to happen → kernel-based PMs insufficient

Shallow Water Simulations on ARM

→ there is a number of TK1 boards we need to beat commodity hardware
→ for UTBEST: 6 TK1 boards deliver the CPU performance of a workstation
→ energy-down x1.7

Hardware-/Software Co-Design

→ Embedded tech has a different history than commodity hardware
→ Energy Efficiency is just starting to arrive in HPC
→ System Integration with state-of-the-art PV tech (or other renewables) is promising

Conclusion and outlook

We can build better computers

GPU

Haswell,
GTX 980 Ti

Ivybridge,
GTX 660

Cortex-A15,
GK20 Kepler

Will the trend continue?
→ TX1(8x Cortex-A57 +
Maxwell GPU) vs 1080,

P100, ...

Thank you

This work has been supported in part by the German Research Foundation (DFG)
 through the Priority Program 1648
‘Software for Exascale Computing’

(grants TU 102/48, GO 1758/2), and through the individual grant AI 117/1.

ICARUS hardware is financed by MIWF NRW under the lead of MERCUR.
.

www.icarus-green-hpc.org

Meet us @ UcHPC'16, Euro-Par'16, Grenoble, France, August 22nd-23rd 2016
(ICARUS white-paper presentation)

http://www.icarus-green-hpc.org/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37

