A brief introduction to the (standard) Lattice-Boltzmann Method and the HONEI approach

Markus Geveler Dirk Ribbrock

Fakultät für Mathematik Fakultät für Informatik TU Dortmund

April 9, 2009

Introduction

Overview

- Overview
- Part one: Introduction to LBM research
 - LBM basics
 - Solving flow problems
 - Typical algorithm
- Part two: Implementation and the HONEI approach
 - What is this bee again? Introduction to HONEI
 - The HONEI LBM framework
 - Optimisations
 - First results
- Conclusion

Part I: Introduction to LBM research

Introduction to LBM research

LBM basics

Cellular automata

- regular arrangements of cells of the same kind
- each cell has a finite number of states
- cells are updated simultanously by deterministic rules
- only a local neighbourhood is taken into account
- example: Conway's *Game of Life* (1970)

Introduction to LBM research

LBM basics

Cellular automata

Figure: source: Wolf-Gladrow 2005

- despite simple update rules: complex behaviour
- easy to implement
- well suited for massively parallel computers (local updating)
- but:
 - o conservative?
 - propagation of physical quantities?

From CAs to Lattice Gas Cellular Automata

- idea: split update into two steps
- *collision* of particles, which reflects the microdynamics of molecules
- *streaming* of particles over predefined trajectories given by the *lattice*

Introduction to LBM research

Lattice Gas Cellular Automata

- still simple update rules
- propagation of quantities
- streaming is deterministic but with statistical noise ⇒ averaging is needed

From LGCAs to LBM: The 'Boltzmann' in Lattice-Boltzmann

In LGCAs, the particle balance equation for particle N in direction α can be written as

From LGCAs to LBM: The 'Boltzmann' in Lattice-Boltzmann

Expanding the left hand side of the equation gives

$$N_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = N_{\alpha}(\mathbf{x}, t) + \Omega_{\alpha}[N(\mathbf{x}, t)]$$

 $\Leftrightarrow N_{\alpha}(\mathbf{x},t) + \Delta t \frac{\partial N_{\alpha}}{\partial t} + \mathbf{e}_{\alpha} \Delta t \nabla N_{\alpha} + \mathcal{O}((\Delta t)^{2}) = N_{\alpha}(\mathbf{x},t) + \Omega_{\alpha}[N(\mathbf{x},t)]$

$$\Leftrightarrow \frac{\partial N_{\alpha}}{\partial t} + \mathbf{e}_{\alpha} \nabla N_{\alpha} = \frac{1}{\Delta t} \Omega_{\alpha} [N(\mathbf{x}, t)]$$

Which is similar to the Boltzmann equation

From LGCAs to LBM: The 'Boltzmann' in Lattice-Boltzmann

The final step to LBM: replace the boolean fields by *distribution functions* to get rid of the statistical noise

$$N_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = N_{\alpha}(\mathbf{x}, t) + \Omega_{\alpha}[N(\mathbf{x}, t)]$$

$$\rightarrow f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) + \Omega_{\alpha}[f(\mathbf{x}, t)]$$

$$\Leftrightarrow$$

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) - f_{\alpha}(\mathbf{x}, t) = \Omega_{\alpha}[f(\mathbf{x}, t)]$$

Lattice Boltzmann Equation

HONET

\Rightarrow Still yielding all advantages of LGCA

Introduction to LBM research LBM basics

DxQy what? - The 'Lattice' in Lattice-Boltzmann

The collision operator: LBGK models

- $\bullet\,$ in general, Ω_{α} is a matrix describing the microscopic dynamics
- until early 1990s: non-linear collision operator (evaluation demanding)
- later: linearisation and substitution by the *single relaxation time* model after the collision model by Bhatnagar, Gross, Krook

$$\Omega_{lpha} = -rac{1}{ au}(f_{lpha} - f^{\mathsf{eq}}_{lpha})$$

which leads to the most common form of the Lattice-Boltzmann equation

$$f_{lpha}(\mathbf{x}+\mathbf{e}_{lpha}\Delta t,t+\Delta t)-f_{lpha}(\mathbf{x},t)=-rac{1}{ au}(f_{lpha}-f_{lpha}^{ ext{eq}})$$

Solving flow problems

Local Equilibrium distribution functions: SWE for D2Q9

$$\begin{aligned} \mathbf{U}_t + F(\mathbf{U})_x + G(\mathbf{U})_y &= S(\mathbf{U}), \\ (x, y) \in \Omega, t \ge 0, \\ \mathbf{U} &= (h \ hu_1 \ hu_2)^T \end{aligned}$$

Solving flow problems

Local Equilibrium distribution functions: SWE for D2Q9

Typical algorithm

Bringing everything together

Extract physical quantities: $h(\mathbf{x}, t) = \sum_{\alpha} f_{\alpha}(\mathbf{x}, t),$ $u_i(\mathbf{x}, t) = \frac{1}{h(\mathbf{x}, t)} \sum_{\alpha} e_{\alpha i} f_{\alpha}$

Part II: Implementation and the HONEI approach

16 / 29

Implementation and the HONEI approach

What is this bee again? - Introduction to HONEI

Hardware Oriented Numerics Efficiently Implemented - overview

The HONEI LBM framework

General

Implementations of all modules for all backends $+ \ infrastructure$

Extensions to the LBM approach for SWE

External forces do not influence collision \Rightarrow add force terms to distribution

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) - f_{\alpha}(\mathbf{x}, t) = -\frac{1}{\tau}(f_{\alpha} - f_{\alpha}^{eq}) + \frac{\Delta t}{6e^{2}}e_{\alpha i}F_{i}$$

Numerical evaluation: semi implicit centered scheme (Zhou 2004):

$$F_i = F_i(\mathbf{x} + \frac{1}{2}e_{\alpha i}\Delta t, t)$$

The HONEI LBM framework

Force terms for SWE

Example: still water above uneven bed: bed slope $F_i = -gh\frac{\partial z_b}{\partial x_i}$

Implementation and the HONEI approach

Arbitrary geometry

HONEI LBM grid: arbitrary geometry

Rasterization to create obstacle matrix: Preprocessed boundary information

Optimisation

HONEI LBM grid: streaming directions

 no obstacles (solid cells) present in computation

• supports SIMD in all directions

1					2
3	4	5	6	7	8
9	10	11	12	13	14
15		16	17	18	19
20	21				

Optimisation

HONEI LBM grid: partitioning

Implementation and the HONEI approach $_{\mbox{\scriptsize Results}}$

Accuracy Driven cavity, $R_e = 100$, u_x , mid vertical line, relative, $||u - u_{ref}||_2 = 0.0002$

Implementation and the HONEI approach

Results

Single precision performance

Implementation and the HONEI approach Results

HONEI LBM (SWE) showcases

Implementation and the HONEI approach Results

HONEI LBM (SWE) showcases

Implementation and the HONEI approach

Results

HONEI LBM (SWE) showcases

The LBM

- strongly related to the most general equation for gas-dynamic flow processes
- efficient
- easy to implement, particularly for complicated boundary schemes
- basic algorithms in 2D quite accurate

The next steps

- provide all modules for all backends
- higher order boundary scheme
- adaptivity
- to the limits of real-time

Thank you for your attention

www.honei.org

