
Lattice-Boltzmann Simulation of the
Shallow-Water Equations with Fluid-Structure
Interaction on Multi- and Manycore Processors

Markus Geveler, Dirk Ribbrock, Dominik Göddeke, and Stefan Turek

Institut für Angewandte Mathematik, TU Dortmund, Germany,
markus.geveler@math.tu-dortmund.de

Abstract. We present an efficient method for the simulation of laminar
fluid flows with free surfaces including their interaction with moving rigid
bodies, based on the two-dimensional shallow water equations and the
Lattice-Boltzmann method. Our implementation targets multiple funda-
mentally different architectures such as commodity multicore CPUs with
SSE, GPUs, the Cell BE and clusters. We show that our code scales well
on an MPI-based cluster; that an eightfold speedup can be achieved us-
ing modern GPUs in contrast to multithreaded CPU code and, finally,
that it is possible to solve fluid-structure interaction scenarios with high
resolution at interactive rates.

Keywords: High performance computing; Lattice-Boltzmann methods;
shallow water equations; fluid-structure interaction; CUDA; Cell BE;
multithreading

1 Introduction and Motivation

In many practical situations, the behaviour of a fluid can be modelled by the
shallow water equations (SWE), e.g., for tidal flows, open water waves (such
as tsunamis), dam break flows and open channel flows (such as rivers). In such
cases, vertical acceleration of the fluid is negligible because the flow is dominated
by horizontal movement, with its wavelength being much larger than the corre-
sponding height. In the SWE, vertical velocity is replaced by a depth-averaged
quantity, which leads to a significant simplification of the general flow equations
(like the Navier-Stokes equations which are derived from general conservation
and continuity laws). In the inhomogeneous SWE, source terms are employed to
internalise external forces, e.g., wind shear stress and, more importantly, forces
resulting from the interaction between the fluid and the bed topography. Using
such source terms, the two-dimensional SWE can be used for the simulation of
a fluid given by its free surface, which significantly reduces the computational
cost and makes them a popular method for instance in (ocean-, environmental-
and hydraulic) engineering.

The Lattice-Boltzmann method (LBM) is a modern numerical technique that
starts with a fully discrete model rather than discretising a set of partial dif-
ferential equations and solving them directly. One of the key features of the

2

LBM is that an implementation in parallel is comparably easy, which makes it a
promising method, especially in view of modern computational hardware, which
evolves towards massive fine-grained parallelism (see below).

Besides efficiency, a key feature of a method for advanced simulations in-
volving a fluid is the capability of letting it interact with its environment. This
interaction includes the internalisation of the ‘world geometry’ in terms of the
surface the fluid is streaming over and interaction with rigid bodies that move
through and are moved by the fluid (fluid-structure interaction, FSI). An algo-
rithm that provides both reasonable performance on modern commodity based
computer systems on the one hand and FSI functionality on the other hand is
very attractive in engineering and for example in computer graphics, ranging
from feature film to games and interactive environments.

During the past few years, computer architecture has reached a turning point.
Together, the memory, power and instruction-level parallelism (ILP) wall form a
‘brick wall’ [1], and performance is no longer increased by frequency scaling, but
by parallelisation and specialisation. Commodity CPUs have up to six cores, the
Cell processor is heterogeneous, and throughput-oriented fine-grained parallel
designs like GPUs are transitioning towards becoming viable general purpose
compute resources. On the software side, programming models for fine-grained
parallelism are subject to active discussion and are rapidly evolving. Program-
mers have to adapt to this inevitable trend, because compiler support is on the
far horizon if at all, in particular for computations with low arithmetic intensity
(ratio of arithmetic operations per memory transfer). Established parallelisa-
tion strategies for both shared and distributed memory architectures have to be
revisited, and different strategies are necessary for different architectures.

1.1 Related Work

Fan et al. [2] were the first to implement a Lattice-Boltzmann solver on a cluster
of GPUs. Advanced Lattice-Boltzmann solvers on CPUs and GPUs have been
implemented by Tölke and Krafczyk [3], Thürey [4] and Pohl [5]. Many publica-
tions are concerned with interactive and (visually) accurate simulations of fluid
flow [6,7,8,9].

1.2 Paper Contribution and Paper Overview

In Section 2.1 and Section 2.2 we briefly review the shallow water equations,
and their solution using the Lattice-Boltzmann method with support for internal
boundaries. In Section 2.3 we present modifications to the LBM to incorporate
more realistic simulation scenarios with nontrivial bed topologies, in particular
the dynamic flooding and drying of areas. Furthermore, this section describes
our approach to couple the simulation of fluids with moving solid objects that
influence the behaviour of the fluid.

Section 3 is dedicated to parallelisation and vectorisation techniques for the
FSI-LBM solver. We present efficient algorithms for all levels of parallelism en-
countered in modern computer architectures. In Section 4 we demonstrate the

3

applicability and performance of our approach for several prototypical bench-
mark problems. Performance is evaluated on a cluster of conventional CPUs
communicating via MPI, on multi-socket multi-core SMP systems, on a Cell
blade, and on modern fully programmable GPUs. We are convinced that such
algorithmic studies with respect to exploiting parallelism on various levels for a
given application are necessary at this point, in particular in view of the chal-
lenges outlined in this section. We conclude with a summary and a discussion in
Section 5.

2 Mathematical Background

2.1 Shallow Water Equations

Using the Einstein summation convention (subscripts i and j are spatial indices)
the two-dimensional shallow water equations in tensor form read

∂h

∂t
+
∂(huj)

∂xj
= 0 and

∂hui
∂t

+
∂(huiuj)

∂xj
+ g

∂

∂xi
(
h2

2
) = Sbi , (1)

where h is the fluid depth, u = (u1, u2)T its velocity in x- and y-direction, and
g denotes the gravitational acceleration. In addition, we apply a source term
Sbi which internalises forces acting on the fluid due to the slope of the bed and
material-dependent friction:

Sbi = Sslope
i + Sfriction

i . (2)

The slope term is defined by the sum of the partial derivatives of the bed to-
pography, weighted by gravitational acceleration and fluid depth (b denotes the
bed elevation), and we define the friction term using the Manning equation (as
suggested by Zhou [10]).

Sslope
i = −gh ∂b

∂xi
, Sfriction

i = −gn2bh−
1
3ui
√
ujuj , (3)

nb denotes a material-specific roughness coefficient. Using the inhomogeneous
SWE with source term (2) enables the simulation of a fluid (bounded by its
surface) with a two-dimensional method due to the coupling of fluid motion
with the bed topography.

2.2 Lattice-Boltzmann Method

In order to solve problem (1) with some initial conditions h(x, t = 0), u(x, t = 0)
and a constant bed topography, b(x), we apply the Lattice-Boltzmann method
(LBM) with a suitable equilibrium distribution to recover the SWE. In the LBM,
the fluid behaviour is determined by particle populations residing at the sites
of a regular grid (the lattice). The particles’ movement (streaming) is restricted
to fixed trajectories eα (lattice velocities) defined by a local neighbourhood on

4

the lattice. We use the D2Q9 lattice, which defines the lattice velocities in the
direction of the eight spatial neighbours as

eα =

(0, 0) α = 0

e(cos (α−1)π
4 , sin (α−1)π

4) α = 1, 3, 5, 7√
2e(cos (α−1)π

4 , sin (α−1)π
4) α = 2, 4, 6, 8,

(4)

with e = ∆x
∆t being the ratio of lattice spacing and timestep. Particle behaviour

is defined by the Lattice-Boltzmann equation and a corresponding collision op-
erator. Here, the Lattice-Bhatnagar-Gross-Krook (LBGK) collision operator [11]
is used, which is a linearisation of the collision-integral around its equilibrium
state with a single uniform relaxation time τ . Using this relaxation, the Lattice-
Boltzmann equation can be written as

fα(x + eα∆t, t+∆t) = fα(x, t)− 1

τ
(fα − feqα) +

∆t

6e2
eαiS

b
i , α = 0, . . . , 8, (5)

where fα is the particle distribution corresponding to the lattice-velocity eα and
f eqα a local equilibrium distribution, which defines the actual equations that are
solved. In order to recover the SWE, a suitable f eqα has to be defined for every
lattice-velocity. Zhou [10] has shown that the equilibria can be written as

f eqα =

h(1− 5gh

6e2 −
2

3e2uiui) α = 0

h(gh6e2 + eαiui
3e2 +

eαjuiuj
2e4 − uiui

6e2) α = 1, 3, 5, 7

h(gh
24e2 + eαiui

12e2 +
eαjuiuj

8e4 − uiui
24e2) α = 2, 4, 6, 8

(6)

and that the SWE can be recovered by applying Chapman-Enskog expansion
on the LBGK approximation (5). Finally, macroscopic mass (fluid depth) and
velocity can be obtained by

h(x, t) =
∑
α

fα(x, t) and ui(x, t) =
1

h(x, t)

∑
α

eαifα, (7)

respectively. We use the popular bounce-back rule as boundary conditions, where
particles are reflected using opposite outgoing directions and which therefore
implements no-slip boundary conditions. In the following, this basic method is
used as a starting point for our more sophisticated solver, capable of dealing with
complex flow scenarios, including the interaction with moving solid obstacles.

2.3 Dry-States and Fluid Structure Interaction

The LBM for the shallow water equations presented above can interact with
the bed surface and therefore is not restricted to simple scenarios (as it would
be if an equilibrium distribution function corresponding to the two-dimensional
Navier-Stokes equations had been used). However, it is restricted to subcritical1

1 Usually, the term critical flow is associated with a Froude number being smaller
than one. Throughout this paper, we use it for flows over a bed topography with
possibly very small (or even zero-valued) fluid depth.

5

flows, i. e., the fluid depth is significantly greater than zero. The first extension to
the method aims at allowing so-called dry-states, since the dynamic drying and
wetting of the bed topography is a feature desired by many applications. In our
approach, we define a fluid depth below a specified small threshold parameter as
dry and set the macroscopic velocity at dry sites to zero, to avoid the division
by zero in the extraction phase of the original algorithm (the evaluation of equa-
tion (7)). Secondly, local oscillations caused by critical non-zero fluid-depths are
confined with an adaptive limiter approach. Due to space constraints, we refer
to Geveler [12] for details.

In order to simulate rigid bodies moving within the fluid, the method de-
scribed so far is extended by three major algorithmic steps: In the first step, the
forces acting on the fluid due to a moving boundary have to be determined. We
use the so-called BFL-rule [13], which interpolates the momentum values for the
consistency with non-zero Dirichlet boundary conditions induced by a moving
boundary. The interpolation is achieved by taking values in opposite direction of
the solid movement similar to the bounce-back rule, see Figure 1. In the original

Fig. 1. Modified bounce-back scheme for moving boundaries.

BFL formulation, the interpolation needs four coefficients depending on the dis-

tance q =
|bβ−x|
∆x where eβ is the lattice-velocity approximating the direction of

the solid movement, bβ the corresponding point on the solid boundary and x a
location in the fluid (and on the lattice) in opposite direction. In our approach,
we use a piecewise linear approximation of the boundary, and set q = 1

2 , which
reduces three of the four coefficients to zero. We obtain a very simple formula2

for the missing momentum, that still respects the moving boundary. Let uB
be the macroscopic velocity of the solid, our modified boundary condition then
reads:

f temp
−β (x, t+∆t) = 6∆x w−β(uB(bβ) · e−β). (8)

The superscript temp indicates the distribution function after the collision step.
The wα are weights depending on the lattice, which can be set to 4

9 for α = 0 and
1
9 for uneven α and 1

36 in the even case for our D2Q9 lattice, see Caiazzo [14].

2 It should be noted, that this simplification increases performance but reduces the
spatial convergence order to one.

6

The second major step in performing FSI is the extrapolation of missing
macroscopic quantities. Moving solids imply that the lattice is in general not
invariant over time: Lattice sites that belong to a solid region at time t may
become fluid sites at time t+∆t. In this case, the missing quantities have to be
reconstructed. We use an indirect so-called equilibrium refill method proposed
for example by Caiazzo [14], which uses a three point-backward approximation
after calculating the opposite direction of the solid’s movement in order to use
one-dimensional extrapolation only. Again, the value q = 1

2 is used and we obtain

h̃(x, t+∆t) = 3h(x + e−β∆t, t+∆t)− 3h(x + 2(e−β∆t), t+∆t) (9)

+ h(x + 3(e−β∆t), t+∆t)

for the extrapolated fluid depth and

ũ(x, t+∆t) = 8/15∆xuB(bβ , t+∆t) + 2/3u(x + e−β∆t, t+∆t) (10)

− 2/5u(x + 2(e−β∆t), t+∆t)

for the macroscopic velocities, respectively.
Finally, the force acting on the solid due to fluid movement is determined by

the Momentum-Exchange algorithm (MEA) [15], in order to be able to couple
the method with a solid mechanics (CSM) solver. The MEA uses special dis-
tribution functions to compute the moments resulting from incoming particles
and outgoing particles corresponding with a single lattice-velocity −β at a solid
(boundary) point b:

fMEA
−β (b, t) = eβi(f

temp
β (x, t) + f temp

−β (x, t+∆t)). (11)

The forces can be aggregated into the total force acting on b:

F (b, t) =
∑
α

fMEA
α (b, t). (12)

3 Implementation and Parallelisation

3.1 Modular FSI-LBM Solver

The combination of all functionality presented in Section 2 results in the solver
given by Algorithm 1. Note that the algorithm is designed in a modular way in
order to be able to activate/disable certain functionality, for instance to disable
the FSI components in scenarios without moving objects.

3.2 Efficient Parallelisation and Vectorisation

It can be seen in Algorithm 1 that parallelism is trivially abundant in the
modified LBM solver: All work performed for each lattice site is independent
of all other sites (in the basic algorithm). However, this general observation

7

Algorithm 1 LBM solver for SWE with FSI

perform preprocessing → h(x, 0),u(x, 0)
for all timesteps

approximate extrapolation direction → −β
determine lattice sites to be initialised
for all lattice sites to be initialised

initialise fluid sites (equations (9) und (10))
for all fluid sites

for α = 0 to 8:
compute equilibrium distribution functions (equation (6))
perform LBGK collision
compute momentum exchange (equations (11) and (12))
for all fluid sites adjacent to moving boundary

apply modified BFL-rule (equation (8))
compute and apply source-terms (equations (2) and (3))
perform LBM streaming
for all boundary fluid sites not adjacent to moving solid

apply standard bounce-back scheme
extract physical quantities (equation (7))

does not lead in a straightforward manner to an efficient parallelisation, and
in particular vectorisation. Our implementation supports coarse-grained paral-
lelism for distributed memory systems, medium-grained parallelism on multi-
core shared memory machines, and fine-grained parallelism corresponding to
the SIMD paradigm. The latter is important not only in the SSE units of con-
ventional CPUs, but also on graphics processors. For instance, the SIMD width
is 32 on current NVIDIA CUDA-capable GPUs. We apply the same techniques
for coarse- and medium-grained parallelism on CPUs; and for fine-grained par-
allelism within CPU cores and GPU multiprocessors, respectively. Only the ac-
tual implementation of the algorithms varies for different architectures, see Sec-
tion 3.4.

The SIMD paradigm implies that branches should be avoided in the inner-
most loops, because otherwise serialisation of the branches occurs. In the context
of our FSI-LMB solver, sites can be fluid, solid, dry or moving boundary, and
each type has to be treated differently. Furthermore, different computations are
performed in the collision steps for the nine lattice velocities of the D2Q9 model.
For an efficient vectorisation, we want to store all data contiguously in memory.
A special packing algorithm is used to determine the largest connected areas in
the given domain: For the basic solver without source terms and FSI, all ob-
stacle sites can be eliminated, as they contain no fluid throughout the entire
calculation. In a second step, all remaining sites are classified with respect to
their neighbours in all nine directions in a similar way as it has been proposed
by Krafczyk et al. [16]. For example, if the northern neighbours of two adjacent
lattice-sites are also adjacent and have the same boundary conditions, the solver
can process these sites in a vectorised manner without branches. However, for
the advanced algorithm employing FSI, this lattice-compression technique is not

8

suitable since the lattice is dynamically altered by the movement of the solids.
In this case, the packing algorithm is only run once in the preprocessing phase,
packing only stationary obstacles as in the original algorithm. Dynamic lattice
transformation in the actual simulation is achieved by tagging lattice sites ei-
ther as fluid, solid or fluid-boundary, etc. In all cases, the packed data is stored
in one-dimensional arrays that contain areas of lattice-sites with related neigh-
bours and the same boundary conditions. Despite vectorisation, the approach
also ensures good spatial and temporal locality of the computations.

To be able to distribute the solver calculation across various cores and to
calculate the solution in parallel, the domain (the packed data vectors) is parti-
tioned into different nearly independent parts. We pad each local array with a
few ghost entries, allowing it to synchronise with its predecessor and successor.
As we use a one-dimensional data layout, each part has only two direct neighbour
parts to interact with. After each time step every part sends its own results cor-
responding to subdomain boundaries to the ghost sites of its direct neighbours.
As soon as every part has finished these independent, non-blocking transfers,
the next time step calculation can begin. On shared memory architectures, the
synchronisation phase does not involve message passing, but can be realised via
locks on shared data, and thus the procedure is conceptually the same. Conse-
quently, the communication between the different parts is very efficient, because
it involves no serialisation.

3.3 Source Terms and FSI Implementation

The partial derivatives in the slope source term (3) are evaluated by means of the
semi-implicit centred scheme proposed by Zhou [10], where the slope is computed
at the midpoint between the lattice-site and one neighbouring lattice-site and
therefore includes the interpolation of the fluid depth:

Sslope
i = Sslope

i (x +
1

2
eα∆t, t) (13)

With this approach, we are able to achieve a horizontal steady-state even when
nonplanar bed topographies are involved, see Section 4.1.

Besides the source terms, two additional solver modules are needed to pro-
vide FSI functionality. To increase efficiency, Algorithm 1 can be reformulated,
resulting in a fused kernel that performs LBGK collision and LBM streaming
and all steps between these two. The corresponding module also automatically
corrects the streaming of particles that are influenced by a moving boundary,
i. e., a boundary that is not treated as a solid obstacle by our packed lattice
data structure. In addition, the BFL rule is applied and the MEA distribution
functions are computed. The second FSI module performs the initialisation of
fluid sites with all necessary extrapolations.

Keeping track of the lattice flags is achieved by boolean vectors directly
corresponding to the compressed data vectors needed by the basic solver and
calculations concerning these flags, e.g., determining fluid sites that need to be
initialised, are performed on the fly.

9

3.4 Hardware-Oriented Implementation

The solver is built on top of the HONEI libraries [17] to be able to use the
different target hardware plattforms efficiently. HONEI provides a wide range of
software backends to access different hardware via a unified interface. Its generic
backend approach enables the programmer to develop code without having to
care about specific hardware details, and applications built on top of the libraries
are written only once and can directly benefit from hardware acceleration by sim-
ply designating them with a hardware tag. Furthermore, the backend-specific
infrastructure eases the development of application-specific functionality, be-
cause hardware specific optimisation has not to be done from scratch: The CPU
backend is built around SSE intrinsics. The multicore backend uses PThreads
to provide an abstract thread type and tools to execute and synchronise these
threads. The GPU backend is based on NVIDIA CUDA and provides simplified
access to any CUDA-enabled GPU. In addition, all memory transfers between
main memory and the GPU device memory are done automatically and executed
only if necessary. The Cell backend enables support for the IBM Cell BE and
grants a comfortable way to create custom SPE programs on top of the IBM SPE
libraries. Finally, the MPI backend encapsulates the common message passing
interface.

4 Results

4.1 Validation

Figure 2 demonstrates the applicability of our solver for various dam break
scenarios including the flooding of dry areas and self-propelled objects moving
through the resulting fluid surface. We abstain from giving detailed numerical
test results here, and refer to the theses of the first two authors [12,18]. There,
it is shown that all solver configurations provide good accuracy in terms of mass
conservation, smoothness of quantity-fields and stability, as well as a compar-
ison in terms of accuracy with a solver using a finite element discretisation of
the Navier-Stokes equations. The treatment of dry-states by the experimental
limiter methods combined with the cutoff of particle populations at the fluid-
solid interface may lead to a small loss of mass. Nonetheless, the FSI-LMB solver
always computes a stable and visually accurate solution.

The first scenario we present (top row in the figure) is a partial dam break
simulation, a standard benchmark problem for shallow water solvers. For this
test case, the modules treating source terms, dry-states and FSI are deactivated
in our modular solver. The middle row in the figure depicts the same partial
dam break simulation, but with supercritical initial fluid depth (dry-states).
The results show that such configurations can be stabilised by our solver with
no significant loss of mass. The third scenario (bottom row) contains two sta-
tionary obstacles and one moving solid coupled with a full cuboidal dam break
simulation. Furthermore, this configuration includes the nontrivial bed topogra-
phy given by fγ(x, y) = γ(x2 + y2) and is therefore, even though no dry-states

10

(a) after preprocessing (b) after 20 timesteps (c) after 60 timesteps

(d) after 10 timesteps (e) after 40 timesteps (f) after 50 timesteps

(g) after preprocessing (h) after 20 timesteps (i) after 80 timesteps

Fig. 2. Partial dam break simulations. Top: without source terms and FSI (the
lower basin is filled with water initially); middle: with dry-states (the lower basin
is empty initially), without FSI; bottom: full FSI simulation (bird’s eye view)
with cuboidal dam break.

are present, a test case for the full functionality of our solver, because all solver
modules including FSI and the treatment of source terms are activated. In all
simulations with an uneven bed geometry present, the steady-state solution al-
ways cancels out the non-vanishing forces and converges to a horizontal plane.

4.2 Performance Benchmarks

We first evaluate the performance on different multi- and manycore architectures
of the basic solver without its source term and FSI modules. Figure 3 (left)
shows the mega lattice updates per second (MLUP/s) for increasing lattice size,
simulating a partial dam break scenario like the one depicted in Figure 2 (top
row). The CPU SSE/multicore backend is evaluated on a dual-socket dual-core
AMD Opteron 2214 system and an Intel Core i7 quadcore workstation. The Cell
backend is tested with an IBM QS22 blade with two Cell BE processors. The

11

 0

 50

 100

 150

 200

 250

 300

250
2

500
2

1000
2

1500
2

2000
2

2400
2

2800
2

M
L

U
P

/s

Number of lattice sites

GTX 285
8800 GTX

Core i7, 4 threads
QS22 Blade

Opteron, 3 threads

(a) Performance on different architectures

 0

 5

 10

 15

 20

 25

 30

 35

 40

250
2

500
2

1000
2

1500
2

2000
2

2400
2

2800
2

M
L
U

P
/s

Number of lattice sites

1 process, 1 node
2 processes, 2 nodes
3 processes, 3 nodes
4 processes, 4 nodes
8 processes, 4 nodes

(b) Strong scalability with MPI

Fig. 3. Partial dam break benchmark on different architectures.

GPU-based solver is executed on a NVIDIA GeForce 8800 GTX and a GeForce
GTX 285. The QS22 blade executes twice as fast as the Opteron system, but
is outperformed by a factor of two by the Core i7 system. Even the older GTX
8800 outperforms all CPU systems but is restricted to small lattice sizes due to
its comparatively small amount of device memory. Finally, the GTX 285 reaches
eight times the performance of the fastest CPU system. These speedup factors are
proportional to the bandwidth to off-chip memory of the various architectures,
ranging from 6.4 GB/s per socket (Opteron), 25 GB/s (Cell) and 33 GB/s (i7)
to 87 GB/s and 160 GB/s for the two GPUs. Detailed measurements reveal that
only the kernel responsible for computing the equilibrium distribution functions
is compute-bound, all other operations are limited in performance by the memory
bandwidth [18]. Figure 3 (right) shows almost perfect strong scaling of the MPI
backend on a small cluster of Opteron 2214 nodes.

Our last experiment compares the performance of increasingly complex solver
configurations on the GeForce GTX 285 by simulating the three test cases de-
scribed above. We emphasise that the speedup of the GPU over other archi-
tectures is in line with the measurements for the basic LBM solver, even with
full FSI functionality. The timing measurements in Figure 4 demonstrate that
all solver configurations can cope with high resolutions in reasonable time. For
example, even the full algorithm can compute a single timestep on a lattice with
approximately 1.7 million lattice-sites in less than 0.04 seconds, corresponding
to 30 timesteps per second. The more advanced solvers do not benefit from the
static lattice compaction (cf. Section 3.2) to the same extent as the basic solver,
because the domain changes in the course of the simulation. Besides the addi-
tional computational effort, the loss in performance compared to the basic solver
is therefore certainly due to the increase in conditional branches in the code.

12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

250
2

500
2

1000
2

1500
2

2000
2

2400
2

2800
2

to
ta

l
ti
m

e
 o

f
e

x
e

c
u

ti
o
n

 p
e

r
ti
m

e
s
te

p

number of lattice sites

full functionality
source terms without FSI

basic solver

Fig. 4. Time per timestep (in seconds) for the three scenarios with corresponding
solver configurations (basic solver, with source terms, full functionality with FSI)
on the GeForce GTX 285.

5 Conclusions and Future Work

The combination of the shallow water equations and a suitable Lattice-Boltzmann
approach with methods to stabilise dry-states as well as for fluid-structure in-
teraction has been used for a novel approach to simulate ‘real-world’ free surface
fluids. With the presented algorithm, the problem of lacking computational re-
sources for the direct solution of flow equations can be overcome if quantitative
accuracy is less important than, for example, visual appearance as it is the com-
mon case in computer graphics or entertainment.

In addition to this numerical modeling, we implemented our method on a
wide range of parallel architectures, addressing coarse, medium and fine-grained
parallelism. In future work, we will explore heterogeneous systems, e.g., the
simultaneous use of the CPU cores and GPUs in cluster nodes, to maximise the
computational efficiency.

Acknowledgements

We would like to thank Danny van Dyk, Sven Mallach and all contributors to
HONEI. This work has been supported by Deutsche Forschungsgemeinschaft
(DFG) under the grant TU 102/22-2, and by BMBF (call: HPC Software für
skalierbare Parallelrechner) in the SKALB project (01IH08003D / SKALB).
Thanks to NVIDIA for generous hardware donations, and to IBM Germany
for access to QS22 blades.

13

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(2006)

2. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high perfor-
mance computing. In: SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing. (2004) 47

3. Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for
3D CFD. International Journal of Computational Fluid Dynamics 22(7) (2008)
443–456

4. Thürey, N., Iglberger, K., Rüde, U.: Free Surface Flows with Moving and Deform-
ing Objects for LBM. Proceedings of Vision, Modeling and Visualization 2006
(2006) 193–200

5. Pohl, T.: High Performance Simulation of Free Surface Flows Using the Lattice
Boltzmann Method. PhD thesis, Universität Erlangen-Nürnberg (2008)

6. Molemaker, M.J., Cohen, J.M., Patel, S., Noh, J.: Low viscosity flow simulations
for animations. In Gross, M., James, D., eds.: Eurographics / ACM SIGGRAPH
Symposium on Computer Animation. (2008)

7. van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with cur-
vature flow. In: I3D ’09: Proceedings of the 2009 symposium on Interactive 3D
graphics and games, New York, NY, USA, ACM (2009) 91–98

8. Baboud, L., Décoret, X.: Realistic water volumes in real-time (2006)
9. Krüger, J.: A GPU Framework for Interactive Simulation and Rendering of Fluid

Effects. PhD thesis, Technische Universität München (2006)
10. Zhou, J.G.: Lattice Boltzmann methods for shallow water flows. Springer (2004)
11. Higuera, F.J., Jimenez, J.: Boltzmann approach to lattice gas simulations. EPL

(Europhysics Letters) 9(7) (1989) 663–668
12. Geveler, M.: Echtzeitfähige Interaktion von Festkörpern mit 2D Lattice–

Boltzmann Flachwasserströmungen in 3D Virtual–Reality Anwendungen. Diploma
thesis, Technische Universität Dortmund (2009)

13. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-
lattice fluid with boundaries. Physics of Fluids 13(11) (2001) 3452–3459

14. Caiazzo, A.: Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure
interaction problems. PhD thesis, Technische Universität Kaiserslautern, Scuola
Normale Superiore Pisa (2007)

15. Caiazzo, A., Junk, M.: Boundary forces in lattice Boltzmann: Analysis of momen-
tum exchange algorithm. Computaters & Mathematics with Applications 55(7)
(2008) 1415–1423

16. Krafczyk, M., Lehmann, P., Philippova, O., Hänel, D., Lantermann, U.: Lattice
Boltzmann Simulations of complex Multi-Phase Flows. Springer (2000)

17. van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Göddeke, D., Gutwenger, C.:
HONEI: A collection of libraries for numerical computations targeting multiple
processor architectures. Computer Physics Communications 180(12) (2009) 2534–
2543

18. Ribbrock, D.: Entwurf einer Softwarebibliothek zur Entwicklung portabler, hard-
wareorientierter HPC Anwendungen am Beispiel von Strömungssimulationen mit
der Lattice Boltzmann Methode. Diploma thesis, Technische Universität Dort-
mund (2009)

	Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors
	Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Stefan Turek

