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Motivation

FEM

highly accurate for solving PDEs:

high order (non-conforming) FEs
arbitrarily unstructured grids to
resolve complex geometries
grid adaptivity
Pressure-Schur-Complement
Preconditioning
...

in connection with Geometric
Multigrid solvers:

convergence rates indepent of
mesh width h
superlinear convergence effect
possible (→ high order FE
spaces)

→ Finite Element Geometric Multigrid enhances numerical
efficiency.



Motivation

GPUs

high on-chip memory
bandwidth

maximisation of the overall
throughput of a large set of
tasks

parallelisation techniques for
FEM software are being
explored

stronger smoothers are still
an issue → SPAI, ILU

complete Geometric
Multigrid solvers haven’t had
much attention yet
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But: bare ’MachoFlop’-performance does not count! Today:
Realising FE-gMG on the GPU → hardware-oriented numerics



Solution approach

Idea: One performance-critical kernel: SpMV

coarse-grid solver: Conjugate Gradients

smoothers: based on preconditioned Richardson iteration

defect calculations

What’s left

some BLAS-1 (dot-product, norm, ...)

grid transfer → can be reduced to SpMV too (later)

Benefits

solver must be implemented only once

oblivious of FE space and domain dimension

performance tuning reduced to one kernel



Solution approach

Grid transfers

chose the standard Lagrange bases for two consecutively refined Qk

finite element spaces V2h and Vh

function u2h ∈ V2h can be interpolated in order to prolongate it

uh :=

m∑
i=1

xi · ϕ(i)
h , xi := u2h(ξ

(i)
h )

for the basis functions of V2h and u2h =
∑n

j=1 yj · ϕ
(j)
2h with

coefficient vector y, we can write the prolongation as

uh :=

m∑
i=1

xi · ϕ(i)
h , x := Ph

2h · y

restriction matrix R2h
h = (Ph

2h)T



Solution approach

Grid transfer: Simplified example - 2D, Q1 on regular grid
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Solution approach

Grid transfer: Prolongation matrix examples

left to right: 2-Level, Cuthill McKee, Coordinate-based and
Hierarchical orderings
sparsity pattern (and bandwidth) depends on DOF numbering
technique → performance
same for the stiffness matrices



Implementation

Sparse matrix-vector multiply on the GPU: ELLPACK-R

store sparse matrix S in two arrays A (non-zeros in column-major
order) and j (column index for each entry in A)

A has size (#rows in S) × (maximum number of non-zeros in any
row of S)

shorter rows are padded with zeros

additional array rl to store effective count of non-zeros in every row
without the padding-zeros (stop computation on a row after the
actual non-zeros)

S =


1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

 ⇒ A =


1 7 ∗
2 8 ∗
5 3 9
6 4 ∗

 j =


0 1 ∗
1 2 ∗
0 2 3
1 3 ∗

 rl =


2
2
3
2





Implementation

Sparse matrix-vector multiply on the GPU

yi =

rli∑
nz=0

Ai,nz ∗ xjnz

based on the ELLPACK-R format

y = Ax can be performed by computing each entry yi of the result
vector y independently (one GPU-thread per yi)

regular access pattern on data of y and A

access pattern on x depends highly on sparsity pattern of A

data access to all three arrays is fully coalesced due to column-major
ordering

x-values can be cached (texture-cache or L2 on FERMI)

no synchronisation between threads necessary

no branch divergence



Results

Benchmark setup
−∆u = 1, x ∈ Ω

u = 0, x ∈ Γ1

u = 1, x ∈ Γ2

Q1 Q2
L N non-zeros N non-zeros

4 576 4552 2176 32192
5 2176 18208 8448 128768
6 8448 72832 33280 515072
7 33280 291328 132096 2078720
8 132096 1172480 526336 8351744
9 526336 4704256 2101248 33480704
10 2101248 18845696 - -

Poisson problem as a
fundamental component in
many practical situations

different FE spaces

different DOF numbering
techniques

Jacobi preconditioning,
V-cycle

Intel Core i7 980 Gulftown
hexacore workstation /
NVIDIA Fermi GPU (Tesla
C2070)



Results

In addition: stronger preconditioning with SPAI

‖ I −MA ‖2F =

n∑
k=1

‖ eTk −mT
kA ‖22 =

n∑
k=1

‖ ATmk − ek ‖22

where ek is the k-th unit-vector and mk is the k-th row of M . → for n
columns of M → n least squares opt.-problems:

minmk
‖ ATmk − ek ‖2, k = 1, . . . n.

sparsity-pattern of the stiffness-matrix is used for pattern of
preconditioner



Results

Sparse matrix-vector multiply on the GPU



Results

Its numerics, that counts: #iterations

→ potential degradation of ×1/1000

→ hardware may offer an order of magnitude speedup



Results

FE-gMG: a closer look at preconditioning

→ SPAI offers ×1/2; SPAI+Q2 works well



Results

Execution times for finest discretisation and reasonable
numbering-techniques: CPU, GPU



Results

Geometric Multigrid
mission accomplished: SpMV performance
transported to solver level

clever sorting may pay off

gap between

weak solvers + unthoughtful DOF-ordering +
unoptimised kernels (with respect to hardware)
and
FE-gMG + clever reordering +
hardware-acceleration

is huge

current design oblivious of FE-spaces,
domain-dimension, preconditioning, grid
properties, ...



Conclusion

Summary

FE-gMG is efficient and flexible

GPU vs. multicore CPU: close to one order of magnitude speedup

sophisticated (sparse) preconditioners make the difference

single-node hardware-oriented FE-gMG is ready from the solver-side,
but ...

Future work

assembly of preconditioners, system matrices, transfer-matrices still
unresolved, especially for unstructured grids

cross-effects with resorting the degrees of freedom in combination
with a specific matrix storage format and associated SpMV kernel

other related data-parallel operations: adaptive grid-deformation, ...
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