Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors

A case study based on the Haswell and Cortex-A15 microarchitectures

Dominik Göddeke

University of Stuttgart Germany

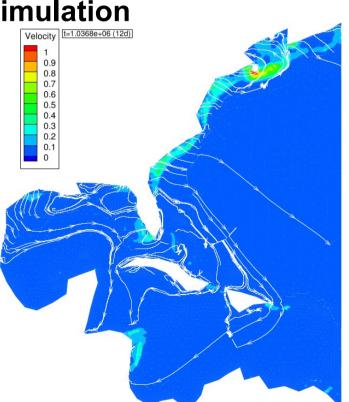
<u>Markus Geveler,</u> Stefan Turek

Balthasar Reuter, Vadym Aizinger

EnA-HPC, ISC, Frankfurt, 2016 / 6 / 23

markus.geveler@math.tu-dortmund.de

Outline


How can we take control of energy to solution in simulation software?

- \rightarrow expectations and misconceptions
- \rightarrow modeling of energy
- \rightarrow control
- \rightarrow unconventional hardware for more energy-efficiency

Concrete example: Coastal ocean circulation simulation

 \rightarrow high-end 3D geophysical flow dynamics

 \rightarrow on Intel Haswell and ARM Cortex-A15 processors

HPC Hardware

top-scorer

Today's HPC facilities (?)

www.green500.org Green500 list Nov 2015

Green 500 rank	Top 500 rank	Total power [kW]	MFlops per watt	Year	Hardware architecture		
1	133	50	7031	2015	ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC		
2	392	51	5331	2013	LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.1GHz, Infiniband FDR, NVIDIA Tesla K80		
3	314	57	5271	2014	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150		
4	318	65	4778	2015	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GHz, Infiniband QDR, NVIDIA Tesla K80		
5	102	190	4112	2015	Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80		
6	457	58	3857	2015	Inspur TS10000 HPC Server, Xeon E5-2620v3 6C 2.4GHz, 10G Ethernet, NVIDIA Tesla K40		
7	225	110	3775	2015	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40		
No Top500 #1: 17,000 kW, 1,900 MFlop/s/W unconventional hardware							

HPC Hardware

Today's HPC facilities

- \rightarrow comprise heterogeneous compute nodes
- \rightarrow multicore CPU(s) + some accelerator very common (GPU, XEON Phi)
- \rightarrow heterogeneity on-a-chip (SoCs, APUs)
- \rightarrow cost efficiency dominated by energy-efficiency

Today's large-scale HPC codes

- \rightarrow have to adapt to target hardware
- \rightarrow heterogeneity and frameworking
- \rightarrow parallelisation of applications (DD mostly)
- \rightarrow parallelisation of core components (e.g. 'linear solver on GPU')
- \rightarrow optimisation with respect to many details (data flow and SIMD mostly)
- \rightarrow can we have the same results with less energy-consumption?

Hardware evolution is (usually) out of our control – hardware-choice and software-design are not

Total efficiency of simulation software

Aspects

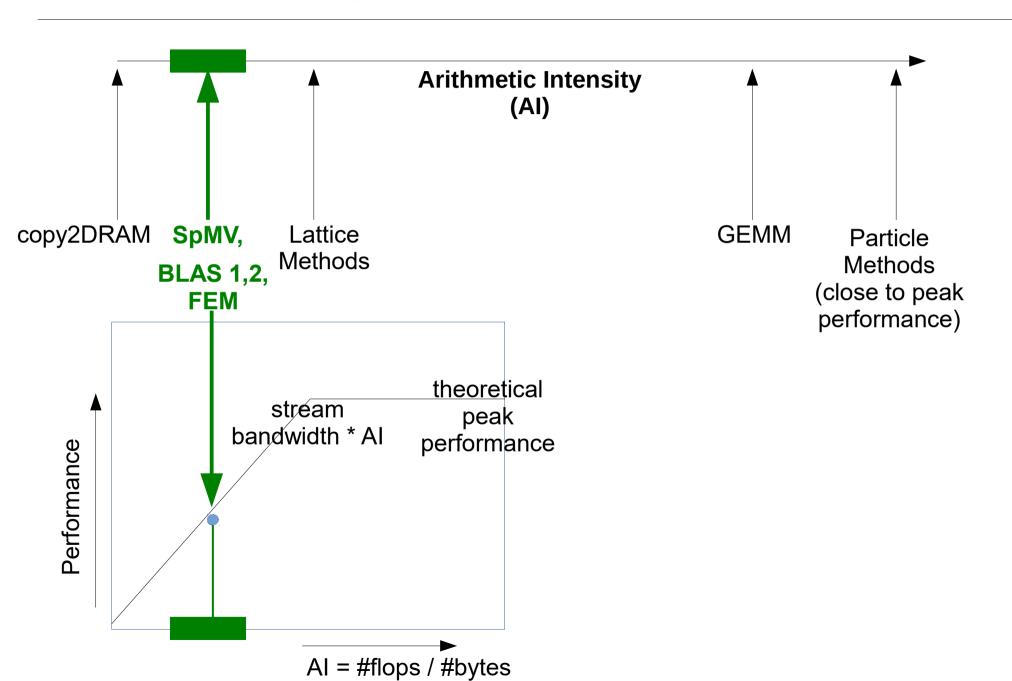
 \rightarrow Numerical efficiency dominates asymptotic behaviour and wall clock time

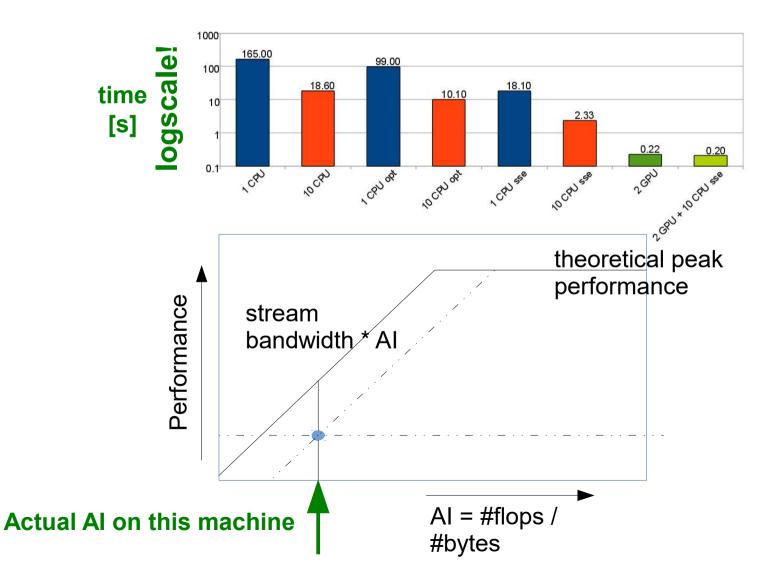
\rightarrow Hardware-efficiency

 \rightarrow exploit all levels of parallelism provided by hardware (SIMD, multi-threading on a chip/device/socket, multi-processing in a cluster, hybrids)

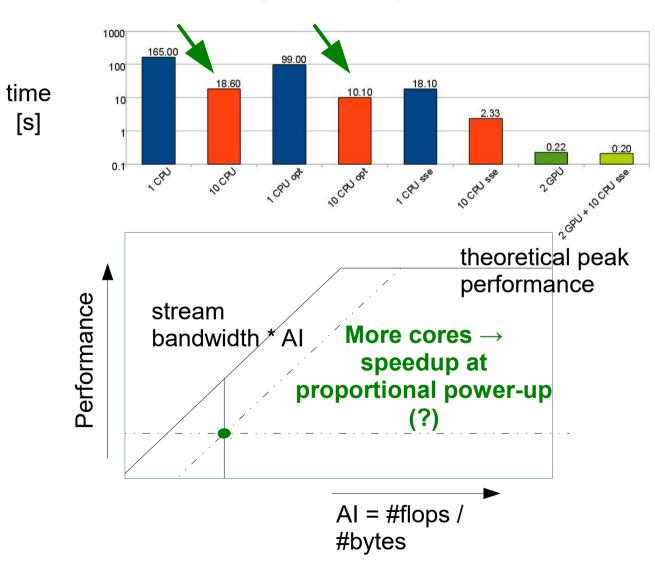
 \rightarrow then try to reach good scalability (communication optimisations, block comm/comp)

\rightarrow Energy-efficiency


 \rightarrow by hardware:

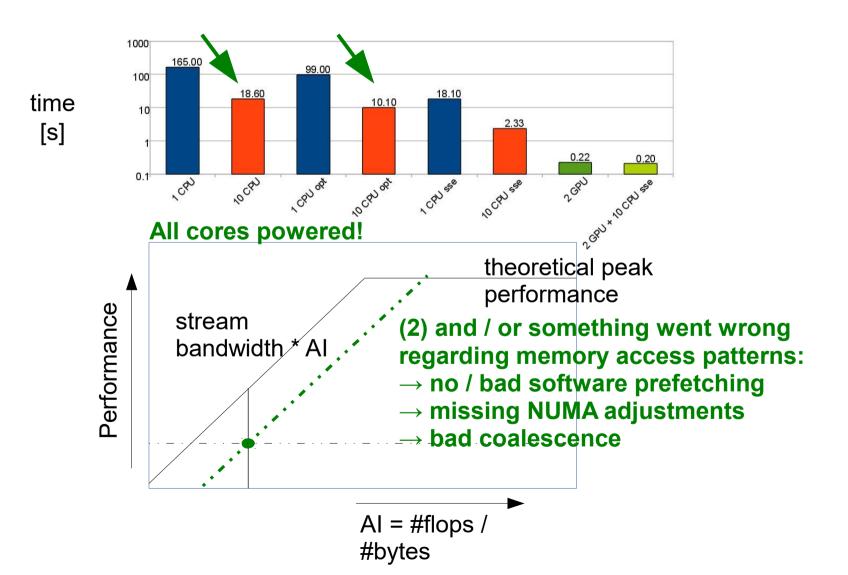

 \rightarrow what is the most energy-efficient computer hardware? What is the best core frequency? What is the optimal number of cores used?

- \rightarrow by software as a direct result of performance
- \rightarrow but: its not all about performance

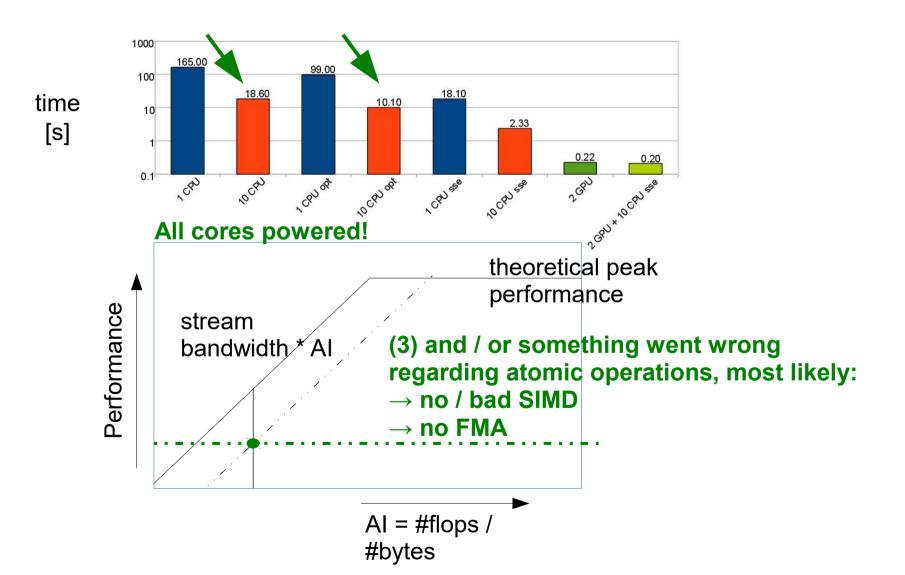

Hardware-oriented Numerics: Enhance hardware- and numerical efficiency simultaneously, use (most) energy-efficient Hardware(-settings) where available! Attention: codependencies!

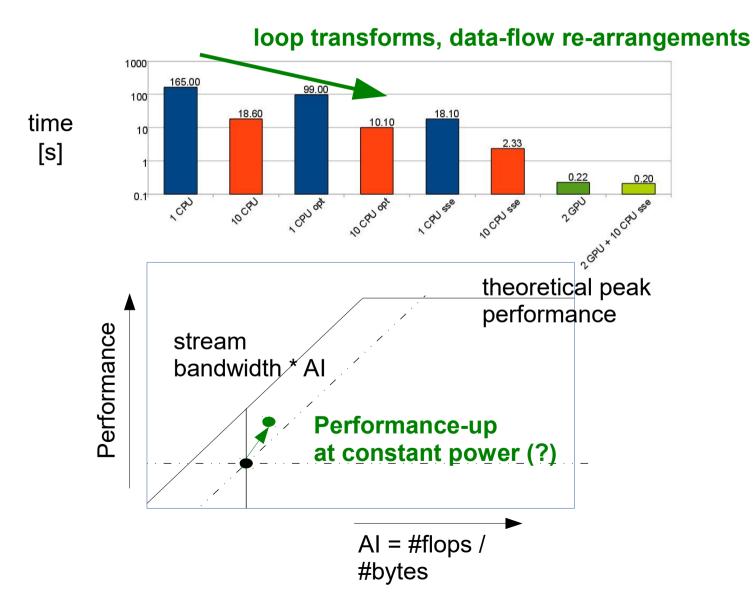
What we can expect from hardware

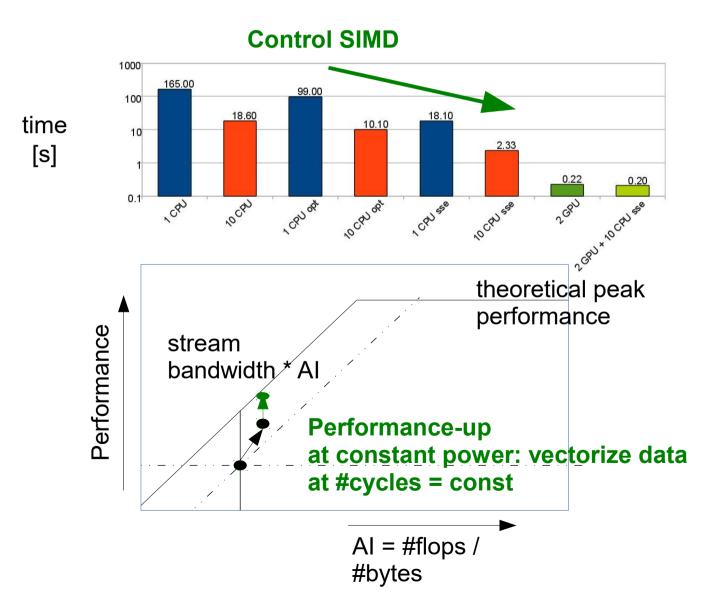
Hardware Efficiency: apply 'classical' roofline models until optimal

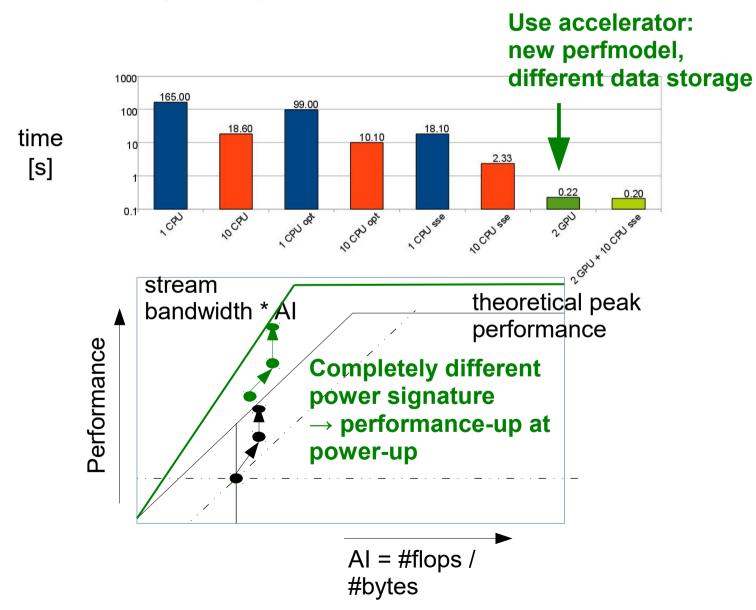


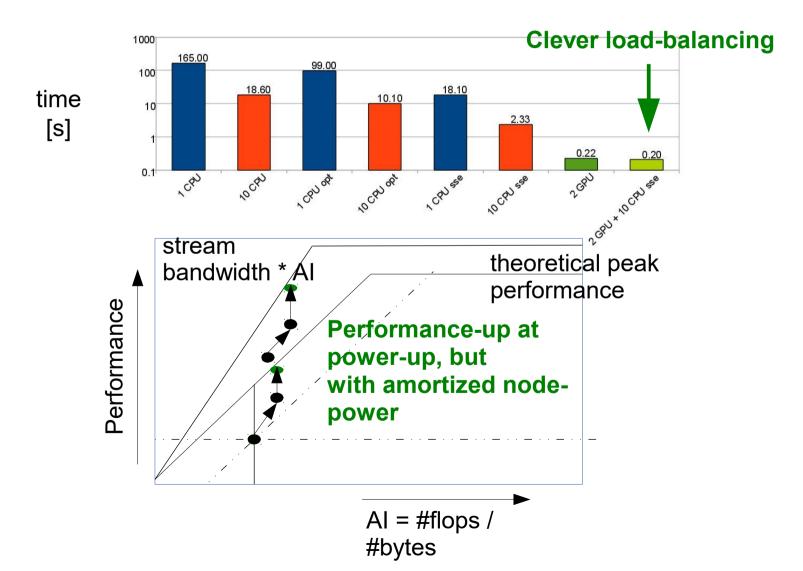
the 'good scaling trap'

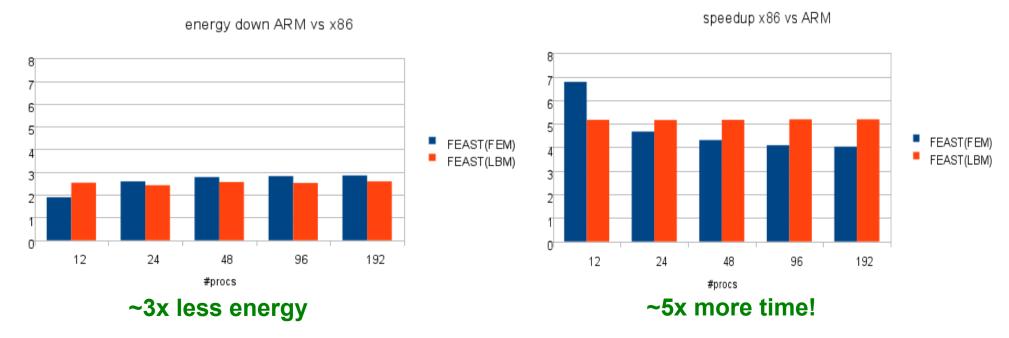

Performance-penalties




Performance-penalties

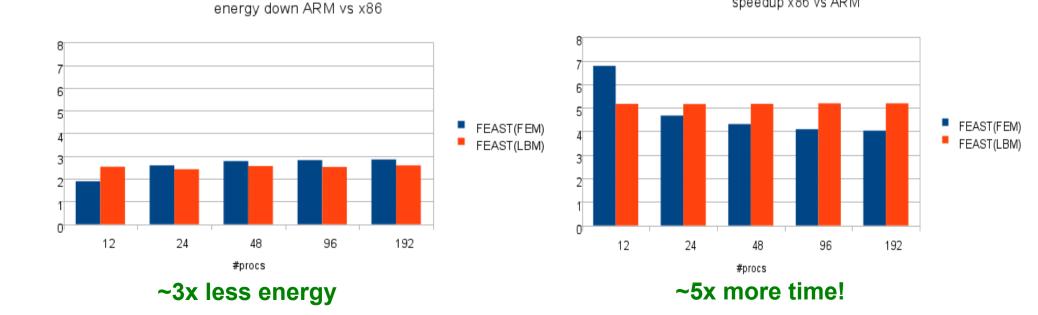



Performance-penalties



Energy Efficiency

- energy consumption/efficiency is one of the major challenges for future supercomputers
 → 'exascale'-challenge
- in 2012 we proved: we can solve PDEs for less energy 'than normal'
- simply by switching computational hardware from commodity to embedded
- Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
- tradeoff between energy and wall clock time



Energy Efficiency

To be more energy efficient with different computational hardware, this hardware would have to dissipate less power at the same performance as the other!

speedup x86 vs ARM

 \rightarrow More performance per Watt! \rightarrow power-down > speed-down

Energy Efficiency: technology of ARM-based SoCs since 2012

Something has been happening in the mobile-computing hardware evolution:

- \rightarrow Tegra 3 (late 2012) was also based on A9 but had 4 cores
- \rightarrow Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and LPDDR3 instead of LPDDR2
- → Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more memory
 - \rightarrow TK1 went GPGPU and comprises a programmable Kepler GPU on the same SoC!
 - \rightarrow the promise: 350+ Gflop/s for less than 11W
 - \rightarrow for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W
 - \rightarrow 2.5x higher EE promised

 \rightarrow interesting for Scientific Computing! Higher EE than commodity accelerator!

3D baroclinic Shallow Water Equations

ElevationContinuity $\partial_t h + \nabla \cdot \int_{z_b}^{\xi} \mathbf{u}_{xy} dz = 0$ $\nabla \cdot \mathbf{u} = 0$

Momentum

 $\partial_t \mathbf{u}_{xy} + \nabla \cdot (\mathbf{u}_{xy} \otimes \mathbf{u}) - \partial_z (\nu_t \partial_z \mathbf{u}_{xy}) + \nabla_{xy} (gh + p) - f_c \mathbf{k} \times \mathbf{u}_{xy} = \mathbf{F}_u - \nabla_{xy} z_b$

Temperature-/ salinity-transport

 $\partial_t r + \nabla \cdot (\mathbf{u}r) - \partial_z (\nu_r \partial_z r) = F_r$

Turbulent quantities transport

$$\partial_t m - \partial_z \left(\nu_m \partial_z m \right) = F_m$$

Density forcing

$$p(x, y, z) = \frac{g}{\rho_0} \int_z^{\xi} \left(\rho(\theta(x, y, \tilde{z}), s(x, y, \tilde{z})) - \rho_0 \right) \tilde{z}$$

UTBEST3D

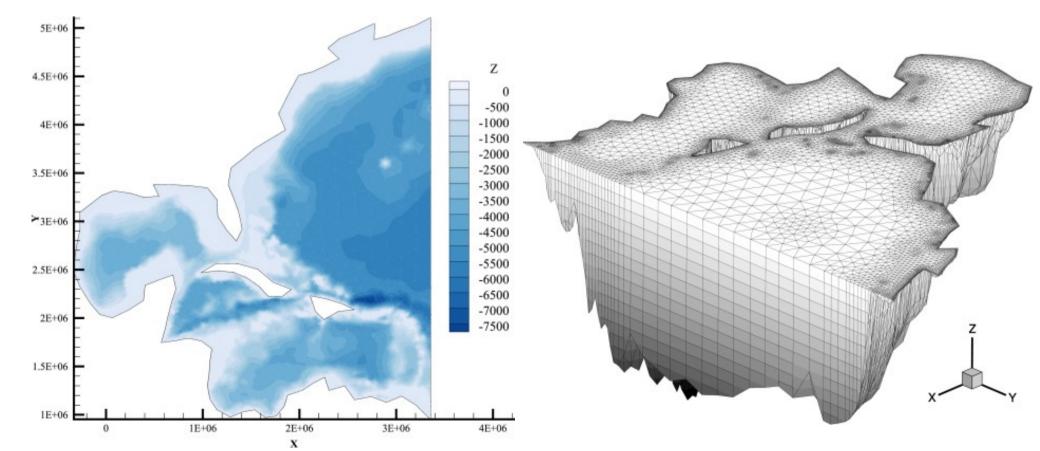
Simulation pipeline

- \rightarrow in general: piecewise constant, linear and quadratic DG
- \rightarrow 2nd order Runge Kutta

Semi-implicit with fixed #iterations in implicit part:

No convergence-theory needed in PM

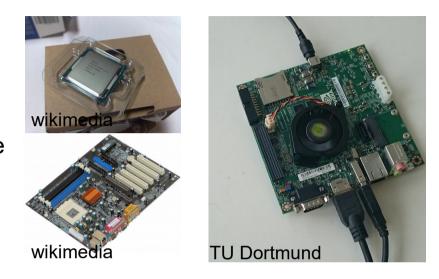
Input global parameters
Input 2D mesh
Create 3D mesh
$t \leftarrow t_0$
while $t < t_{end}$ do
Update free surface elevation (every 10th time step)
$i \leftarrow 0$
while $i < n_{\text{stages}}$ do
Perform slope limiting on θ and s
Compute body forcings for right hand sides: F_i -terms
Project density field and compute density forcing in (1b)
Integrate terms in (1a), (1b), (1d) over lateral faces
Integrate bottom boundary condition in $(1a)$, $(1b)$, $(1d)$
Solve (1c) to obtain the vertical velocity w Integrate terms in (1a), (1b), (1d) over interior and surface
⁵ Integrate terms in (1a), (1b), (1d) over interior and surface
horiz. faces
Integrate terms in (1a), (1b), (1d) over prisms
Compute next stage of Runge-Kutta method for h, u, v, θ, s
$i \leftarrow i+1$
end while
Perform slope limiting on turbulence variables
Assemble diffusion matrices and right hand sides:
Assemble diffusion matrices and right hand sides: Integrate terms in (1b), (1d), (1e) over all horizontal faces Integrate terms in (1b), (1d), (1e) over prisms
faces
integrate terms in (10), (10), (10) over prisins
Solve for diffusion contributions
$t \leftarrow t + dt$
end while


Test configuration

Tidal flow

→ part of the Atlantic Ocean adjoining the eastern seaboard of North America, Gulf of Mexico, and the Caribbean

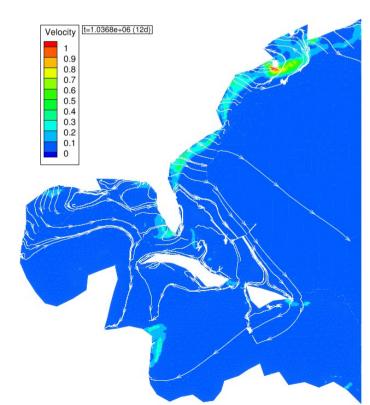
 \rightarrow a priori adapted horizontal FE mesh:


~19k triangles: ~1km (coastal) up to 120km (open waters)

Testhardware

Complete 'box'

 \rightarrow measure power at AC-converter (inlet) \rightarrow all power needed for the node


	i5-4690K	Jetson TK1
micro-architecture	Haswell	Cortex-A15 (Tegra K1)
N _{cores}	4	4
clock speed	3.50 GHz (turbo 3.9 GHz)	2.3 GHz
L1-cache	4x 32 KB + 4x 32 KB	32 KB + 32 KB
L2- / L3-cache	4x 256 KB / 6 MB	2 MB / –
memory type	DDR3	LPDDR3
peak memory bandwidth	25.6 GByte/s	14.9 GByte/s
P _{base}	41 W (Intel chipset)	3.9 W (Jetson TK1)

(2015)

Measurements

- \rightarrow preset core-frequency
- \rightarrow fixed problem size
- \rightarrow increase #cores

		i5-4690K	Jetson TK1
mic	cro-architecture	Haswell	Cortex-A15 (Tegra K1)
$N_{\rm con}$	res	4	4
clo	ck speed	3.50 GHz (turbo 3.9 GHz)	2.3 GHz
′ L1-	cache	4x 32 KB + 4x 32 KB	32 KB + 32 KB
L2-	/L3-cache	4x 256 KB / 6 MB	2 MB / –
men	mory type	DDR3	LPDDR3
pea	k memory bandwidth	25.6 GByte/s	14.9 GByte/s
$P_{\rm bas}$	e	41 W (Intel chipset)	3.9 W (Jetson TK1)

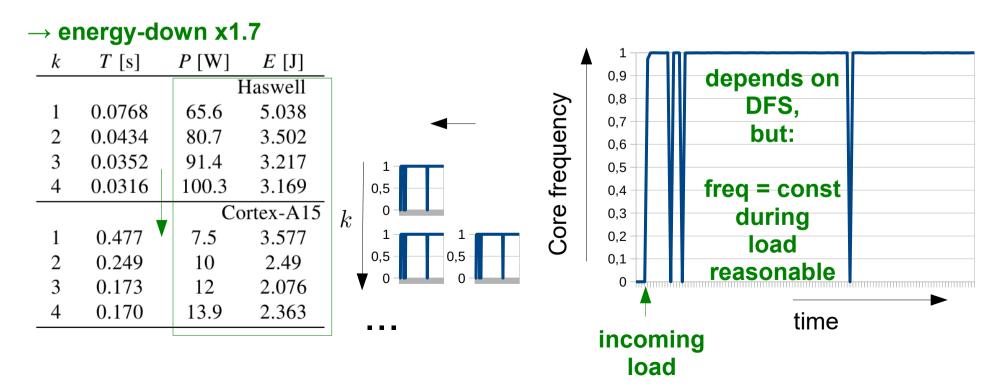
		i5-4690K	Jetson TK1
Measurements	micro-architecture	Haswell	Cortex-A15 (Tegra K1)
	N _{cores}	4	4
	clock speed	3.50 GHz (turbo 3.9 GHz)	2.3 GHz
\rightarrow preset core-frequency	L1-cache	4x 32 KB + 4x 32 KB	32 KB + 32 KB
\rightarrow fixed problem size	L2- / L3-cache	4x 256 KB / 6 MB	2 MB / –
\rightarrow increase #cores	memory type	DDR3	LPDDR3
	peak memory bandwidth	25.6 GByte/s	14.9 GByte/s
	P _{base}	41 W (Intel chipset)	3.9 W (Jetson TK1)

k	<i>T</i> [s]	<i>P</i> [W]	<i>E</i> [J]
		I	Haswell
1	0.0768	65.6	5.038
2	0.0434	80.7	3.502
3	0.0352	91.4	3.217
4	0.0316	100.3	3.169
		Co	ortex-A15
1	0.477	7.5	3.577
2	0.249	10	2.49
3	0.173	12	2.076
4	0.170	13.9	2.363

	Measurements
--	--------------

 \rightarrow performance-up and energy increase at the same time?

	i5-4690K	Jetson TK1
micro-architecture	Haswell	Cortex-A15 (Tegra K1)
N _{cores}	4	4
clock speed	3.50 GHz (turbo 3.9 GHz)	2.3 GHz
L1-cache	4x 32 KB + 4x 32 KB	32 KB + 32 KB
L2- / L3-cache	4x 256 KB / 6 MB	2 MB / –
memory type	DDR3	LPDDR3
peak memory bandwidth	25.6 GByte/s	14.9 GByte/s
P _{base}	41 W (Intel chipset)	3.9 W (Jetson TK1)

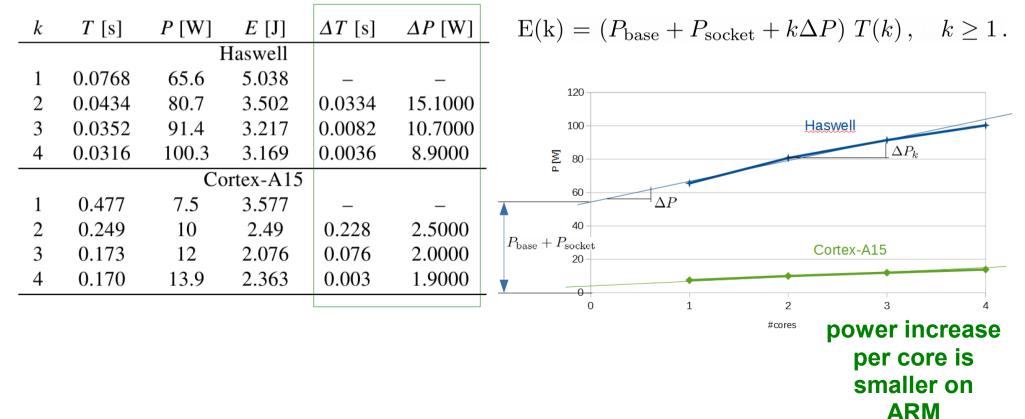

k	<i>T</i> [s]	<i>P</i> [W]	E [J]
		J	Haswell
1	0.0768	65.6	5.038
2	0.0434	80.7	3.502
3	0.0352	91.4	3.217
4	0.0316	100.3	3.169
		Co	ortex-A15
1	0.477	7.5	3.577
2	0.249	10	2.49
3	0.173	12	2.076
4	0.170	13.9	2.363

this is why we need to model energy

Performance memory-bandwidth -bound,				micro-architecture N_{cores} clock speed L1-cache L2- / L3-cache memory type peak memory bandwidth P_{base}		i5-4690K Haswell 4 3.50 GHz (turbo 3.9 GHz) 4x 32 KB + 4x 32 KB 4x 256 KB / 6 MB DDR3 25.6 GByte/s 41 W (Intel chipset)	Jetson TK1 Cortex-A15 (Tegra K1) 4 2.3 GHz 32 KB + 32 KB 2 MB / – LPDDR3 14.9 GByte/s 3.9 W (Jetson TK1)
S	peed	d-down	x5				
	k	<i>T</i> [s]	<i>P</i> [W]	<i>E</i> [J]			theoretical
	1	0.07(0		Haswell			peak
	1	0.0768	65.6	5.038	Ce	stream	performance
	2	0.0434	80.7	3.502	an	bandwidth * Al	
	3	0.0352	91.4	3.217	Ë		
	4	0.0316	100.3	3.169	je – je	•	
	Cortex-A1			 Performance		effectively	
V	1	0.477	7.5	3.577	ď		-
	2	0.249	10	2.49		Ν	SIMD on A15
	3	0.173	12	2.076			
	4	0.170	13.9	2.363		LP 🖣 🚽 🚽	>
					m	nemory interface A	l = #flops / #bytes

		i5-4690K	Jetson TK1
Power	micro-architecture	Haswell	Cortex-A15 (Tegra K1)
	N _{cores}	4	4
	clock speed	3.50 GHz (turbo 3.9 GHz)	2.3 GHz
	L1-cache	4x 32 KB + 4x 32 KB	32 KB + 32 KB
	L2- / L3-cache	4x 256 KB / 6 MB	2 MB / –
\rightarrow race to idle:	memory type	DDR3	LPDDR3
core is either 'on' or 'off'	peak memory bandwidth	25.6 GByte/s	14.9 GByte/s
	P _{base}	41 W (Intel chipset)	3.9 W (Jetson TK1)
		•	

\rightarrow power-down x8


A simple model

Power dissipation as a function of used cores

 $\Delta T = \Delta T(k) = T_{k-1} - T_k$

 $\Delta P = \Delta P(k) = P_k - P_{k-1}$

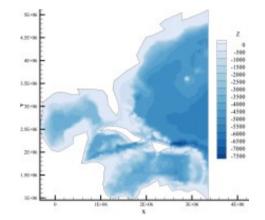
 \rightarrow predict nodal *E* as

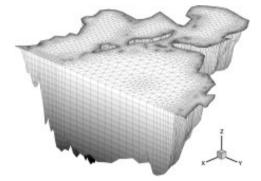
Model validation

Test case 1

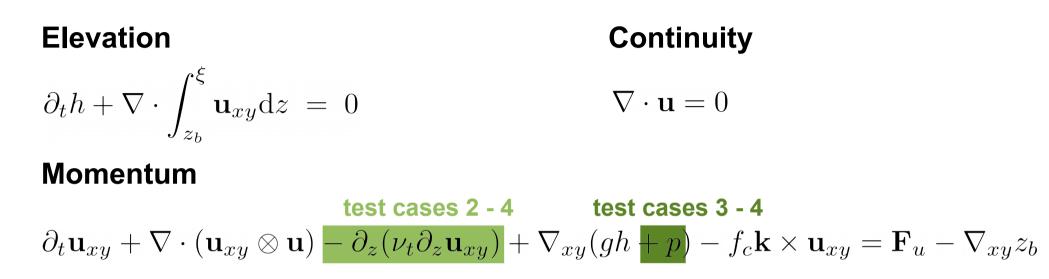
- \rightarrow no vertical diffusion, single layer of prisms,
- \rightarrow no free surface updates
- \rightarrow explicit time-stepping

Test case 2: test case 1 plus


 \rightarrow add algebraic eddy viscosity model \rightarrow add free surface updates


Test case 3: test case 2 plus

 \rightarrow add temperature and salinity transport (barotropic \rightarrow baroclinic)


Test case 4: test case 3 but

ightarrow replace algebraic eddy viscosity with the k- ϵ closure

Test cases

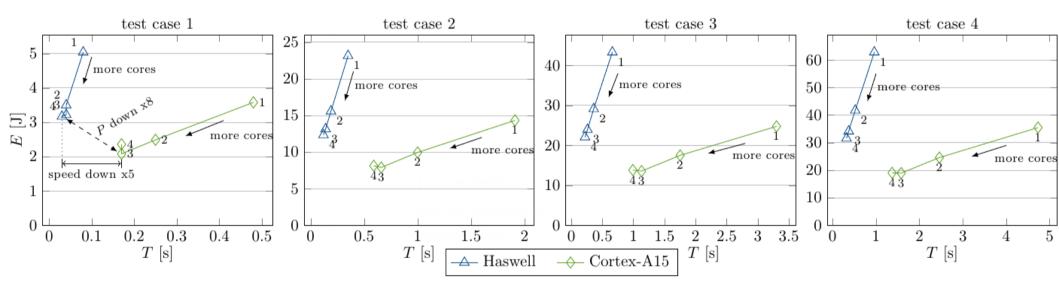
test cases 3 - 4

Temperature-/ salinity-transport

$$\partial_t r + \nabla \cdot (\mathbf{u}r) - \partial_z (\nu_r \partial_z r) = F_r$$

test cases 3 - 4

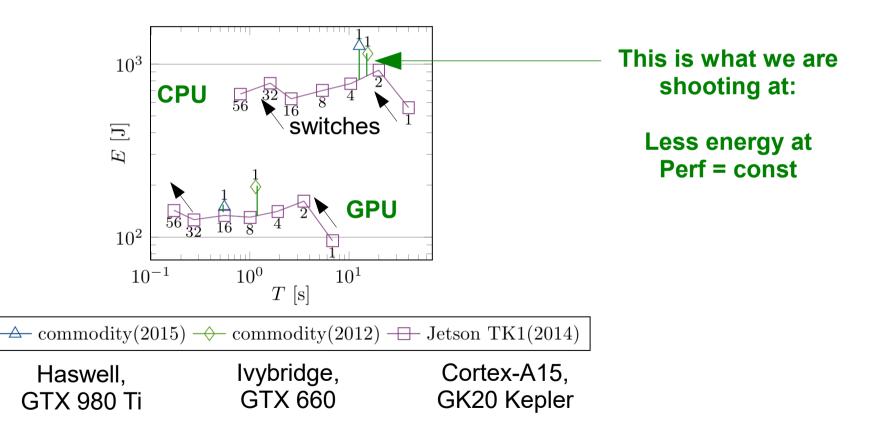
Turbulent quantities transport


$$\partial_t m - \partial_z \left(\nu_m \partial_z m \right) = F_m$$

test case 4

Density forcing

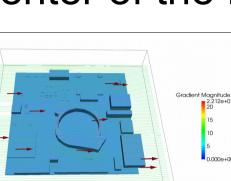
$$p(x, y, z) = \frac{g}{\rho_0} \int_z^{\xi} \left(\rho(\theta(x, y, \tilde{z}), s(x, y, \tilde{z})) - \rho_0\right) \tilde{z}$$


Results

There is an optimal k, independent of the simulation

Results (outlook)

We can build better computers


An off-grid compute center of the future

Vision

- Insular
- Compute-center for
- Applied Mathematics with
- Renewables-provided power supply based on
- Unconventional compute hardware empaired with
- Simulation Software for Technical Processes

Motivation

- system integration for Scientific HPC
 - \rightarrow high-end unconventional compute hardware
 - \rightarrow high-end renewable power source (photo-voltaic)
 - \rightarrow specially tailored numerics, simulation software
- no future spendings due to energy consumtion
- SME-class resource: <80K€</p>
- Scalability, modular design
- (simplicity)
- (maintainability)
- (safety)

Cluster

Whitesheet

- \rightarrow **nodes:** 60 x NVIDIA Jetson TK 1
- \rightarrow #cores (ARM Cortex-A15): 240
- \rightarrow #GPUs (Kepler, 192 cores): 60
- \rightarrow RAM/core: 2GB LPDDR3
- \rightarrow switches (GiBit Ethernet): 3xL1, 1xL2
- \rightarrow cluster theoretical peak perf: ~20TFlop/s SP
- \rightarrow cluster peak power: < 1kW, provided by PV
- \rightarrow PV capacity: 8kWp
- \rightarrow battery: 8kWh

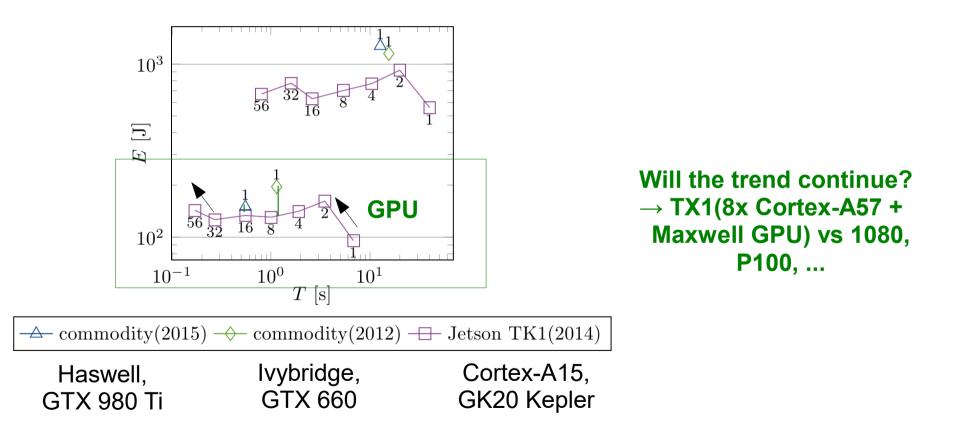
\rightarrow Software: FEAT (optimised for Tegra K1): www.featflow.de

Conclusion and outlook

Power and energy modelling

- \rightarrow smaller power dissipation alone is not the deal
- \rightarrow performance modelling/-engineering of software for EE is needed
- \rightarrow during simulation, complex power signatures start to happen \rightarrow kernel-based PMs insufficient

Shallow Water Simulations on ARM


 \rightarrow there is a number of TK1 boards we need to beat commodity hardware \rightarrow for UTBEST: 6 TK1 boards deliver the CPU performance of a workstation \rightarrow energy-down x1.7

Hardware-/Software Co-Design

- \rightarrow Embedded tech has a different history than commodity hardware
- \rightarrow Energy Efficiency is just starting to arrive in HPC
- \rightarrow System Integration with state-of-the-art PV tech (or other renewables) is promising

Conclusion and outlook

We can build better computers

Thank you

www.icarus-green-hpc.org

Meet us @ UcHPC'16, Euro-Par'16, Grenoble, France, August 22nd-23rd 2016 (ICARUS white-paper presentation)

This work has been supported in part by the German Research Foundation (DFG) through the Priority Program 1648 'Software for Exascale Computing' (grants TU 102/48, GO 1758/2), and through the individual grant AI 117/1.

ICARUS hardware is financed by MIWF NRW under the lead of MERCUR.